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Hot compression experiments are carried out on steel workpieces by means of Gleeble 1500 thermo mechani-
cal simulator in wide range of temperatures 800 °C - 1200 °C with strain rates 0,1 s™', 1,0 s~"and 8,0 s~ and true
strains of 0,0 to 0,5. Hot flow curves were estimated by means of the CAE neural networks. The methods of
constant smoothness parameter and non-constant (ellipsoidal) smoothness parameter were applied. The use
of the latter proved more exact (up to 3,4 %) and simpler if we compare it with the existing data for the flow curve
prediction of tool steel by BP NN (up to 7 %), as the proposed method yields better results. The activation energy
and other parameters in hyperbolic-sine equation were calculated according to the method proposed by McQueen
et al. and according to the method recently proposed by Kugler et al. The latter yields better results at predicting
the maximum values of hot flow curves.
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Predmnijevanje napona naprezanja kod vrué¢eg sabijanja €elika s CAE NN i hiperboliénom - sinusoidnom
jednadzbom. Pomocu termomehanickog simulatora Gleeble 1500 izvedeni su vruci pokusi sabijanja €eli¢nih
proba u temperaturnom rasponu 800 °C - 1200 °C, brzinom deformacije 0,1 s™', 1,0 s7"i 8,0 s i stupnja defor-
macije od 0,0 do 0,5. Naprezanja materijala odredena su pomo¢u CAE neuralnih mreza. Rabljene su metode
stalnog i nestalnog (elipsoidnog) parametra glatko¢e. Upotreba zadnjih pokazala se za to¢niju (do 3,4 %) i
jednostavniju ako ih se usporedi s znanima podacima krivulje naprezanja alatnog ¢elika metodom BP NN (do 7
%). Aktivacijska metoda i ostali parametri u hiperboli¢no - sinusoidnoj jednadzbi izracunani su metodom koju
predlaze McQueen i ostali te novijom metodom predlozenoj od Kuglera i ostalih. Ta zadnja ima bolje rezultate za
predmnijevanje maksimalnih vrijednosti krivulja te€enja u vru¢em.

Kljuéne rijeci: alatni ¢elik, vruce sabijanje, krivulja te¢enja, umjetne neuralne mreze, aktivacijska energija

INTRODUCTION

By the technology of hot forming - due to demands for
maintaining the competitive position - there are constant
demands for reduction of the prime costs, for improvement
of products quality and for increasing of productivity. In
order to make it possible for the technologists to achieve
that in practice, the researchers must improve the models
for prediction of material behaviour during the hot forming
and make the simple for application. The flow curves of the
formed material are here as important as hot plasticity [1 -
5]. To achieve the best possible description of flow curves
during the hot forming of metals many models have been
proposed so far. At classical functional records we calcu-
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late the model constants from the given database. It is known
that the influences of most factors on flow curves are not
linear; therefore the predicted capability of the models is
limited and ranges from 2 to 60 %. In case of additional
experimental data on flow curves or in case of needed addi-
tional parameters we must furthermore calculate the model
constants anew [5 - 11]. In spite of great progress physical
models are still rather limited to the relatively pure metals
and as such have not yet been sufficiently accepted into prac-
tice [12]. Due to the known fact that the path leading form
empirical to physical models will take a longer time, some
researchers, whose aim is to achieve better prediction of
hot flow curves, started using alternative paths, e.g. Back
Propagation Neural Networks (BP NN). Due to relatively
big difficulties in determining the optimal architecture of
layers when applying the BP NN, limited number of input
parameters, etc., there have been successful cases of using
the CAE neural networks [5]. In comparison to regression
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models, the application of neural networks does not limit us
neither with beforehand obligatory law of the mathematical
model nor with non-linear character of some factors. In case
of enlargement of database, the ANN can adjust the state of
the old network to fit the new experimental data, instead of
abounding or re-doing the old data or network [13 - 18].
The present demand regarding the flow curves, e.g. in the
process of hot rolling, lies within the rate of 5 %. Striving
for higher productivity and lower costs of a successful pro-
duction makes it reasonable to go on with the experimental
determination (verification) of flow curves. Experiences
have shown that data of older type are not reliable because
they do not contain exact data on stability of thermo me-
chanical testing, and furthermore the exact initial micro-
structure of applied work piece is very seldom given. Effi-
ciency in numerical simulations of forming processes de-
pends also on exactitude of constitutive equations for mod-
elling of hot flow curves [17 - 21].

In our paper we compare the experimentally obtained
flow curves for tool steel with the curves predicted by means
of the CAE NN method. We used the methods of constant
and non-constant smoothness parameter. Activation energy
and other parameters in hyperbolic-sine equation were cal-
culated according to the McQueen et al. method [22 - 24]
as well as to the Kugler et al. method [25].

DESCRIPTION OF APPLIED
MATERIAL AND EXPERIMENTAL PROCEDURE

The experimental flow curves were obtained by means
of hot compression tests (Figure 1.), which were performed
by the Gleeble 1500 thermo mechanical simulator. Chemi-

Tool (Anvil) Graphite Thermocouple
lubricant
)
(8]
B Stainless H Stainless
S Steel Jaw [ Specifnen ~ | Steel Jaw
& &

H

C-strain fixture
(LVDT)

Figure 1. Outline of hot compression test and measured para-
meters
Slikal.  Nacrtvruéeg pokusasabijanjem s mjernim parametrima

cal composition of applied tool steel is represented in Table
1. The samples with dimension of © 8 mm % 12 mm were
cut out of a rolled piece with & 20 mm. The initial micro-
structure of applied samples is given in Figure 2. The fol-
lowing parameters regarding time were measured: compres-
sion force, temperature of cylindrical sample, shift of active
jaws (sample height), diameter of cylindrical sample during
compression. The strain rate was programmed as a constant
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Table 1.  Chemical composition of applied steel (wt. %)
Tablica l. KemijsKisastavupotrebljenog elika (mas. %)

C S Si Cr Ni Vv
0,36 0,021 0,24 0,81 0,17 0,15
Al Cu Mn Mo P Sn

0,040 0,24 0,68 0,05 0,011 0,017

value. These data were the basis for calculating of the ten-
sion and strain. The testing conditions of hot compression
of cylindrical samples are given in Table 2. Testing was

Table2.  Values of main testing parameters
Tablica2. Vrijednosti glavnih parametaraispitivanja

Tool steel Ta
1200 °C

Temp. range Strain rate s~
800 - 1200 °C 0,1, 1,0, 8,0

performed within the temperature range 800 - 1200 °C and
strain rate range 0,1 — 1,0 — 8,0 s™', samples were programme-
heated (Figure 3.). The velocity of heating amounted to °3
°C/s and was followed by 3 minutes of holding, i.e. anneal-
ing at 1200 °C, followed by cooling at speed of 2 °C/s to the
deformation temperature and again by 30 s of holding, i.e.
annealing at chosen deformation temperature. After the de-
formation the samples were quenched with water.

Figure2. Initial microstructures of applied tool steel (ferrite grains
and laminar perlite grains)

Slika2.  Potetna mikrostruktura upotrebljenog alatnog Celika
(feritna zrnaizrnalaminarnog perlita)

PREDICTION OF THE FLOW STRESSES
CAE Neural Network

The problem addressed in this paper is how to estimate
the flow stress curves (o) as a function of known param-
eters, i.e. strain (), strain rate ( ¢ ) and temperature (7). The
first and second set of variables will be called the output
and input variables, respectively.
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In order to determine unknown output variables from
known input variables, a data base containing sufficient well-
distributed and reliable empirical data is needed. The data
base should include both measured values of output vari-
ables and the corresponding input variables. One particular
observation which is included in the data base can be de-
scribed by a model vector. The input and output variables
correspond to the components of this vector. For example,
if at the strain 0,28, at the strain rate 3,5 s~ and at the tem-
perature 943 °C corresponding measured stress is 339 MPa,
then the corresponding model vector is defined as {0,28,
3,5,943; 339}.

Ta = 1200 °C (3 min)

11100 °C Deformation

Deformation

o/ 1100
S 11000°C  Deformation
& i ; i
O I 1.900°C  Deformation
S| &/ {.800°C  Deformation
2 ; Hot 30s
8 : compress.
£ Workpiece:
0

Initial height = 12 mm

Initial diameter = 8 mm

Strain rate range = 0,1 - 8,0 s
Temperature range = 800 - 1200 °C
Graphite lubricant

Time /s

Figure3. Outline of temperature course in the tested cylindrical
samples
Slika3.  Shema toka temperature za ispitivani cilindri¢ni uzorak

The real data base consists of a finite set of model vec-
tors. According to the CAE method, each of the output varia-
bles corresponding to the model vector under consideration
(i.e. a vector with known input variables and output vari-
ables to be predicted) can be estimated by the formulae [26]:

f=D At (1)

where

>3 b))

and

(3a)
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Here f, is the estimated (predicted) k-th output vari-
able (e.g. stress, denoted as o), r, is the same output vari-
able corresponding to the n-th vector in the data base, N is
the number of vectors in the data base, p . is the i-th input
variable of the n-th vector in the data base (e.g. tempera-
ture, strain, strain rate), p. is the i-th input variable corre-
sponding to the vector under consideration, and L is the
number of input variables.

In case of predicting flow stress curves, equation (3a)
can be explicitly written as

€ — &y 2+ & —€y 2+ T =T ’
ENIREE STCETS 1,11 N

where € denotes strain, ¢ strain rate and 7 temperature.
Equation (1) suggests that the estimate of an output vari-
able is computed as a combination of all output variables
in the data base. Their weights depend on the similarity
between the input variables p. of the vector under consid-
eration, and the corresponding input variables p = perti-
nent to the sample vectors stored in the data base. 4 is a
measure of similarity.

Consequently, the unknown output variable is deter-
mined in such a way that the computed vector composed
of given and estimated data is most consistent with the
sample vectors in the data base.

The parameter w is the width of Gaussian function and
is called the smoothness parameter. It determines how fast
the influence of data in the sample space decreases with
increasing distance from the point whose co-ordinates are
determined by the components (input variables) of the vec-
tor under consideration. The larger the value of w is, the
more slowly this influence decreases. Large w values ex-
hibit an averaging effect. In principle, a proper value of w
should correspond to a typical distance between data
points. In this case the CAE method yields a smooth inter-
polation of functional relation between the input and out-
put variables.

In some applications, as will be shown later, a non-
constant value of w yields more reasonable results than a
constant value. When using non-constant w values, equa-
tion (1) can still be used, but proper, locally estimated val-
ues of w. should be taken into account. The formula for a_
(see Equation 3a) can be rewritten as

L

a-,-, = exp _Z ( pi 2_WF2)ni ) (4a)

i=1 |

where different values of w, correspond to different input
variables. Equation (3b) can be rewritten accordingly as
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_ _ (Ei —Eni )2 _ (éi —Ey )2 _ (Tu — Ty )2
I 2w 2w (4b)

It should be noted that equations (1 - 3) were math-
ematically derived [26 - 28], based on the assumption of a
constant uncertainty of the input data. The extension of
the applicability of these equations to non-constant w val-
ues (4) is, however, based on physical considerations.
Whereas a constant w corresponds to a sphere in an L-
dimensional space (L is the number of input variables),
corresponds a non-constant w value to a multi-axial ellip-
soid in the same space [29, 30].

The choice of an appropriate value of w depends, as
well as on the distribution of data, on the latter’s accuracy
and on the sensitivity of the output variables to changes in
the input variables. Some engineering judgment, based on
knowledge of the investigated phenomenon, and a trial and
error procedure, are needed to determine appropriate
value(s) for w.

The latest research has shown that the accuracy of the
prediction can be related to the data distribution. A new
measure, so called local density of data distribution, was
proposed as a measure of quality of the prediction. It was
introduced in order to detect the possible inaccurate pre-
dictions due to the improper data distribution and extrapo-
lation outside the data range, and can be described by

N
0= a (52)
=1

Note that expression Ya, from (5a) gives the number of
model vectors in the vicinity of the unknown output vari-
able ¢ . This is exact number of model vectors in limit case
(w — 0), while for larger w values the expression gives
averaged number of model vectors. For comparison with
the statistical density distribution, the measure can be nor-
malized with its maximum value over the sample space (In
this case the information of absolute distances over the
sample space is lost):

N

pE!

~ =1

Pk="TN T

2.8

=

max (5b)

k

Original proposal of the procedure [26], which in its
extended form is called CAE and is presented here, con-
sists of two parts. First part corresponds to the so-called
self-organisation of the neurons. In cases of using relative
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small databases, this part is not needed. The second part
represents the mathematical description of different phe-
nomena, using optimal estimator, as described above. From
this point of view the training (i.e. learning) represents
simple presentation of the data to the CAE neural network.
In addition, compared to the classical back-propagation
neural networks (BP NN), testing the model is much sim-
pler. Instead of using approximately 70 % of the data for
training and the rest 30 % of the data for testing, different
approach was used. Predicted parameter, i.e. stress of the
stress-temperature-strain-strain rate curve was predicted
for each point. In this process the model vector under con-
sideration was temporarily removed from the database. By
several trials optimal values of smoothness parameter were
obtained. Recently, tests on very different phenomenon
[30] than that presented here, show that such estimation of
the efficiency of the proposed models in general gives more
conservative estimates than classical approach.

For quality estimation of the efficiency of the CAE
method by the prediction of flow curves we used the equa-
tion that calculates the root mean sum of the squared de-
viations (RMSSD) for each deformation condition:

(6)

The prediction is considered good if the RMSSD value
is within 5 % of the mean flow stress for that experimental

condition [11]. The mean flow stress o,  is calculated as

1 f
Omis =— | ode 7
mis = (7)
APPLICATION FOR STEEL

Prediction of flow stress curves by CAE NN approach

The true flow stress curves of tool steel at different
temperatures and different strain rates are presented in
Figure 4. The flow stresses increase quickly with increase
of strain until they reach a fixed value. During hot defor-
mation is presented the process of dynamic recrystalliza-
tion (DRX) [18, 19] that is clearly seen at higher tempera-
ture and lower strain rates.

The relations between the input and output variables are
relatively simple and therefore a constant smoothing para-
meter can be used expression (3). However, its value must
not be too small, since the generalization of the results may
be lost. Results for material show relatively good agree-
ment between the experimental and predicted results.

METALURGIJA 44 (2005) 4, 261-268
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Figure4. Hot flow curves for tool steel - experimental and predicted results, using a con-
stant smoothing parameter (w=0,035)
Slika4.  Krivulje zatezanja u vruéem za alatni elik - eksperimentalni i predmnijevani

rezultati upotrebom stalnog parametra glatkoce (w=0,035)

Figure 4. shows the stress-strain relations for different
temperatures between 900 °C and 1200 °C for three differ-

ent strain rates at 0,1 s, 1,0 s and 8,0 s~
Due to the large distances in the direction of
strain rate, some minor differences appear,
most noticeable in case of strain rate of 1,0
s!. In addition, minor differences appear in
case of small strains. The results can be im-
proved by using smaller value of smoothness
parameter, but in this case the ability of gen-
eralization of results is lost. This then results
as the poor overall behaviour of the proposed
model, especially interpolation in strain rate
direction which produce non-smooth solu-
tion. The accuracy attained with the training
data ranges from 0,9 % to 2,1 %, with an
average error of 1,5 %. The accuracy of pre-
diction on the testing data ranges from 1,2 %
to 3,0 %, with an average error of 2,3 %. The
errors arising are on average within the re-
quired accuracy limit.

Figure 5. clearly shows improvement in
the strain range, especially in the range from
0,02 to 0,1 and at strain rate of 1,0 s™'. The
results suggest that modelling the flow stress
curves may be improved by using a non-
constant smoothing parameter (4). The ac-
curacy achieved with the training data

ranges from 0,1 % to 0,3 %, with an average error of around
0,2 %. The accuracy of prediction on the testing data ranges
from 0,2 % to 3,4 %, with an average error of 1,0 %. The
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errors arising are well within the required
accuracy limit [14], and are smaller than
that obtained by classical BP neural net-
works [3, 4]. However, in order to get
smoother solution (additional criterion), the
value of smoothing parameter must be in-
creased in some cases (Figure 6.).

The ability of CAE NN to interpolate is
demonstrated by predicting flow stress at
temperatures and strain spread over the en-
tire domain in which the model is trained.
Figure 6. shows a 3-D figure of flow stresses
as a function of temperature and strain at dif-
ferent strain rates. Note, however, that the
solution for w_ = 0,035 was a little bit un-
smooth, and therefore larger value of w, was
applied. In the temperature range between
1000 °C and 1200 °C an explicit increase of
flow stress values at 0,1 s™! strain rate is evi-
dent; at 1 s! there is a transition to a less
explicit increase in flow stress, and at the
strain rate of 8,0 s! the increase in flow stress
versus temperature becomes almost linear.

It should be noted some faults in the flow stress curve
for a strain rate 8,0 s™' at higher strains where experimental

!, respectively. results were not available. These errors are due to extrapo-
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Figure 5.

Slika 5.

Strain
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Strain Strain

Hot flow curves for tool steel - experimental and predicted results, using a non-
constant smoothing parameter (w__,,,=0,005;w___, ., =0,015; w_.=0,005; w,=

0,035)

Krivulje zatezanja u vruéem za alatni ¢elik - eksperimentalni i predmnijevani re-

zultati upotrebom nestalnog parametra glatkoée (w, . _,,, =
0,035)

0,015;w_.=0,005;w,=

0*005; w, (=05

lation outside the range of the available data and can be
clearly recognized by the calculation of data density dis-
tribution, using equation (5b). When p, falls close to zero
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Figurc6. Surface plot of hot flow curves and density of data for tool steel as a function of strain and temperature, using a non-constant smoothing
parameter (w___,,,=0,005;w___;., =0,015 ;w_.._,, =0,015;w,=0,05) - axonometric view

Slika6.  Plostinski dijagram krivulja zatezanja u vrucem i gustoca podataka za alatni felik kao funkcija deformacije i temperature upotrebom
nestalog parametra glatkoée (w, ., ,,,= 0,005, w, ., 5, = 0,015 5 w,...._, ,= 0,015; w,=0,05) - aksonometricki pogled

there is a clear indication of lack of data. Small p, values
indicate the region of extrapolated data. Such case is ob-
served for strain rate 8,0 s™' at strains larger than 0,4.

Determination
of activation energy from hyperbolic-sine equation

During the deformation the dynamic recovery (DRV)
may be the only softening process, or it may be accompa-
nied by dynamic re-crystallisation (DRX) - in both cases
we can satisfyingly describe the dependence of flow stress
in stationary condition on velocity of deformation ¢ and
temperature T with the empirical hyperbolic-sine equa-
tion [31 - 33]

¢ = A-(sinhaco)" eXp[_R(?I'] (7

where 4, o and 7 are temperature-independent constants
and Q is activation energy. We can use equation (7) for
description of peak flow stresses dependency on velocity
of deformation and temperature as well. The parameters
in this equation are determined by the flow curves at vari-
ous temperatures and velocities of deformation. First we
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find a logarithm of this equation and properly arrange the
elements, and then we define function y?, that minimizes
the difference between the calculated and measured val-
ues of flow stress

, N(z-ax-ay —a)
X =Z; ¢ ) )

where N is the number of measurements, z, = In (sinh ao),
X =In¢; andy =10*T"'. Parametera, =n"',a,=10*On'R"!
and a, = n"'In A. For the error calculation we took into ac-
count only measurement errors of the parameter z, given by
€ = a € cothao,, where € are the measurement errors
of the flow stress. The details of the minimization proce-
dure of the above expression (8) are given elsewhere [25].
x? has a minimum for Q =367 kJ mol™', «=0,0092 MPa™',
n=>5,77 and 4 = 6,7 10" s7'. For these parameters a com-
parison between the calculated and measured dependence
of peak stress on temperature for three different strain rates
is shown on Figure 7a. and a comparison between the cal-
culated and measured peak stresses on Figure 7b. McQueen
et all proposed for the steel the use of the value oo = 0,012
MPa'. In such case we get a bit higher value for activation

METALURGIJA 44 (2005) 4, 261-268
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energy Q =374 kJ mol™, the calculated values of the other
two parameters are n=4,88 in 4 =2,04 10" s7'. The match-
ing between the measured and calculated values of peak
flow stresses for the McQueen’s example is x> = 0,15 and
for ours x*>=0,12.

\
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Figure 7. Comparison between measured and calculated dependen-
ce of a) peak stress on temperature for three different stra-
inrates of0,1s,1,0s™ and 8,0s™', and b) a comparison bet-
ween measured and calculated peak stresses

Slika7.  Usporedba izmedu izmjerenih i izracunatih ovisnosti: a)
pik naprezanja od temperature za tri razli¢ite brzine de-
formacije 0,1 s™, 1,0 s i 8,0 s'; b) usporedba izmedu iz-
mjerenihiizracunatih pikova naprezanja

CONSLUSIONS

For the tool steel we performed hot compression tests
by means of Gleeble 1500 thermo mechanical simulator,
namely for three various deformation velocities (0,1, 1,0
in 8,0 s') in the temperature range 800 - 1200 °C. Due to
relatively big errors (2 - 60 %) at predicting the flow curves
by means of empirical models and due to difficulties with
application of the BP NN (problem-oriented learning) we
decided to use the CAE NN for the represented study. We
considered the constant and non-constant smoothness pa-
rameter. In case of applying the method of non-constant
smoothness parameter we get better agreement between
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the factual and predicted results (up to 3,4 %). The accu-
racy attained ranges from 0 to 5 %, which already repre-
sents generally adopted accuracy in today’s requirements
regarding the optimization of hot forming technology. Still
more, the attained accuracy is even better than in case of
the application of the BP NN for predicting the flow curves
in tool steel (up to 7 %). With the newly proposed mea-
sure it is furthermore possible to define the reliability of
the attained results as well. An additional advantage of
applying the CAE NN - if compared with the usual BP NN
- is the fact, that we are not limited by the number of influ-
ential parameters [34, 35]; consequently it means the abil-
ity of inclusion of variations in chemical compositions of
steel that occur from charge to charge and the consider-
ation of phase transformations in the temperature range of
hot metal forming. All these information are needed to meet
the nowadays requirements on further optimisation of the
forming processes, i.e. hot rolling etc.

The activation energy and other parameters of the hy-
perbolic-sine equation have been calculated by applying the
method proposed by McQueen et al. and the recently pro-
posed method of Kugler et al. The latter yields very good
results in predicting the peaks of the flow curves. The opin-
ion of the authors is that it is best to apply the empirical
hyperbolic-sine equation in such a way, that the parameter
« of the proposed equation is determined at minimal y?,
and not by means of a value, prescribed in advance. Even
though the mentioned equation is empirical and its param-
eters do not have a clear physical background, it neverthe-
less excels in the fact that it offers us the possibility to easily
describe the dependences of maximum or steady flow
stresses regarding the deformation and temperature veloci-
ties at a wide interval of their variability.
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