A SOLUTION OF BERTH ALLOCATION PROBLEM IN INLAND WATERWAY PORTS

Neven Grubišić, Svjetlana Hess, Mirano Hess

This paper explores the impact of berth allocation problem (BAP) solving depending on different options for river port design. Comparing multipurpose and specialized berths layout with port efficiency requirements, based on berth allocation, an optimal design option may be selected. The aim is to achieve an optimal distribution of vessels alongside quay with minimum vessels’ time in port and port operator workload. The model set up in this paper is tested on the example of the inland waterway port. The problem solution is attained using the linear mixed integer programming method. Standard assignment problem is adjusted in such a way to achieve the practical results in as low as possible mathematical iterations while not compromising results’ precision.

Keywords: assignment problem, berth allocation, inland waterway, river port design

1 Introduction

Operational planning in ports includes monthly, weekly and daily planning of various operational procedures that take place in the port. An important task here is the deployment of vessels to berths depending on the characteristics of the vessel, type of cargo and expected time of vessels' arrival in the port. This problem is known as Berth Allocation Problem (BAP).

Traditional approach to the BAP assumes determination of the fixed berthing position that allows docking for certain types of vessels. Berths may be constructed as specialized or multi-purpose depending on the type of cargo and port operations expectation. Multi-purpose berths are considered to be suitable for handling different types of cargo with average performance. Inland waterway vessels have specific characteristics that have to be taken into account in the berth planning process.

Berths’ arrangement plan can be either static or dynamic. Static scheduling assumes ad-hoc scheduling of vessels at berths when vessels arrive in port. Depending on the present situation of berth availability, a vessel is sent to the berth or anchorage. In dynamic scheduling, berthing time is planned according to previous notices of vessels' arrivals. In this way it is possible to reduce the total in-port time of vessels.

The arrival of each vessel and/or convoy must be announced 24 hours before scheduled arrival at the port or 48 hours if there is a dangerous cargo on board [1]. Based on this information and data on the quantity and type of cargo it is possible to determine the optimal position and time of mooring in a way that the total time spent in port for all vessels in the system is minimal.

In this paper we present the possibility of solving the problem of dynamic allocation of berths to different types of vessels for different scenarios of berth and terminal design. The aim is to achieve an optimal distribution of vessels alongside quay with minimum in-port stay and overall service cost of the vessels in predefined time horizon. Therefore, better resource utilization and voyage planning is possible through the overall planning process. Costs of vessels' service time, cost of waiting on anchorage and cost of in-time convoy departure may be evaluated and optimized according to common objectives of the stakeholders.

The project of Port of Vukovar – New Port East development is taken as a test example. Problem solving method is based on a linear programming technique that is specifically developed and tailored to the problem of berth assignment.

2 Problem description and previous research introduction

Vessel's stay in port area consists of time spent at anchor (waiting time), in-port manoeuvring time (e.g. approach to the berth, mooring and departure time from the berth) and time spent alongside a terminal for cargo handling operations (Fig. 1). However, for simplicity's sake, time of approach to the berth, preparation time and manoeuvring time are included in the processing time for cargo handling just like in Fig. 1. Total time vessels spend in the port area should be minimized by optimizing the vessel-berth arrangement considering performance of the berths in servicing different type of vessels and their cargo for a predefined period of time. For this purpose it is necessary to create an operational plan of space-time distribution of vessels in port.
Primary and secondary berths may be distinguished according to cargo handling performance for certain type of cargo, where standard production rate is applied as performance reference. Secondary berths have less performance than primary berths with the same resources level, as their efficiency η is lower. We presume that, in the particular case (Tab. 1), the production rate for loading operations may be reduced by 20% (700 t/shift and 560 t/shift, respectively) for dry bulk cargo and up to 40% for general cargo (300 t/shift and 180 t/shift, respectively) when secondary berths are used. The same applies for unloading operation where handling rates may be slightly different.

Therefore, default production rate and estimated handling time for secondary berths could be achieved against the cost of additional resources engaged (e.g. mobile cranes, man-power, loaders, forklifts, etc.), or in other words with higher intensity μ. Estimated handling time p for each vessel may be determined on the basis of the port production rate survey tables for certain types of cargo and operation mode (loading/unloading).

We consider berth optimization in relation with flexibility of multipurpose berths/terminals to fulfill default handling process in required timeframe. Utilization and intensity rate values for berth/terminal design are based on performance measurement data from the river port of Vukovar and shown in Tab. 1.

The problem of optimizing berths’ allocation at the port is discussed in many papers that are mainly related to the container terminals. Lim, A. [2] considers berths as a continuous space instead of fixed length moorings in order to reduce unused space alongside quay. The optimal arrangement of vessels alongside quay is made with respect to a predetermined and unchanging time of vessels’ arrivals by the method of graphs. Nishimura, E., Imai, and A. Papadimitriou, S. [3] take into account the dynamic changes in the arrival times of vessels, positions of berths are fixed. Optimization of the berths allocation with respect to the common spatial-time component is studied in the paper of Kim, H. and Moon, K. [4]. The problem is formulated as a “mixed-integer linear-programming” model, noting that in the case of multiple units in a system, the solution search requires solving of complex mathematical calculations.

Guan, Y. and Cheung, K. [5] study the dynamic berth allocation problem. The authors grouped vessels into a common group with respect to the estimated time of arrival in order to simplify the problem. There are two mathematical models recommended whose parts are partially used in this study. Following the idea by Imai et al. [6] they apply a weight coefficient to each vessel. They develop a tree procedure and a heuristic that combines the tree procedure with the heuristic in Guan et al. [7]. Unlike Lim [2], Imai et al. [6], Brown et al. [8] and Lai and Shi [9], Park and Kim [10] consider the continuous BAP (berth allocation problem) with the objective of estimating the berthing time and location by minimizing the total waiting and service time and the deviation from the preferred berthing location. Park and Kim [10] extend their previous work to combine the BAP with consideration of quay crane capacities. Their study determines the optimal start times of vessel services and associated mooring locations while at the same time determines the optimal assignment of quay cranes to vessels. The handling time was considered independent from the berthing location of the vessel. Lee et al. [11], following the work of Park and Kim [10] presented a method for scheduling berth and quay cranes, which are critical resources in container ports.

All the mentioned papers refer to examples of major container ports (hub ports) where the proposed mathematical models are solved by simplified heuristic and simulation methods.

Table 1 Berths arrangement and performance design

<table>
<thead>
<tr>
<th>Berth No.</th>
<th>Production rate efficiency η</th>
<th>Intensity required $\mu = 1/\eta$</th>
<th>Purpose</th>
<th>C – primary</th>
<th>○ secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>DB</td>
<td>G</td>
<td>H</td>
<td>C</td>
<td>DB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0,8</td>
<td>1</td>
<td>0,6</td>
<td>0</td>
<td>1,25</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0,8</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0,7</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: C – cereals terminal, DB – dry bulk terminal, G – general cargo terminal, H – heavy goods terminal
Radmilović Z. [12] explores the problem of allocation of berths for vessels in inland waterways. The proposed model requires an optimal scheduling plan for vessel moorings on the basis of technical characteristics and types of vessels being moored. The goal is to make such an arrangement by which the processing time of vessels at the port is kept to minimum. The method is not suitable for operational problem solving because the time and the dynamics of arrivals of vessels in port are not used as criteria.

Ports in inland navigation cannot be compared with the large container sea ports in respect to physical characteristics or the vessels’ traffic or cargo volume handled, but when it comes to optimization of berths allocation, similarities can be drawn with seaports.

3 Optimization model for finding the minimum of vessels port service time

It is assumed that the BAP can be solved by linear programming methods, using the task-to-resources assignment method. The objective is to find the best berthing scenario for a specific planning horizon.

Each vessel is assigned an index $i(1, 2, ..., N)$ where N is the total number of vessels in the system. MCPV+PL vessels' formation (Motor Cargo Pushing Vessel in formation with Pushed Lighter - barge) can be viewed as a single vessel moored alongside without decoupling the formation while PMV+PL (Pushing Motor Vessel in formation with Pushed Lighters- barges) can be viewed as formation of vessels $j(1, 2, ..., T)$ or a convoy. The set containing vessel-to-convoy assignment $G(i,j)$ is defined according to vessels’ arrival data.

The quay is divided into 5 berths. Each berth is a segment of the quay 90 m long labelled with index $s(1, 2, ..., 5)$. The selected length is sufficient to accommodate the majority of vessels that appear in the port of Vukovar. The length of the berth includes a safety distance between the vessels which is due to the technical characteristics of vessels and the port being significantly lower compared to the seaports. The length of the vessel l_i is expressed by the number of berths that are occupied by the vessel, in most cases that is 1. If the vessel is longer than the anticipated length of the berth, she occupies two adjacent berths.

Table 1 Model notations

<table>
<thead>
<tr>
<th>Input parameters</th>
<th>Output variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_i</td>
<td>X_{it}</td>
</tr>
<tr>
<td>s</td>
<td>Y_{jt}</td>
</tr>
<tr>
<td>a_i, a_f</td>
<td>d_{ij}, d_{ij}</td>
</tr>
<tr>
<td>c_i</td>
<td>w_i</td>
</tr>
<tr>
<td>p_i</td>
<td>w_{it}</td>
</tr>
<tr>
<td>μ_{ic}</td>
<td></td>
</tr>
<tr>
<td>μ_{max}</td>
<td></td>
</tr>
<tr>
<td>Q_c</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>C_1, C_2, C_3</td>
<td></td>
</tr>
</tbody>
</table>

Assignment problem is a special case of linear programming where the resources are allocated to specific tasks. Resources can be workers, machinery, vehicles, units of time, and so on. Mathematical model of the assignment problem has the following form [13]:

$$
\min Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij},
$$

(1)

with constraints:

$$
\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, ..., n
$$

(each resource can be allocated to only 1 task)

$$
\sum_{i=1}^{n} x_{ij} \leq 1, \quad j = 1, ..., n
$$

(each task can be executed by only 1 resource) and condition:

$$
x_{ij} \geq 0, \forall i, j.
$$

From the above constraints and condition, it follows that the variable x_{ij} is of a binary form that can be represented as follows:

$$
x_{ij} = \begin{cases}
1, & \text{if the resource } i \text{ is assigned to task } j \\
0, & \text{otherwise}
\end{cases}
$$

In this paper, berths are defined as resources and vessels are defined as tasks. If the length of the vessel is greater than the length of the berth, such vessel shall occupy two adjacent berths. It is not allowed that two vessels reside on a single berth at the same time (vessel to vessel mooring alongside a quay), since such possibility is prohibited by Croatian legislation [1].
defines berthing/handling start up time of
occupied by the vessel
trans-shipment workload at port and reads:

\[Y_{ik} \] – binary variable that indicates the headmost space and
time segment of the vessel and can attain values:

\[Y_{ik} = \begin{cases}
1, & \text{if space and time segments } j, k \text{ are} \\
0, & \text{otherwise}
\end{cases} \]

Objective function minimizes vessels make span and
trans-shipment workload at port and reads:

\[
\min Z = C_1 \sum_{i=1}^{S} \sum_{s=1}^{T} \sum_{c=1}^{B} X_{isc} Q_{sc} \mu_c \sum_{j=1}^{N} d_{j} + C_2 \sum_{j=1}^{N} d_{j} + C_3 \sum_{j=1}^{N} d_{j}, \quad (2)
\]

where:

\(Q_{sc} \) – type of cargo on board, input binary parameter from
data table
\(\mu_c \) – intensity of resources required depending on type of
cargo and berth class, from data table
\(d_{j} \) – departure time of the convoy, decision variable
\(d_{j} \) – departure time of the vessel, decision variable
\(l_{i} \) – length of the vessel expressed in number of berths
occupied by the vessel
\(C_1, C_2, C_3 \) – cost related coefficients.

4 Setting the limits of the objective function

The objective function (2) minimizes the vessel makespan - total time in port during the given time horizon, as well as port operator workload by optimizing the assignment of vessels to berths according to their cargo and berth/terminal preferences for certain type of cargo.

In order to find a practical solution, the following constraints should be added:

\[
d_{i} = a_{i} + p_{i} + w_{i}, \quad \forall i \in \{1, ..., N\} \quad (3)
\]

\[
d_{i} \leq d_{f}, \quad \forall (i, f) \in G \quad (4)
\]

\[
\sum_{i=1}^{N} X_{is}, \forall s \in \{1, ..., S\}, \forall t \in \{1, ..., T\} \quad (5)
\]

\[
\sum_{t=1}^{T} \sum_{s=1}^{S} X_{is} - l_{ps} = 0, \quad \forall i \in \{1, ..., N\} \quad (6)
\]

\[
\sum_{s=1}^{S} \sum_{t=1}^{T} \sum_{c=1}^{B} X_{isc} Q_{sc} \mu_{c} \leq \mu_{max}, \quad \forall t \in \{1, ..., T\} \quad (7)
\]

Constraint (3) establishes the relationship between
time of arrival at the port and time of departure.
Difference between these two depends on handling
process time – \(p_{i} \) and waiting time for free berth – \(w_{i} \).
Convoy departure time is defined by the constraint (4) as
ready time of last processed vessel in the formation.
Constraint (5) prevents that the same berth and time
segments are assigned to more than one vessel. The exact
number of berths and time segments, which can be taken
by a single vessel considering its length and handling
time, is regulated by constraint (6). Since the resources
are not unlimited we include constraint (7), which inhibits
increase of intensity above maximum value allowed.

Furthermore it is also necessary to ensure that the
time segments are assigned sequentially one after another
to ensure the homogeneity of the vessel-berth assignment.
The algorithm determines the initial space-time segments
in which the vessel will be berthed, that is, variable \(Y \)
assignment together with the constraints (8), (9) and (10),
according to Guan, Y. and Cheung, K. [5]. Constraint (8)
guarantees that there is only one initial space-time
segment assigned to the vessel in the feasible space and
time range according to vessel's length and estimated time
of arrival. Constraint (9) is needed for consecutive
assignment of space-time segments, one after another
in order to assure a reliable solution. In case that, for
a particular vessel, initial segment \(Y_{ik} \) does not overlap
with the assigned one \(X_{is} \) that is, when \(Y_{ik}=0 \), constraint is
released due to large integer constant \(M \). Constraint (10)
determines departure time for the vessel. The expression

\[
\sum_{j=1}^{N} \sum_{k=a_{i}}^{N} kY_{ik} \quad \text{defines berthing/handling start up time of} \quad (11)
\]

the vessel where index \(k \) is time segment that corresponds
to the berthing time. Terms of binary variables are set in

\[
\sum_{j=1}^{N} \sum_{k=a_{i}}^{N} Y_{ik} = 1, \quad \forall i \in \{1, ..., N\} \quad (8)
\]

\[
\sum_{s=1}^{S} \sum_{j=1}^{N} X_{is} - l_{ps} = 0, \quad \forall i \in \{1, ..., N\}, \forall j \in \{1, ..., S\}, \forall k \geq a_{i} \quad (9)
\]

\[
\sum_{j=1}^{N} \sum_{k=a_{i}}^{N} kY_{ik} + p_{i} = d_{i}, \forall i \in \{1, ..., N\} \quad (10)
\]

5 Solution search and model testing

Testing of the model is made on the example of the
real expected arrivals of vessels in the port of Vukovar.
Four cargo groups and two different terminal design
options are taken into consideration.

The first option is represented by the proposed
optimization model focusing on primary and secondary
purpose berths, while the second option assumes that the
berths are strictly of specific purpose.

Input data for function optimization are based on the
related terminal design and berth production efficiency
(Tab. 1) and vessels' data from arrival schedule (Tab. 2).
The mathematical model has been translated into program
code and solved by LINGO, linear programming tool. The
results obtained for the first option, multipurpose berths
with preferred cargo class terminal design, are shown in
Tab. 2 and in solution reports (Fig. 2 and Fig. 3).
The results show that all vessels except A and G are docked at primary berths. Upon arrival, vessel A is bound to berth no. 2 rather than berth no. 1 which is occupied by the vessel B. Therefore, additional resource is needed for finishing cargo operations in requested time. Its value corresponds to reduced cost value (Fig. 3) which is 1,25, that means 25 % more power is required. In case of vessel G she has to wait 3 time units and use secondary berth for general cargo operations, thus needs 43 % more resources for handling operations.

Results presented in Fig. 2 show initial positions and berthing times of the vessels. Moreover, from the same report, according to the different reduced cost values, we can read impact of the particular vessel assignment to overall solution result. In this case the biggest impact has the vessel J (or I-J formation).

Reduced cost for the variable \(Y \) shows level of its influence on objective solution. The largest values of reduced cost have the vessels that need to wait for a free berth (C, D and J). Theoretically, if it would be possible to reduce time for waiting, the better optimal solution could be possible. Of course it is not possible because quay length limits the number of berths.

On the other side, Fig. 3 shows the values for decision variable \(X \), where the assignment \((X_{i,j} = 1) \) includes all time window intervals occupied by the vessel \(i \) as well as possible cases where more than 1 berth.
position is occupied by the vessel \(i \). In this arrangement reduced cost for the variable \(X \) provides information on resource intensity needed or "pressure" on resources. Again, it is a case for those vessels that are docked at berths that are not primarily aimed for handling their type of cargo. If one decides that is not acceptable, those vessels will have to wait for the free space on the preferable berth position (where reduced cost equals 1). However, that is a question of efficiency and operational planning strategy, whether to dock a vessel upon arrival on less suitable place or whether to put her on anchorage and wait for the free berth.

![Figure 4 Representation of optimal solution found for different berth/terminal design](image)

6 Conclusion

The distribution of vessels alongside quays is a daily operating procedure of port management. In this paper, based on the known dynamics of the arrivals of vessels in port for a certain period of time, the optimization model is set with the goal to minimize the total time of vessels' stay in port and transhipment operations workload.

The fundamental limitation of the proposed model or any other model is the "default" production rate effect where the time of handling operations is normalized and represents a functional requirement that the port must meet. The question is to what extent the individual berths can meet these requirements and what terminal design should best suit the user requirements.

Specific multipurpose approach, based on different terminal design with variable intensity of cargo processing and dual berth functionality, proposed in this paper, allows more flexibility in port operations planning. Objective function that minimizes vessels makespan and transhipment workload, gives appropriate results regardless of the transport technology and type of vessels expected in the port. Therefore, it can be successfully implemented both to single vessels and vessel formations, frequently used transport technology in inland navigation.

The results obtained by the linear programming method with adapted assignment problem satisfy the requirements of optimization in inland navigation ports, for the related problem scale, and justify specific multipurpose approach in berth/terminal design.

Limitation of the model grows for large scales of units but that is out of scope of river ports concern. However, the linear model assumes discrete time-window interval. Certain limitation and inaccuracy may apply if this interval is too long. Reliability and applicability of the model strongly depends on fixed processing time beforehand calculation. Therefore, further research could aim to incorporate variable processing time and handling rates in the model to validate across different terminal designs.

7 References

Abstract Submission

Participants are invited to submit one to two-page abstracts only via the online submission system:

All abstracts will be reviewed. All accepted abstracts will be published in a book of abstracts available at the conference. Abstracts must be written in English.

Important Dates

- Abstract submission deadline: 1 October 2014
- Notification of Abstract acceptance: November 2014
- Deadline of Author Registration: 1 December 2014
- Deadline of Early registration: 1 December 2014
- Regular registration deadline: 15 February 2015
- Late/On-site registration: After 15 February 2015

Location

FEF 2015 will be held at Regent Taipei. Located at the heart of the city, Taipei is Taiwan’s largest city as well as its economic, political, and cultural center. It is a modern cosmopolitan metropolis with a lively and diversified face, filled with excitement.

Discover the heart of Asia in beautiful Taipei!

FEF 2015

The 18th International Conference on Finite Elements in Flow Problems

16-18 March 2015 Taipei, Taiwan

http://www.fef2015.tw/

FEF 2015 Sponsors

International Association for Computational Mechanics

Conference format

The conference will host 18 semi-diplenary lectures, organized minisymposia and submitted papers.

The authors are invited to submit contributions on any of the conference topics and minisymposia:

- Biomedical Fluid Mechanics and PSI
- Complex Fluids
- Compressible Flows and Turbomachinery
- Computational Biomedicine and Bioreactors
- Environmental Fluid Mechanics
- Flows with Moving Boundaries and Interfaces
- Fluid-Structure Interaction
- Geometry Modeling and Mesh Generation
- GPU Applications in Fluid Flow
- High Performance Computing in Fluid Flow
- Higher-Order and DG Methods
- Inverted Boundaty Methods in Fluid Flow
- Inversion Continuum Methods and XCFEM
- Iterative Methods and Parallel Computing
- Kinetic Methods in Fluid Flow
- Mathematical Methods in CFD
- Optimization with CFD
- Particular Flows

Conference Co-Chairs

Chao-An Lin (National Tsing Hua University, Hsinchu)
Song-Shih Wu (National Chiao Tung University, Hsinchu)
Wei-Huan Sheu (National Taiwan University, Taipei)
Yen-Sen Chen (National Space Organisation)

Registration Fee

<table>
<thead>
<tr>
<th></th>
<th>Early-Bird</th>
<th>Regular</th>
<th>Late/On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>USD 700</td>
<td>USD 800</td>
<td>USD 900</td>
</tr>
</tbody>
</table>