CALORIMETRIC INVESTIGATION
OF LIQUID Ga-Me (Me = Sn, Zn) ALLOYS USING OELSEN METHOD

The results of calorimetric investigation of binary, liquid Ga-Me (Sn, Zn) alloys are presented in this paper. According to constructed space enthalpy diagram and enthalpy isotherm diagram, activities, activity coefficients and other partial and integral molar quantities were determined at different temperatures. Also, comparison was made with existing literature data.

Key words: thermodynamics, calorimetric, gallium alloys, Ga-Sn, Ga-Zn

INTRODUCTION

Gallium-based alloys are mostly known for their low melting eutectics, caused by existence of gallium. Two eutectic systems, Ga-Sn and Ga-Zn (Figure 1.), belong to this group and present the constituents of different gallium-based multicomponent alloys applied in industry of semiconducting materials.

There are a lot of references in literature on thermodynamic properties of mentioned binary gallium-based systems. Many researchers worked on Ga-Sn thermodynamics [3 - 10]. Cohen et al. [3] determined the heat of solution of Ga in liquid Sn. Predel [4] explored this system by several experimental methods and calculated values of ΔG° and ΔS° for liquid alloys. Pool and Lundin [5] did tin solution calorimetry measurements, while Danilen and Yatsenko...
performed EMF measurements. Bros and Laffite [7] determined the enthalpy of formation of the liquid alloys at temperatures 400–750 K in the whole concentration range using microcalorimetry. Hultgren and coworkers presented the compilation of data published up to 1973 in their well known book [8], while Muggianu et al. [9] determined mixing enthalpies for Ga-Sn alloys. Most recent works on Ga-Sn thermodynamics are EMF measurements with zirconia solid electrolyte done by Katayama et al. [10] and quantitative DTA measurements performed by Živković et al. [11].

Thermodynamics of Ga-Zn system has been investigated by several different experimental methods. There are many results obtained using EMF measurements by: Genta et al. [12], Svirbly and Read [13], Gerasimenko et al. [14], Predel et al. [15], Ryabov and Sryvalin [16] and Moser [17]. Vapor pressure measurements were performed by Picente et al. [18], calorimetric measurements were done by Kleppa [19], while results of quantitative DTA measurements were presented recently by Živković et al. [11]. Also, there are some results obtained using thermodynamic calculations by Lukas et al. [20] and Hajra and Mazumdar [21]. Complete thermodynamic data on Ga-Zn system are presented in [8] and in the work of Dutkiewicz et al. [22].

Results of thermodynamic analysis of liquid binary Ga-Sn and Ga-Zn alloys, according to Olesen calorimetry, are presented in this paper and compared with literature data.

EXPERIMENTAL

Olesen calorimetry was applied for thermodynamic investigation of Ga-Sn and Ga-Zn systems [23 - 25]. The main experimental procedure according to Olesen calorimetry is performed as follows: sample alloys are heated in electro-resistive furnace to a temperature above liquidus line, and then quickly put into Oelsen’s calorimeter (Figure 2.) in which temperature change of calorimeter and temperature of a sample are measured as a function of time using Beckmann thermometer and NiCr-Ni thermocouple, respectively, and recorded by printer. Full description of this experimental technique and its theoretical fundamentals is reported in [23 - 25].

Table 1. Composition and masses of the investigated Ga-Sn and Ga-Zn alloys

<table>
<thead>
<tr>
<th>Sample</th>
<th>xGa</th>
<th>Mass / g</th>
<th>Sample</th>
<th>xGa</th>
<th>Mass / g</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1.0</td>
<td>2.9550</td>
<td>S1</td>
<td>1</td>
<td>1.7730</td>
</tr>
<tr>
<td>L2</td>
<td>0.95</td>
<td>3.0021</td>
<td>S2</td>
<td>0.9628</td>
<td>1.7838</td>
</tr>
<tr>
<td>L3</td>
<td>0.9258</td>
<td>3.0241</td>
<td>S3</td>
<td>0.8616</td>
<td>1.8139</td>
</tr>
<tr>
<td>L4</td>
<td>0.8</td>
<td>3.1332</td>
<td>S4</td>
<td>0.5890</td>
<td>1.9027</td>
</tr>
<tr>
<td>L5</td>
<td>0.6</td>
<td>3.2878</td>
<td>S5</td>
<td>0.3054</td>
<td>2.0086</td>
</tr>
<tr>
<td>L6</td>
<td>0.3</td>
<td>3.4852</td>
<td>S6</td>
<td>0.1978</td>
<td>2.0530</td>
</tr>
<tr>
<td>L7</td>
<td>0.0</td>
<td>3.6500</td>
<td>S7</td>
<td>0</td>
<td>2.1420</td>
</tr>
</tbody>
</table>

Figure 2. Graphical representation of used Olesen calorimeter

Figure 3. Space enthalpy diagram: a) Ga-Sn system and b) Ga-Zn system

Figure 3.

D. ŽIVKOVIC et al.: CALORIMETRIC INVESTIGATION OF LIQUID Ga-Me (Me = Sn, Zn) ALLOYS...

METALURGIJA 43 (2004) 2, 71-75
Metals (Ga, Sn and Zn) used in this work were of p.a. purity. The compositions of the investigated alloys in Ga-Sn and Ga-Zn systems are given in Table 1. According to the requirements of the method used, volume of samples was constant 0.5 cm³ and 0.3 cm³ for Ga-Sn and Ga-Zn system, respectively.

Comparison between values for the integral molar enthalpies of mixing obtained for Ga-Sn and Ga-Zn alloys by Oelsen calorimetry and literature data [7, 8, 11] and [8, 11, 22], respectively, is presented graphically in Figure 5.

As can be seen from Figure 5., low positive values for ΔF^M are noticed in the case of both systems. Ga-Sn alloys have maximum value of integral molar enthalpies of mixing equal to 0.75 kJ/mol, while Ga-Zn alloys possess a little bit higher maximum of 1.4 kJ/mol. There is a slight deviation between results of Oelsen calorimetry and literature, and in both cases results of this work are somehow lower. But, since enthalpy values are of very small magnitude (less then 1.5 kJ/mol), such error should not have extremely significant importance [11].

![Figure 4. Enthalpy isotherm diagram: a) Ga-Sn system and b) Ga-Zn system](image1)

Figure 4. Enthalpy isotherm diagram: a) Ga-Sn system and b) Ga-Zn system

![Figure 5. Comparative review of ΔH^M values obtained by Oelsen calorimetry and literature: a) Ga-Sn system and b) Ga-Zn system](image2)

Figure 5. Comparative review of ΔH^M values obtained by Oelsen calorimetry and literature: a) Ga-Sn system and b) Ga-Zn system

The water equivalent was determined by a standard method using dissolved Na₂CO₃ and for the calorimeter used it was found to be 3453 J/K. Calibration of used NiCr-Ni thermocouple was done using pure metals Ga, Sn, Bi, Pb and Zn.

RESULTS AND DISCUSSION

Based on obtained cooling curves temperature change of calorimeter (ΔT cal) was determined for all samples investigated in temperature range 350 to 650 K (for Ga-Sn alloys) and 350 to 750 K (for Ga-Zn alloys), which enabled construction of space enthalpy diagrams and enthalpy isotherm diagrams. These diagrams are given in Figures 3. - 4. for Ga-Sn and Ga-Zn system, respectively.

![Figure 4. Enthalpy isotherm diagram: a) Ga-Sn system and b) Ga-Zn system](image3)

Figure 4. Enthalpy isotherm diagram: a) Ga-Sn system and b) Ga-Zn system

![Figure 5. Comparative review of ΔH^M values obtained by Oelsen calorimetry and literature: a) Ga-Sn system and b) Ga-Zn system](image4)

Figure 5. Comparative review of ΔH^M values obtained by Oelsen calorimetry and literature: a) Ga-Sn system and b) Ga-Zn system

Having in mind these low heat effects, typical for Ga-Sn and Ga-Zn systems, further calculation of other partial and integral molar thermodynamic quantities was done based on Gibbs-Helmholtz equation:

$$\Delta G^M = \Delta H^M - T \Delta S^M$$

(1)

where ΔG^M is integral molar Gibbs energy of mixing and ΔS^M_{id} is ideal integral molar entropy of mixing:

$$\Delta S^M_{id} = - R \sum_i x_i \ln x_i$$

(2)

Partial molar Gibbs energies of mixing were determined by fitting ΔG^M vs. composition and according to relation:
\[G^M = \Delta G^M + (1 - x) \times (\partial \Delta G^M / \partial x) \]

(3)

where \(G^M \) presents partial molar Gibbs energy of mixing. Results obtained by given calculation procedure, at the temperatures of 600 and 650 K for Ga-Sn system and at the temperature of 723 K for Ga-Zn system, are presented in Table 2., including activities, activity coefficients and other partial and integral molar quantities. Positive deviation from Raoult law can be noticed for both investigated systems indicating a low mutual attraction between components, stronger expressed in the case of Ga-Zn alloys, while Ga-Sn alloys show moderately positive deviations from ideal solution behavior.

Comparison was made with literature, for both systems: activities for gallium and tin in Ga-Sn system, obtained by Oelsen calorimetry, were compared with [4] while activities for gallium and zinc in Ga-Zn system, obtained by Oelsen calorimetry, were compared with [8, 11].

Comparative review (Figure 6.) points out to a slight deviation between Oelsen calorimetry results and literature, while better agreement is noticed for Ga-Sn system. This can be explained by lower heat effect of mixing presented in this binary system. It means that these alloys are closer to regular behavior and applied calculation procedure including ideal integral molar entropy of mixing gives more accurate results. Also, one may perceive for Ga-Zn system (Figure 6.b) that there exist better agreement between results of this work and [11] comparing to [8]. Reason for that could be similar calculation procedure applying regular model, which was used in [11], too.

From Table 2. Partial and integral molar quantities obtained by Oelsen calorimetry: a) Ga-Sn system, b) Ga-Zn system:

Table 2. Parcialne i integralne molarne veličine dobivene Oelsenovom kalorimetrijom: a) Ga-Sn sustav, b) Ga-Zn sustav

<table>
<thead>
<tr>
<th>(\chi \text{Ga})</th>
<th>(\Delta f^M)</th>
<th>(\Delta f^W)</th>
<th>(\Delta G^M)</th>
<th>(G^M_{\text{Ga}})</th>
<th>aGa</th>
<th>(\chi \text{Ga})</th>
<th>(G^M_{\text{Ga}})</th>
<th>(G^M_{\text{Ga}})</th>
<th>aSn</th>
<th>(\chi \text{Sn})</th>
<th>(G^M_{\text{Sn}})</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (T = 600) K</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0,95</td>
<td>104</td>
<td>1,650</td>
<td>-886</td>
<td>-406</td>
<td>0,922</td>
<td>0,970</td>
<td>-150</td>
<td>-10008</td>
<td>0,134</td>
<td>2,689</td>
<td>4936</td>
<td></td>
</tr>
<tr>
<td>0,9258</td>
<td>180</td>
<td>2,198</td>
<td>-1139</td>
<td>-466</td>
<td>0,911</td>
<td>0,984</td>
<td>-81</td>
<td>-9539</td>
<td>0,148</td>
<td>1,991</td>
<td>3436</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td>511</td>
<td>4,160</td>
<td>-1985</td>
<td>-721</td>
<td>0,865</td>
<td>1,082</td>
<td>392</td>
<td>-7043</td>
<td>0,244</td>
<td>1,218</td>
<td>985</td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td>732</td>
<td>5,595</td>
<td>-2625</td>
<td>-1846</td>
<td>0,691</td>
<td>1,151</td>
<td>703</td>
<td>-3795</td>
<td>0,467</td>
<td>1,168</td>
<td>776</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>625</td>
<td>5,079</td>
<td>-2422</td>
<td>-5650</td>
<td>0,322</td>
<td>1,074</td>
<td>356</td>
<td>-1039</td>
<td>0,812</td>
<td>1,159</td>
<td>740</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>b) (T = 650) K</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0,95</td>
<td>104</td>
<td>1,650</td>
<td>-969</td>
<td>-489</td>
<td>0,907</td>
<td>0,954</td>
<td>-233</td>
<td>-10091</td>
<td>0,132</td>
<td>2,646</td>
<td>4853</td>
<td></td>
</tr>
<tr>
<td>0,9258</td>
<td>180</td>
<td>2,198</td>
<td>-1249</td>
<td>-575</td>
<td>0,891</td>
<td>0,962</td>
<td>-191</td>
<td>-9649</td>
<td>0,145</td>
<td>1,948</td>
<td>3326</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td>511</td>
<td>4,160</td>
<td>-2193</td>
<td>-929</td>
<td>0,830</td>
<td>1,038</td>
<td>184</td>
<td>-7251</td>
<td>0,234</td>
<td>1,169</td>
<td>777</td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td>732</td>
<td>5,595</td>
<td>-2905</td>
<td>-2125</td>
<td>0,653</td>
<td>1,088</td>
<td>423</td>
<td>-4074</td>
<td>0,442</td>
<td>1,105</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>625</td>
<td>5,079</td>
<td>-2676</td>
<td>-5904</td>
<td>0,306</td>
<td>1,021</td>
<td>102</td>
<td>-1293</td>
<td>0,772</td>
<td>1,102</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(T = 723) K</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0,9628</td>
<td>398</td>
<td>1,321</td>
<td>-395</td>
<td>-102</td>
<td>0,983</td>
<td>1,021</td>
<td>126</td>
<td>-7977</td>
<td>0,265</td>
<td>7,131</td>
<td>11808</td>
<td></td>
</tr>
<tr>
<td>0,8616</td>
<td>414</td>
<td>3,343</td>
<td>-1592</td>
<td>-747</td>
<td>0,883</td>
<td>1,025</td>
<td>149</td>
<td>-6850</td>
<td>0,319</td>
<td>2,312</td>
<td>5037</td>
<td></td>
</tr>
<tr>
<td>0,5890</td>
<td>1268</td>
<td>5,630</td>
<td>-2110</td>
<td>-1563</td>
<td>0,771</td>
<td>1,309</td>
<td>1619</td>
<td>-2894</td>
<td>0,618</td>
<td>1,503</td>
<td>2451</td>
<td></td>
</tr>
<tr>
<td>0,3054</td>
<td>1325</td>
<td>5,116</td>
<td>-1745</td>
<td>-4269</td>
<td>0,491</td>
<td>1,609</td>
<td>2861</td>
<td>-635</td>
<td>0,899</td>
<td>1,295</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>0,1978</td>
<td>1067</td>
<td>4,135</td>
<td>-1414</td>
<td>-5840</td>
<td>0,378</td>
<td>1,913</td>
<td>3901</td>
<td>-332</td>
<td>0,948</td>
<td>1,181</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Results of Olesen calorimetry application to liquid gallium-based binary Ga-Sn and Ga-Zn alloys are presented in this paper. Space enthalpy diagrams and enthalpy isotherm diagrams were constructed based on cooling curves obtained in Olesen calorimeter, and integral molar enthalpies of mixing in liquid state were determined. In further calculation procedure, other partial and integral molar quantities (for Ga-Sn system at 600 - 650 K and for Ga-Zn system at 723 K) were obtained. Comparison of results obtained by this method and literature data show reasonable agreement in both cases.

REFERENCES