INFLUENCE OF THE BORON PHASES ON THE MATERIALS DUCTILITY

Received - Primljeno: 2002-04-03 Accepted - Prihvaćeno: 2002-07-03 Preliminary Note - Prethodno priopćenje

Results of the boride surface layers investigation, obtained by the torsion and bending methods, point to the better ductility of the mono-phase Fe_2B boride layers then the binary-phase $FeB + Fe_2B$ boride layers. This is especially outstanding in the case of peaces that are under higher thermal and mechanical load, where the binary-phase layer because of higher local stresses has higher tendency to fall of, respectively to shell.

Key words: boronizing, ductility, boride phases

Utjecaj boridnih faza na duktilnost materijala. Istraživanje duktilnosti boridnih slojeva pomoću metode torzije i savijanja ukazuje da jednofazni boridni slojevi Fe₂B u odnosu na dvofazne boridne slojeve FeB + Fe₂B imaju bolju duktilnost. To naročito dolazi do izražaja kod proizvoda koji su toplinski i mehanički više napregnuti, gdje su veći specifični pritisci, tada je dvofazni boridni sloj sklon bržem otpadanju, odnosno ljuštenju.

Ključne riječi: boriranje, duktilnost, boridne faze

INTRODUCTION

Boronizing is a thermochemical process in which the chemical element boron diffuses in the surface layer of steel substrates. In the surface layer of steel substrate, boron forms with the iron Fe_2B , as resirable compound, and FeB as undesirable compound. Boride layers have extraordinary high hardness. FeB is a little bit harder (1800 - 2100 HV0.1) than Fe_2B (1400 - 1600 HV0.1), but much brittle, so its forming have to avoid in the practice.

During boronizing of the forging matrixes, drawing tools and shaping tools it is needed, among other, to determine the toughness of the boronized material. Toughness examination of boronized specimen, performed till now using classical specimens, did not give expected results because the whole specimen has been examined. The obtained results could not represent ductility of the boride layers because the boride layer influence was too small due to the it's small cross section compared to the cross section of the whole specimen [1-4].

The aim of the conducted investigation was to determine the ductility of the boron phases using methods in which the influence of the core on the boride layers will lower (lower result scatterings). For the ductility determination of the boride layers two independent methods were chosen:

- boride layers ductility determination by the torsion method,

D. Krumes, I. Vitez, Z. Kolumbić, Mechanical Engineering Faculty, University in Osijek, Slavonski Brod, Croatia

 boride layers ductility determination by the bending method.

INVESTIGATION

Boride

layers ductility determination by the torsion method

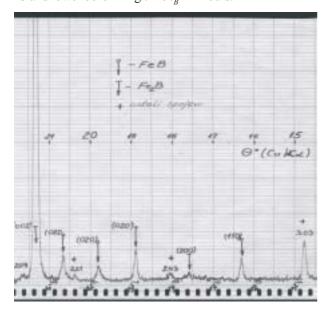
The first method used was detection of the cracks appearance of the boride layer during torsion cylindrical specimen. Specimens were made from C 15 and 20 CrMo 5 (Č1220 and Č4721), designated in accordance with data in Table 1., and boronized with the appropriate regimes and in

Table 1. Specimen identification numbers
Tablica 1. Označivanje epruveta

Steel: C 15 (Č1220)		Steel: 20 CrMo 5 (Č4721)	
Boron phases		Boron phases	
$FeB + Fe_2B$	Fe ₂ B	$FeB + Fe_2B$	Fe ₂ B
Specimen identifi- cation numbers		Specimen identifi- cation numbers	
0.1	1.1	2.1	3.1
0.2	1.2	2.2	3.2
0.3	1.3	2.3	3.3
0.4	1.4	2.4	3.4
0.5	1.5	2.5	3.5
0.6	1.6	2.6	3.6

Boride layer photomic rograph Slika 1. Mikrosnimak boridnog sloja

in mono phase boride layer Fe₂B formation, include: boronizing agent with low activity (SiC, B₄C, KBF₄) using lower boronizing temperature $T_B = 850$ °C and boronizing time $t_B = 4$ hours.


Second borinizing regime and conditions, in which the conditions which in one way led to forming of the binary phase FeB + Fe₂B boride layer, and in the other way to forming mono phase boride layer Fe₂B.

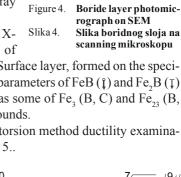
Boronizing was performed in solid mediums. First boronizing regime and conditions, which resulted

Figure 2. Boride layer photomicrograph Slika 2. Mikrosnimak boridnog sloja

the binary phase boride layer FeB + Fe2B is formed, include boronizing agent with increas-ed activity (Na₂B₄O₇, B_4C , KBF₄) using higher boronizing temperature $T_B = 950$ °C and lower boronizing time $t_B = 2$ hours.

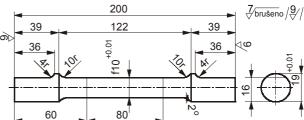
Part of the specimen 2.1 diffraction pattern, diffraction Figure 3. angle Θ ° (Cu/K α) = 15 ° to 40 °

Slika 3. Dio difraktograma uzorka br. 2.1, Θ ° (Cu/K α) = 15 ° do 40°


Besides classical metallographic technique (Figure 1. and Figure 2.), the examination of the formed boride layers were performed by the scanning electron microscopy - microsonde (Figure 3. and Figure 4.).

For the boride layer type determination, surface layer of the specimens were also examined by the X-ray diffraction method.

Figure 3. shows the X-Slika 4. ray diffraction pattern of


the specimen No. 2. 1. Surface layer, formed on the specimen, has structure and parameters of FeB (\mathfrak{z}) and Fe₂B (\mathfrak{z}) boride compounds, so as some of Fe₃ (B, C) and Fe₂₃ (B, C)₆ carbide type compounds.

Specimen used for torsion method ductility examination is shown in Figure 5..

20CrMo5 (Č4721)

500 x

Specimen for torsion method ductility examination Figure 5. Slika 5. Epruveta za ispitivanje duktilnosti boridnog sloja tor-

Ductility examination by torsion method was done with testing machine and additional equipment shown in Figure 6. [5, 6].

Figure 6. Ductility examination by torsion method Oprema za ispitivanje duktilnosti pomoću torzije

Table 2. Results of the ductility examination by torsion for steel C 15
Tablica 2. Rezultati ispitivanja duktilnosti torzijom za čelik C 15

Steel: C 15 (Č1220)				
$FeB + Fe_2B$		Fe_2B		
Specimen No.	Torsion angle α	Specimen No.	Torsion angle α	
0.1	25	1.1	33	
0.2	20	1.2	32	
0.3	24	1.3	34	
0.4	22	1.4	35	
0.5	22	1.5	32	
0.6	23	1.6	30	
Mean value:	$x_1 = 23.67$ °	Mean value:	x ₂ = 32.67 °	

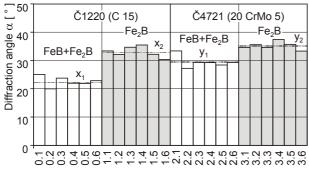

Results of the ductility examination by torsion method are shown in Table 2. and Table 3., as in Figure 7..

Table 3. Results of the ductility examination by torsion for steel 20 CrMo 5

Tablica 3. Rezultati ispitivanja duktilnosti torzijom za čelik 20 CrMo 5

Steel: C 15 (Č1220)				
$FeB + Fe_2B$		$\mathrm{Fe_2B}$		
Specimen No.	Torsion angle α	Specimen No.	Torsion angle α	
2.1	33	3.1	34	
2.2	27	3.2	35	
2.3	29	3.3	34	
2.4	29	3.4	36	
2.5	28	3.5	35	
2.6	29	3.6	33	
Mean value:	$x_1 = 29.17$ °	Mean value:	x ₂ = 34.50 °	

From results of the ductility examination by torsion method can bee concluded that the torsion angle of both specimen, one made from carbon steel C 15 (Č1220) and

 $\mathbf{x}_{1}, \, \mathbf{x}_{2}, \, \mathbf{y}_{1}, \, \mathbf{y}_{2}, \, \text{- mean value}$ Specimen No.

Figure 7. Results of the ductility examination by torsion method Slika 7. Rezultati ispitivanja duktilnosti slojeva torzijom

the other from alloyed steel 20 CrMo 5 (Č4721), in case of mono phase boride layer Fe₂B is higher than in case of binary phase boride layer FeB+Fe₂B. It can be seen from the mean value of torsion angle x_1 =22.67° and y_1 =29.17° for binary phase boride layers, so as x_2 =32.67° and y_2 =34.5° for mono phase boride layers.

Table 4. Specimen pieces designation and boronizing regime Tablica 4. Odlučivanje i režimi boriranja epruveta

No.	Boride phase	Specimen No.	Heat treatment
1		4.0	
2		4.1	
3	Fe ₂ B	4.2	Boronizing
4		4.3	method I
5		4.4	(SiC, B ₄ C,
6		4.5	KBF_4)
7		4.6	$T_{\rm B} = 850 {\rm ^{\circ}C}$
8		4.7	$t_{\rm B} = 4 \text{ hours}$
9		4.8	
10		4.9	
11		5.0	
12		5.1	
13	$\mathrm{FeB} + \mathrm{Fe_2B}$	5.2	Boronizing
14		5.3	method II
15		5.4	$(Na_2B_4O_7 +$
16		5.5	$B_4C + KBF_4$
17		5.6	$T_{\rm B} = 950 {\rm ^{\circ}C}$
18		5.7	$t_{\rm B} = 2$ hours
19		5.8	
20		5.9	

Boride layers ductility determination by the bending method

The second method used for ductility determination is

bending deformation of the tin flat specimen (0.85x 10x100 mm), previously boronised in suitable mediums, described before.

Specimen pieces designation was done in accordance with Table 4..

The results boride layers ductility examination by the bending are given in Figure 8. and Figure 9...

Figure 8. Typical Fe₂B boride layer cracks after examination performed using bending method

Slika 8. Tipične pukotine boridnog sloja Fe₂B nakon ispitivanja savijanjem

METALURGIJA 41 (2002) 4, 305-308

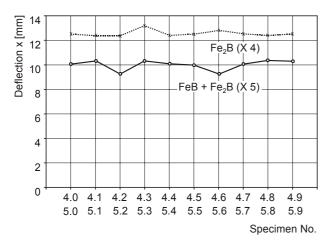


Figure 9. Results boride layers ductility examination by bending Slika 9. Rezultati ispitivanja duktilnosti slojeva savijanjem

CONCLUSIONS

Values obtained by measuring the deflection x_4 and x_5 (Figure 9.) show that method of boride phase ductility determination by bending (so as previous method) gives better results in the case group of specimen (x_4) with mono phase boride layer Fe₂B comparing to the group of specimen (x_5) with binary phase boride layer Fe₂B+FeB.

The most probable cause of better mechanical properties, ductility as wearing resistance, mono phase comparing to binary phase boride layers (even though the hardness is higher by binary phase FeB+Fe₂B boride layers) is different thermal expansion coefficients.

During work pieces (specimens) treatment cooling forms compression stresses are in the Fe₂B layer and tension stresses in FeB layer. The stresses with different sign can produce micro cracks in boride phase vertical to the layers as between two layers.

REFERENCES

- J. Burke: The Kinetics of Phase Transformations in Metals, Oxford, 1980.
- J. Lubkiewicz, J. Tacikowski: Eigenschaften von Boridschichten auf Stählen mitlleren Kohlenstoffgehaltes, Härterei-Tech. Mitt. 27 (1972) 3, 174-180
- K. Lintiental, P. Kobylka: Effect of microstructure of the Boronized layerou its Tribological properties, Chicago, 1980
- I. Esih, D. Krumes, S. Aračić: Effect of Boronising on Erosion of Carbon and Low Alloy Steels in NaCl/SiO₂ Water Suspensions, 14 th International Corrosion Congress, Cape Town, South Africa, (1999) 4, 301-309
- D. Krumes, A. Belić: Struktura i svojstva boridnih slojeva u čeliku, Zaštita materijala, (1990) 2, 51-57
- D. Krumes, I. Vitez: Duktilitätmessung der Boriedphasen auf Stählen, 7th International DAAAM Symposium, Vienna, Austria, (1996), 231-233