APPLICATION OF GIS IN THE WASTEWATER MANAGEMENT

Tamara Dadić, Mladen Jurjišić, Lidija Tadić

This paper briefly describes the application of GIS in waste waters. It describes the major characteristics of GIS, as well as wastewater collection system and the reasons for the application of GIS in the analysis, modelling and display characteristics of drainage systems. There are described two programs based on GIS technology to analyse and monitor wastewater collection system. Also shown is the principle of selecting the location of device for purifying waste water, which is the ultimate element of the drainage system, using a GIS. In this way, it facilitated the process of selecting locations taking into account the various regulations, standards, as well as characteristics of the terrain and vegetation. GIS is used to monitor water quality even after treatment, which creates good conditions for its re-use. This was exemplified by the use of such treated water in irrigation and selection of suitable locations.

Keywords: GIS, irrigation, site selection, sewage system, wastewater purifying device

Primjena GIS-a u gospodarenju otpadnim vodama

U radu je ukratko opisana primjena GIS-a u gospodarenju otpadnim vodama. Navedene su glavne karakteristike GIS-a, kao i sustava odvodnje otpadnih voda te razlozi primjene GIS-a pri analizi, modeliranju i prikazu karakteristika sustava odvodnje. Detaljnije su opisana dva programa bazirana na GIS i karakteristike okolnog terena i vegetacije. GIS omogućuje i praćenje kvalitete vode i nakon pročišćavanja čime se stvaraju dobri uvjeti za njeno ponovno korištenje. Naveden je primer korištenja takve tretirane vode u navodnjavanju i odbiranju prikladnijih lokacija.

Ključne riječi: GIS, navodnjavanje, odabir lokacija, sustav odvodnje otpadnih voda, uređaj za pročišćavanje otpadnih voda

1 Introduction

GIS (geographical information system) represents a set of related objects and activities that serve with their mutual relations the general purpose which is decision making of spatial activities. It enables storage, processing, analysis, modelling and display of spatial data [1]. Precisely because of its wide range of features, this technology has great use in many areas.

Due to strong spatial component, hydrotechnical systems are ideal for analyzing using GIS. All the structures and systems, whether it is a water supply or wastewater drainage system or an irrigation one, are spatially located and have their own numerous characteristics. Their display and a systematic analysis greatly facilitate the application of GIS. Major role in such systems have hydrological data. The spatial distribution of such data, especially rainfall, is extremely important, so monitoring of such data by GIS is very practical. In the continuation, more detail application of GIS in the wastewater systems will be described.

2 Wastewater sewage system

Wastewater is water with changed original composition by entering pollutants whose presence causes a change in the physical, chemical, biological or bacteriological characteristics of water [2].

Wastewaters are classified according to their origin to [3]: sanitary (sewage), industrial, drainage and wastewaters.

This paper refers to sanitary wastewater and reuse of that water after treatment process. Sanitary wastewaters are drained by wastewater sewage system, and it is defined as a system of facilities and measures for the prompt removal of wastewater from settlements and their treatment before letting in receiver [3]. Wastewater sewage system (Fig. 1) consists of:
- sewage network (primary and secondary),
- structures of sewage network (pumping stations, input and switching shafts, overflow facilities),
- wastewater treatment plant,
- outlet.

Figure 1 Wastewater sewage system [6]

There are several types of sewage systems, but most common are mixed and separated systems. Mixed systems receive and drain rainfall and sanitary waters with one network, and the separated ones with separate networks drain rainfall and sanitary waters towards wastewater treatment plant and outlet. Whichever type of sewage system is concerned, these are extremely complex systems whose elements are interrelated and require regular maintenance. Functionality of sewage system depends entirely on the degree of interaction between system elements. In order to achieve optimal effects of the

Subject review

Pregledni članak

U radu je ukratko opisana primjena GIS-a u gospodarenju otpadnim vodama. Navedene su glavne karakteristike GIS-a, kao i sustava odvodnje otpadnih voda te razlozi primjene GIS-a pri analizi, modeliranju i prikazu karakteristika sustava odvodnje. Detaljnije su opisana dva programa bazirana na GIS i karakteristike okolnog terena i vegetacije. GIS omogućuje i praćenje kvalitete vode i nakon pročišćavanja čime se stvaraju dobri uvjeti za njeno ponovno korištenje. Naveden je primer korištenja takve tretirane vode u navodnjavanju i odbiranju prikladnijih lokacija.

Ključne riječi: GIS, navodnjavanje, odabir lokacija, sustav odvodnje otpadnih voda, uređaj za pročišćavanje otpadnih voda

1 Introduction

GIS (geographical information system) represents a set of related objects and activities that serve with their mutual relations the general purpose which is decision making of spatial activities. It enables storage, processing, analysis, modelling and display of spatial data [1]. Precisely because of its wide range of features, this technology has great use in many areas.

Due to strong spatial component, hydrotechnical systems are ideal for analysing using GIS. All the structures and systems, whether it is a water supply or wastewater drainage system or an irrigation one, are spatially located and have their own numerous characteristics. Their display and a systematic analysis greatly facilitate the application of GIS. Major role in such systems have hydrological data. The spatial distribution of such data, especially rainfall, is extremely important, so monitoring of such data by GIS is very practical. In the continuation, more detail application of GIS in the wastewater systems will be described.

2 Wastewater sewage system

Wastewater is water with changed original composition by entering pollutants whose presence causes a change in the physical, chemical, biological or bacteriological characteristics of water [2].

Wastewaters are classified according to their origin to [3]: sanitary (sewage), industrial, drainage and wastewaters.

This paper refers to sanitary wastewater and reuse of that water after treatment process. Sanitary wastewaters are drained by wastewater sewage system, and it is defined as a system of facilities and measures for the prompt removal of wastewater from settlements and their treatment before letting in receiver [3]. Wastewater sewage system (Fig. 1) consists of:
- sewage network (primary and secondary),
- structures of sewage network (pumping stations, input and switching shafts, overflow facilities),
- wastewater treatment plant,
- outlet.

Figure 1 Wastewater sewage system [6]

There are several types of sewage systems, but most common are mixed and separated systems. Mixed systems receive and drain rainfall and sanitary waters with one network, and the separated ones with separate networks drain rainfall and sanitary waters towards wastewater treatment plant and outlet. Whichever type of sewage system is concerned, these are extremely complex systems whose elements are interrelated and require regular maintenance. Functionality of sewage system depends entirely on the degree of interaction between system elements. In order to achieve optimal effects of the
system, from a technical and economic point of view, it is necessary to define in detail all elements of the system and their roles. Newer sewage systems are extremely complex, and their operation and maintenance are more complex and more expensive [4].

3 Application of GIS in wastewater sewage system

Data of the sewage network, which refer to the location of pipelines and structures on the pipelines (manholes, hydrants, valves, gate valves ...) were stored at maps of different scales. Reading data from such maps required a lot of time, and sometimes it was not even possible to do so.

With increasing construction of sewage networks, a need appeared [5] for input and processing of quality data, which were gathered by field measurement or by geodetic surveys of a performed state.

Because of its complexity, increased development and highlighted spatial component, the GIS technology with its own characteristics (data visualization and connectivity of geographic and attribute features) fits very well into the monitoring and maintenance of the wastewater sewage system.

In order to build a GIS sewage system, the actual system information must be entered, that is, there must be a digital model of the system. All the elements of a system are spatially located and connected with attribute data that describe each element and its relationship with other elements of the system. All elements of the sewage system can be divided into spatial features: points, lines and areas. Pressurized pipelines, open and closed channels, etc. are represented with lines. They all have their own set of characteristics that are more or less independent. Audit shafts, drains, pumping stations, outlets belonging to nodal features and catchment areas, over which the quantity and distribution of rainfall enters the system, are areal features [6].

Connection between objects is achieved on the graphical and topological level. All system objects are associated with its graphics performance and connectivity to the topological level is achieved and stored as an attribute of each object. GIS model of sewage systems must have the following properties [6]:

− graphical and geometrical presentation of data in 3D,
− adding and modifying object properties,
− connection of object in a topological level,
− management and controlling system during operation.

The constant maintenance is an extremely important component in order to help avoiding and correcting mistakes. Major role in this segment has the database and its ability to control and manage data. Some of these GIS based software for wastewater sewage systems are Bentley WasteWater and ProGIS.

3.1 Bentley WasteWater

Bentley Wastewater is the application for management of wastewater sewage systems. Functions such as mapping, design, maintenance and record keeping, are integrated in a spatial environment. This application enables creation of detailed models, either separated or mixed sewage system, with an emphasis on connectivity of the entire network. This application combines functions of CAD platform and GIS capabilities which stress the spatial component of the system (Fig. 2). CAD background is reflected in the drawing of longitudinal and cross sections of pipes and manholes [7]. GIS environment allows the execution of different spatial and attribute queries, overlay data and various spatial analysis [6]. The main functions are:

− creation of a physical data model,
− data connection on the geometric and topological level,
− construction of topological network system,
− changing the geometric and attribute properties,
− basic hydraulic system analysis,
− creation schemes and diagrams,
− thematic representation of data,
− storing videos,
− exchange data with other platforms.

Access is provided to a wide range of aerial photographs, satellite images, scanned maps and drawings allowing advanced visual information for the design and system analysis.

This type of management enables records of the actual condition of the properties of the system and provides data for hydraulic analysis and remediation, reconstruction and expansion of the system [6].

3.2 ProGIS

ProGIS is a system based on GIS technology, and is used for management and monitoring of wastewater sewage systems. It consists of three modules [8]:

− longitude profiles,
− optical inspection,
− geodetical module.

Module longitudinal profile is for plotting, analysis and exporting longitudinal profile of utility lines. The selected alignment in plan is automatically rendered as a longitudinal profile with all the accompanying data: altitude, drop, depth and height difference.
Nowadays, inspection network using video cameras is often present. This module allows interpretation of shots, association shots with other data (Fig. 3), storing data in real space and an unlimited number of spatial analyses.

This module is designed in ESRI programming environment for the Windows operating systems. Graphic part of the information is related to the SHAPE standard, and attributes one to some of the SQL database. Geodetical module allows maintaining graphical and attributes database, map production, maintenance data, export data, processing equipment within the facility, etc. [8].

4 Determining location of wastewater treatment plants and sewage outfalls

Location of the sewage outfall and wastewater treatment plant is extremely important to be well determined because of the possibility of pollution of the surrounding water and the influence on the wildlife. Different countries have different regulations and standards for the defining of such locations. Various laws take into account various factors such as the value of the surrounding areas, water sources and the local population, etc. Although there are a series of theories and methods to optimize selection of location, all ignore the distribution of aquatic animals, water resources and vegetation of mangroves in coastal areas and natural reserves [9]. Because of this, new, GIS based method for defining the location is very suitable for application in ecology [1, 10]. This environmentally appropriate method is based on indices such as water, coastal zones and soil. Its end result is the optimization of the possible locations for the wastewater treatment plant and sewage outfalls. Detailed location optimization procedure is shown in Fig. 3.

There are three steps to determine the location using GIS technology:

- Data collecting: land use, distribution of wetlands and coastal aquatic animals, water quality, flows, socio-economic data,
- Spatial Analysis: all the information is converted into theme data processed in ArcGIS where each index corresponds to the vector theme and a table in which each parameter corresponds to an element in the vector theme.
- Integrated eco-suitability evaluation is based on the evaluation of single-index; the location is based on indices of water, riparian zone and land.

4.1 Determining location

Crucial parameter of this assessment is determination of the standards of evaluation, divided into three levels: the appropriate location, generally appropriate and inappropriate.

So, at the end of this spatial analysis and given parameters, appropriate and inappropriate locations for location of the device or outlet are defined by GIS. Taking into account critical environmental factors that are often ignored, this ecological assessment determines the appropriate index system and determines and visualizes the appropriate areas based on GIS technology as appropriate or inappropriate sites.

5 Application of wastewater for irrigation

After the wastewater is treated in the wastewater treatment plant to the required level of quality, it is usually discharged into the watercourse or other recipient. But, as the need for water is increasing, and the amount of available water is decreasing, the use of treated wastewater will be imposed as a solution to ensure enough water for irrigation. One should be very careful when using such water for irrigation because of the required parameter of water quality which is used for irrigation [11]. Wastewater from animal farms and settlements has a higher amount of phosphorus and the wastewater from the village has an expressed bacteriological problem. Industrial and urban wastewater may contain higher levels of toxic substances that can seriously threaten the health of humans and animals [12]. In order to re-use wastewater, it should be treated and
Application of GIS in the wastewater management

M. Ćorić, L. Tadić, T. Đadić

1162

Technical Gazette 21, 5(2014), 1159-1163

The methodology of this approach consists of the following steps [15]:

− selection criteria, sub-criteria and constraints,
− development of hierarchical structures for the identification of priority (weight coefficients) using pairwise comparison matrices,
− extraction of geographic layers that correspond to each sub-criteria and limit using GIS,
− standardizing each sub-criteria in order to be able to combine and count the combined value of the decision,
− extraction of the most appropriate locations and their surfaces,
− application of sensitivity analysis to check the impact of weight coefficients to the results.

For this method of selecting the optimal locations, data are required which can be obtained in municipalities and satellite images. Therefore it is suitable for use anywhere in the world, and with the upgrade can be used for the other use of treated wastewater [15].

6 Conclusion

GIS technology has tremendous applications in wastewater management precisely because of the spatial component of the system. In this way, monitoring, analysis and display of all system components and water is enabled. There are already software packages based on GIS and CAD technology and they are designed for management of wastewater systems. Detailed analysis, entering a large database and its management, display by transverse and longitudinal profiles, monitoring, etc. is enabled by those software packages. Because of its characteristics, GIS can be used for location selection for wastewater treatment plant, as well as a location selection for the irrigation with the treated water, which emphasizes its use in combination with multicriteria analysis. Selection of such sites is largely based on environmental standards and the characteristics of the area, which then through GIS technologies are taken into account. These examples show the great contribution and shift which this technology and method for analysing and presenting data provide to the wastewater management.

7 References


Hossain, M. S.; Chowdhury, S. R.; Das, N. G.; Sharihuzzaman, S. M.; Sultana, A. Integration of GIS and multicriteria decision analysis for urban aquaculture development in Bangladesh. // Landscape and Urban Planning. 90, (2009), pp. 119-133.


Authors' addresses

Tamarad Dadić, mag. ing. aded. J. J. Strossmayer University of Osijek Faculty of Civil Engineering Osijek Crkvena 21, 31000 Osijek, Croatia E-mail: tamradadic@gfos.hr

Mladen Jurišić, PhD full professor J. J. Strossmayer University of Osijek Faculty of Agriculture in Osijek Kralja Petra Svačića 1D, 31000 Osijek, Croatia E-mail: mladen.jurisic@pfos.hr

Lidija Tadić, PhD associate professor J. J. Strossmayer University of Osijek Faculty of Civil Engineering Osijek Crkvena 21, 31000 Osijek, Croatia E-mail: l.tadic@gfos.hr
Lignocellulosic biorefineries offer up new challenges with respect to their solid and liquid waste compositions and management requirements, potential ecosystem impacts, and broader drivers for sustainable processing. As we know from our experiences in the pulp and paper industry, a failure to understand and mitigate these issues can have significant consequences - both economically and environmentally - for the industry.

To address these issues and opportunities in the fast-growing biorefinery sector, we are seeking scientific reviews, technical presentations and posters across a broad range of topics, including:

- In-process mitigation options
- Biorefinery solid and liquid waste characteristics
- Environmental technologies for waste treatment and value recovery
- Fate and behaviours of emerging pollutants in the environment
- Ecosystem impacts from new biorefinery processes and sites
- Extrapolating outcomes from pulp and paper industry environmental research
- Life cycle and techno-economic analyses
- Industrial ecology and industrial symbiosis

Conference

30 August - 4 September 2015
Novotel, Rotorua, New Zealand

Key dates

- Registrations open: 8 December 2014
- Abstract submissions close: 3 April 2015
- Early bird registration ends: 17 July 2015

Programme

- Mixer: 30 August 2015
- Conference: 1 September 2015
- Conference and dinner: 2 September 2015
- Conference: 3 September 2015
- Field trips: 4 September 2015

Contact details

Marie Dennis (convener)
Scion, Private Bag 3020
Rotorua 3046, New Zealand
T: +64 7 343 3722
E: marie.dennis@scionresearch.com

New Zealand is the location for ecobiorefinery 2015 and SETAC-AU 2015 (wwwsetacnelson2015.co.nz). Conference organisers have coordinated to host both conferences sequentially so delegates can maximise the value of their travel to New Zealand.

Discounts will be offered for registration to both conferences.

www.eco-biorefinery.com