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Abstract. The set of residue classes modulo an element π in the rings of Gaussian integers,
Lipschitz integers and Hurwitz integers, respectively, is used as alphabets to form the words
of error correcting codes. An error occurs as the addition of an element in a set E to the
letter in one of the positions of a word. If E is a group of units in the original rings,
then we obtain the Mannheim, Lipschitz and Hurwitz metrics, respectively. Some new
perfect 1-error-correcting codes in these metrics are constructed. The existence of perfect
2-error-correcting codes is investigated by computer search.
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1. Introduction

If a code attains a bound (the sphere-packing bound) in a given metric, then it is
called a perfect code. Perfect codes have always drawn the attention of coding the-
orists and mathematicians, since they play an important role in coding theory, both
for theoretical and practical reasons. Some perfect codes with respect to the Ham-
ming metric over finite fields are known [1, 10, 11, 15, 16]. For non-field alphabets,
only trivial codes in the Hamming metric are known.

Perfect codes have been investigated not only with respect to the Hamming
metric, but also to other metrics, for example the Lee metric. The Lee metric was
introduced in [9]. Some perfect codes with respect to the Lee metric were discovered
in [8].

Later, the Mannheim metric was introduced by Huber in [7]. It is well known
that the Euclidean metric is the relevant metric for maximum-likelihood decoding.
Although the Mannheim metric is a reasonable approximation to it, it is not a priori
a natural choice. However, the codes proposed are very useful in coded modula-
tion schemes based on quadrature amplitude modulation (QAM)-type constellations,
for which neither the Hamming nor the Lee metric is appropriate. Two classes of
codes over the Gaussian integers Z[i] were considered in [7], viz., the one Mannheim
error-correcting codes (OMEC), and codes having the minimum Mannheim distance
greater than three. The OMEC codes are perfect with respect to the Mannheim
metric. Thus, some perfect codes were discovered. However, the dimension k of

∗Corresponding author. Email addresses: mguzeltepe@sakarya.edu.tr (M.Güzeltepe),
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254 M.Güzeltepe and O.Heden

OMEC codes with parameters [n, k, d] is only n − 1. Among new perfect 1-error-
correcting codes we obtain in the present study, there are perfect codes with respect
to the Mannheim metric of dimension not only n− 1, but also n− k, (k > 1).

On the other hand, the Lipschitz metric was presented, and some perfect codes
over the Lipschitz integers with respect to the Lipschitz metric were introduced in
[12, 13]. Let Z[i]π denote the set of all residue classes to an element π in the ring
of Gaussian integers, and similarly for H(Z)π and Hπ , where H(Z) denotes the
Lipschitz integers and H the Hurwitz integers. The main issue of this study is the
construction of perfect 1-error-correcting codes with respect to the Mannheim metric
in Z

n
π and the Lipschitz metric in H(Z)nπ , to introduce the Hurwitz metric in Hn

π

and to discuss the existence of perfect codes in this metric.
The presentation of our results is organized as follows: In the next section, we give

the necessary fundamental definitions and results. The Hurwitz metric is introduced
in Section 2.1. In Section 3, we discuss which algebraic properties the sets H(Z)π
and Hπ must have, so that our constructions works. In Section 4, we give a general
construction of perfect 1-error-correcting codes in the metrics we are dealing with.
These constructions are related to partitions of the set of non-zero elements in Z[i]π ,
H(Z)π and Hπ into a kind of cosets to the groups of units in the rings Z[i], H(Z) and
H. In Section 4.1, such partitions are discussed and constructed. In Section 5, we
summarize which new perfect 1-error-correcting codes we have obtained thereby. In
Section 6, we report on the results of computer search, where the packing condition
is used to exclude the existence of perfect 2-error-correcting codes in the Mannheim,
Lipschitz and Hurwitz metrics, for all but a handful of lengths less than 10 000.
Finally, in Section 7, codes over Hπ, codes over Ap[ρ], and codes over Z[i] are
compared in terms of average energy, code rate and bandwidth occupancy.

2. Preliminaries

Fundamental in this context is

Definition 1. A code C in a set S with a given metric is a perfect t-error-correcting
code if every element, or word, s ∈ S has the distance t or less from exactly one
codeword c ∈ C.

In Section 4, this very general definition is adjusted to the metrics we now define.
We begin with a discussion of the Mannheim metric. This metric was considered

by Huber [7] and Martinez et al. [13]. Let Z[i] denote the set of all Gaussian integers
and let Z[i]π be the residue class of Z[i] modulo π. For β, γ ∈ Z[i]π, consider a+ bi
in the class of β − γ with |a|+ |b| minimum. The Mannheim distance dM between
β and γ is

dM (β, γ) = |a|+ |b|.

The metric induced on Z[i]π by the Mannheim distance is in this study called
the Mannheim metric. It is a true metric [13].‡ More information related to the
Mannheim metric and weight can be found in [7, 12, 13].

‡Note that the Mannheim distance defined in [7] is not a true metric.
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The construction of perfect 1-error-correcting codes in the Mannheim metric that
we provide later does not work, unless the norm of π = a+ bi, that is N(π) = ππ⋆ =
a2 + b2, is equal to an odd prime number p. It is easy to verify that in that case,
the size of Z[i]π is equal to p, and p ≡ 1(mod 4).

The Hamilton Quaternion Algebra over the set of real numbers R denoted by
H(R), see for example [3], is the associative unital algebra given by the following
representation:

i) H(R) is the free R module over the symbols 1, e1, e2, e3, that is,

H(R) = {a0 + a1e1 + a2e2 + a3e3 : a0, a1, a2, a3 ∈ R},

ii) 1 is the multiplicative identity,

iii) e21 = e22 = e23 = −1,

iv) e1e2 = −e2e1 = e3, e3e1 = −e1e3 = e2, e2e3 = −e3e2 = e1 .

The Lipschitz integers, denoted here by H(Z), is the following subset of H(R):

H(Z) = {a0 + a1e1+a2e2 + a3e3 : a0, a1, a2, a3 ∈ Z} ,

where Z is the set of all integers. The set of all Lipschitz integers constitutes a
ring. If q = a0 + a1e1 + a2e2 + a3e3 is a Lipschitz integer, then its conjugate is
q∗ = a0 − (a1e1 + a2e2 + a3e3).

The norm N(q) of q is the integer

N(q) = qq∗ = a20 + a21 + a22 + a23.

It is easy to check that for any two Lipschitz integers q and q′, it is true that

N(qq′) = N(q)(q′).

The set of units will be central in our presentation, and we denote it by E . It follows
immediately from the previous relation that

E = {±1,±e1,±e2,±e3}.

Furthermore, if π is a Lipschitz integer such that N(π) is equal to a prime number
p, then it also follows from that relation that

π = αβ =⇒ {α, β} ∩ E 6= ∅.

Following the standard terminology, see [3], we thus say that π is a prime Lipschitz
integer if N(π) is a prime number. If the norm of q is an odd integer, then the
Lipschitz integer q is said to be an odd Lipschitz integer.

Fundamental in this study is

Definition 2 ([12]). Let π be a Lipschitz integer. If there exists λ ∈ H(Z) such
that q1 − q2 = λπ, then q1, q2 ∈ H(Z) are said to be right congruent modulo π. This
relation is denoted by q1 ≡r q2.
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The relation q1 ≡r q2 is an equivalence relation. The set of equivalence classes
constitutes an Abelian group, which we denote byH(Z)π . With another terminology,
we would say that H(Z)π is the quotient group H(Z)/〈π〉 of the additive group in
the ring H(Z), with its subgroup

〈π〉 = {λπ : λ ∈ H(Z)}.

We cannot define any multiplication in H(Z)π in a consistent way, as 〈π〉 is not a
2-sided ideal. This will complicate our constructions of codes. Furthermore, neither
the distributive nor the associative rules are true in general.

When nothing else is stated below, we will use right congruences modulo π.
Analogous results are valid for left congruences modulo π.

The next theorem was proved in [12] by Martinez et al.

Theorem 1 ([12]). If π is a prime Lipschitz integer in H(Z), then H(Z)π has N(π)2

elements.

The Lipschitz distance was defined in [13]. Let π be a prime Lipschitz integer.
Given α, β ∈ H(Z)π, then the Lipschitz distance between α and β, denoted by
dL(α, β), is equal to the integer

dL(α, β) = |a0|+ |a1|+ |a2|+ |a3| ,

where α− β≡ra0 + a1e1 + a2e2+ a3e3(mod π) with |a0|+ |a1|+ |a2|+ |a3| minimal.
The Lipschitz weight wL(γ) of the element γ is defined to be equal to the integer

wL(γ) = dL(γ, 0).

Next, we define and treat the Hurwitz integers. In what follows , w denotes the
element

w =
1

2
+

1

2
e1 +

1

2
e2 +

1

2
e3,

and H(Z+ 1
2 ) denotes the set

H(Z+
1

2
) = w +H(Z).

The Hurwitz integers H, see e.g. [2], are the set of elements

H = H (Z) ∪H

(

Z+
1

2

)

.

It can easily be checked that H is closed under quaternion multiplication and addi-
tion. Hence H forms a subring of the ring of all quaternions H(R).

The next definition is also fundamental.

Definition 3. Let π be any element in H. If there exists λ ∈ H such that q1 − q2 =
λπ, then q1, q2 ∈ H are right congruent modulo π. This relation is denoted by
q1 ≡r q2.
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The relation q1 ≡r q2 is an equivalence relation, the set of equivalence classes of
which constitutes an Abelian group that we denote by Hπ. As for H(Z)π , we cannot
give any well defined multiplication in Hπ .

We denote the set of units in H by E . Let e0 denote the element 1 in H. It is
easy to check that E is the union of three sets as indicated below:

E = {±ei : i = 0, 1, 2, 3} ∪ {±eiw : i = 0, 1, 2, 3} ∪ {±eiw
⋆ : i = 0, 1, 2, 3}. (1)

We note that for any two distinct elements ǫ1 and ǫ2 in E

N(ǫ1 − ǫ2) ∈ {1, 2, 3, 4}. (2)

Hence, if ππ⋆ is equal to a prime number p ≥ 5, we may conclude that the elements
in E represent 24 distinct elements in Hπ .

Observe that in case ππ⋆ = 3, the elements in E belong to eight distinct cosets
to 〈π〉 in H; the elements in set {±ei : i = 0, 1, 2, 3} can be selected to represent the
elements of E in Hπ if N(π) = 3.

Let E denote the set of units in the ring H as described in (1). We denote by Eπ
the image of the set E in Hπ under the group homomorphism ϕ defined by

ϕ : H → Hπ, g 7→ g + 〈π〉,

that is, Eπ = ϕ(E). It follows from (2) that |Eπ| = |E| if N(π) ≥ 5. Similarly, Eπ is
defined for the sets of units E in the rings Z[i] and H(Z)π , respectively. It is easy
to verify that |Eπ| = |E| also in both of these two cases. In order to simplify the
notation at some instances we denote the elements in the set Eπ by their inverse
images in E under the map ϕ. So for example with E = {±1,±i} we let

Eπ = {1,−1, i,−i} = {1 + 〈π〉,−1 + 〈π〉, i+ 〈π〉,−i + 〈π〉}.

We finalize this preparatory section by proving:

Theorem 2. If π is an odd Lipschitz prime integer, then the size of Hπ is equal to
N(π)2.

Before we prove this theorem we give an example that will also be used and
considered later on.

Example 1. Let π = 2+ e1. Then the size of H2+e1 is equal to 25. As furthermore
|E| = 24, we get from (2) that the elements of E, together with the element 0, can be
selected to represent the elements of Hπ.

We use a simple lemma and a proposition in the proof of Theorem 2.

Lemma 1. For any element u in H(Z+ 1
2 ), the map

pu : x 7→ x+ u

is a bijective map from H(Z) to H(Z+ 1
2 ).
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Proof. If x+ u = y + u, then x = y, and consequently the map pu is injective. As
u = b0 + b1e1 + b2e2 + b3e3, where bi ∈ Z+ 1

2 , we get that

u− w = (b0 −
1

2
) + (b1 −

1

2
)e1 + (b2 −

1

2
)e2 + (b3 −

1

2
)e3 ∈ H(Z).

Hence, every element z = w + x of H(Z+ 1
2 ), where x ∈ H(Z), can be expressed as

the sum of an element in H(Z) and the element u. Thus the map pu is surjective.

Proposition 1. For any odd Lipschitz integer π,

|Hπ| = |H(Z)π |.

Proof. Assume that π is an odd Lipschitz integer. Let

K = {λπ : λ ∈ H(Z)} and K1/2 = {λπ : λ ∈ H(Z+
1

2
)}.

Then K is an additive subgroup of the additive group G of the ring H(Z), in fact
a left ideal. The size of H(Z)π is the number of cosets of K in G. Let t = |H(Z)π |
and let h1, h2, ..., ht be a set of coset representatives to K in G.

As π is an odd Lipschitz integer, we get that

u = wπ ∈ H(Z+
1

2
).

As every element λ in H(Z + 1
2 ) is the sum λ = w + λw of w and an element

λw ∈ H(Z), we thus get that

K1/2 = {(w + λw)π : λw ∈ H(Z)} = u+K,

and thus a coset to G in the additive group of the ring H.
We now observe that

K ′ = {λπ : λ ∈ H} = K ∪K1/2 = K ∪ (u+K),

and, from the definition of Hπ, that the size of Hπ is equal to the number of cosets
of the additive group K ′ in the additive group G′ of H.

We now apply Lemma 1. As

(h1 +K) ∪ (h2 +K) ∪ . . . ∪ (ht +K) = H(Z),

and as u ∈ H(Z+ 1
2 ), by using Lemma 1 we may conclude that

(u + h1 +K) ∪ (u+ h2 +K) ∪ . . . ∪ (u+ ht +K) = u+H(Z) = H(Z+
1

2
).

As finally, for any i = 1, 2, . . . , t,

hi +K ′ = (hi +K) ∪ (u+ hi +K),

we can conclude that the number of cosets to K ′ in G′ is equal to t. This proves the
proposition.

Theorem 2 now follows from Proposition 1 and Theorem 1.
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2.1. The Lipschitz and the Hurwitz metric in Hn
π

Consider the direct product S = Hn
π of n copies of Hπ , where π is an odd Lipschitz

prime integer. We say that two elements, or words, x̄ and ȳ in Hn
π have distance

one, dH(x̄, ȳ) = 1, if there is a word ē = (0, . . . , 0, ǫ, 0, . . . , 0), with just one non-zero
entry such that

ȳ = x̄+ ē,

for a unique element ǫ in a set Eπ. We consider two distinct sets E , the set of units
in H(Z) and the set of units in H, respectively.

With terminology from graph theory, it is now easy to explain how in both cases
we can define a metric in Hn

π . Consider the words of S as vertices in a graph, where
there is an edge between two vertices x̄ and ȳ if dH(x̄, ȳ) = 1. The distance dH(ā, b̄)
between any two vertices ā and b̄ is the length of the shortest path between these two
vertices. General results from graph theory give that this distance function defines
a metric in S.

If E is defined as in (1), then the metric obtained in Hn
π is called the Hurwitz

metric.
In case E consists of the elements in the set {±1,±e1,±e2,±e3}, we get a metric

that we call the Lipschitz metric in Hn
π . From Lemma 1 and Proposition 1 we get

that this metric has similarities with the Lipschitz metric in H(Z)π . Therefore, the
Lipschitz metric in Hn

π is not treated in later sections.
Also note that if the norm of π is equal to 3, then it follows from the observation

made shortly after equation (2) that the Lipschitz and Hurwitz metrics do not differ.
However, note that in general the Hurwitz metric and the Lipschitz metric are not
isomorphic, as shown in the next example.

Example 2. Let wL(c) and wHz(c) denote the Lipschitz weight and Hurwitz weight,
respectively, of a word c. Consider S = H1

π and the elements 2 and q = 2w. We
note that

wL(2) = 2 = wHz(2),

while
wL(q) = wL(1 + e1 + e2 + e3) = 4 6= 2 = wHz(q),

as q = w + w and w ∈ E.

We will sometimes refer to a perfect error-correcting code in Hn
π with the Hurwitz

metric, as a perfect Hurwitz-weight code of length n over Hπ.

3. H(Z)π and Hπ as modules

In later sections, we define codes and the error-correcting procedure by using a
matrix H. Thereby, we need the distributive rule to be true, more precisely

H(āT + b̄T ) = HāT +Hb̄T (3)

for every pair of elements ā and b̄ of H(Z)nπ and Hn
π , respectively. The rule above

is trivially true when we perform our calculations over Z[i]π, as it is a ring. To
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solve this problem in other two instances, we let the entries of H be elements in the
rings H(Z) and H, respectively, and furthermore let the groups H(Z)nπ and Hn

π be
regarded as modules over these rings. This means that we define

h(h′ + 〈π〉) = hh′ + 〈π〉,

for h ∈ H and (h′ + 〈π〉) ∈ Hn
π . The distributive property in equation (3) then

follows immediately.
We say that a selection of coset representatives H(Z)π to 〈π〉 in H(Z) is a com-

plete selection of coset representatives if no two elements of H(Z)π are congruent
modulo π, and if all cosets to 〈π〉 are represented in H(Z)π , that is,

|H(Z)π | = |H(Z)π|.

The same terminology for coset representatives to a left ideal 〈π〉 in H is used in
what follows.

Let E denote the set of units in H(Z) and H, respectively, and let H be any set
of mutually non-congruent elements in any of these rings. The set H is then said to
be E-homogeneous if

h̄ǫ = h̄′ǫ =⇒ h̄ = h̄′

for every ǫ ∈ Eπ and h̄, h̄′ ∈ H . We need to refer to the following proposition that
immediately follows from the definition above.

Proposition 2. If H is an E-homogeneous and complete selection of coset repre-
sentatives to 〈π〉 in Hπ or H(Z)π, then the equation

h̄ǫ = h, (4)

has a unique solution h̄ in H for every pair (ǫ, h) ∈ Eπ×Hπ and (ǫ, h) ∈ Eπ×H(Z)π,
respectively.

In Z[i]π, where the norm of π is a prime number, the conclusion of the proposition
is true whenever Z[i]π is a complete selection of coset representatives. In H(Z)π ,
the E-homogeneous property is essential. For example, consider the Lipschitz prime
π = 1+ e1 +2e2 + e3. The element h̄ = 1− e1 − e2 +2e3 does not belong to the left
ideal 〈π〉 and can hence be selected to be one of the non-zero coset representatives
to 〈π〉 to be included in H(Z)π , or in Hπ . However,

(1− e1 − e2 + 2e3)(e1 + 〈π〉) = π + 〈π〉 = 0 + 〈π〉.

and hence, the set {h̄, 0̄} is not E-homogeneous.

4. Perfect 1-error-correcting codes and partitions

The main idea in our construction is inspired by a generalization of Herzog and
Schönheim [6] of the traditional use of parity-check matrices in the construction of
1-error-correcting linear codes. They found a relation between such codes over finite
fields and partitions of a vector space into subspaces just having the zero vector in
common.
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We now turn to the specific situation considered in this study. Here, we let H
denote any of the sets Z[i]π, H(Z)π , or Hπ for some element π, the norm of which
is equal to an odd prime number.

A code of length n is a subset C of the direct product Hn of n copies of H . In
each of the cases we consider, H is an Abelian group, and thus the same is true for
Hn. A code C is a group code if it is a subgroup of Hn, or equivalently as Hn is a
finite group,

c, c′ ∈ C =⇒ c− c′ ∈ C.

In the case when H is a finite field, and thus Hn is a vector space of dimension n
over H , then a linear code is a subspace C of Hn. Here we say that a code C in Hn

is an (n, k)-code if the size of C is equal to |H |k. (The case k = 0 is of less interest,
and thus left aside.)

From the definition of a perfect 1-error-correcting code C in these metrics, we
obtain that C is a perfect code if and only if for every word x in Hn \ C there is a
unique code word c in C, such that

x = c+ e

for some word e with its only non-zero entry ǫ in Eπ.

Theorem 3. Let H and Eπ be constituted as above, and let H be a complete selection
of coset representatives to 〈π〉. Assume that the norm of π is an odd prime number.
Let n = (|H | − 1)/|Eπ|.

If g1 = 1, g2, ..., gn are elements in H, satisfying two of the following three
conditions:

(i) |giEπ| = |Eπ|, for i = 2, 3, . . . , n,

(ii) giEπ ∩ gjEπ = ∅, for i 6= j,

(iii) H \ {0} = Eπ ∪ g2Eπ ∪ . . . ∪ gnEπ,

then the null-space C of the matrix

H =
(

1 g2 . . . gn
)

is a perfect 1-error-correcting group (n, n− 1)-code in Hn, in the metric defined by
Eπ.

We observe that if condition (ii) holds, then the set {g1, g2, . . . , gn} is E-homogeneous.

We remind of the fact that it follows from the discussion in the previous section,
that the product gia is well defined, for every i ∈ [n] and a ∈ H and that the
distributive rule

gi(a+ b) = gia+ gib

is true for any i ∈ [n] and any elements a, b ∈ H .
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Proof. We first note that from the assumption that the norm of π is an odd prime
number, it follows that n is an integer. Furthermore, a simple counting argument
shows that if any two of the conditions (i), (ii) and (iii) hold, then all three of these
conditions hold.

For any choice of elements c2, c3, ..., cn in H , the n-tuple

(−(g2c2 + g3c3 + · · ·+ gncn), c2, c3, . . . , cn)

belongs to the null-space of H. Furthermore, every element in C can be expressed
in this way. This proves the statement on the size of C.

Let x̄ = (x1, x2, . . . , xn) be any element in Hn \C. Then, from the assumptions
(i), (ii) and (iii), it follows that

Hx̄T = gjǫ, (5)

for exactly one element j ∈ [n] and a unique element ǫ ∈ Eπ. It follows from the
distributive property of left multiplication of elements in H with the elements in the
set H that

H(x1, . . . , xj − ǫ, . . . , xn)
T = g1x1 + · · ·+ gj(xj − ǫ) + · · ·+ gnxn = Hx̄T − gjǫ = 0.

This fact, together with the fact that giEπ ∩ gjEπ = ∅, for i 6= j, proves that C is a
perfect 1-error-correcting code.

From the distributive rule, when multiplying elements of H from the left with
elements of H , it follows that the null-space of the matrix H is a group code.

It must be remarked that in the case H = Z[i]π, the null space C of the matrix
H also has the property

c ∈ C, λ ∈ H =⇒ λc ∈ C,

and thus that C is a linear code.
Furthermore, the proof shows how to correct an error in a received word x̄, which

has the syndrome given by (5).
It must also be remarked that condition (i) of the theorem above is not always

true. Consider for example H(Z)π, where π = 2 − e1 + e2 + e3. The element
a = 3 + e1 + 2e2 can be verified not to belong to 〈π〉, and hence a represents a
non-zero element in H(Z)π . However,

(3 + e1 + 2e2)− (3 + e1 + 2e2)e1 = 2π ∈ 〈π〉,

that is, ae1 and a1 belong to the same coset to 〈π〉 in H(Z). It follows that

|(3 + e1 + 2e2)Eπ | ≤ |Eπ| − 1.

Given any partition of H satisfyingconditions (i), (ii) and (iii) of Theorem 3,
under certain conditions we can derive a partition of Hk for any non-negative integer
k. The next theorem can be proved in exactly the same way as Theorem 3.

We assume that H and Eπ are constituted as in Theorem 3.
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Theorem 4. Let H be an E-homogeneous and complete selection of coset represen-
tatives to 〈π〉, where the norm of π is an odd prime number. Let m = (|H |k−1)/|Eπ|
and n = (|H | − 1)/|Eπ|.

If g1 = 1, g2, ..., gn are coset representatives to 〈π〉 in H satisfying two of the
following three conditions:

(i) |giEπ| = |Eπ|, for i = 2, 3, . . . , n,

(ii) giEπ ∩ gjEπ = ∅, for i 6= j,

(iii) H \ {0} = Eπ ∪ g2Eπ ∪ . . . ∪ gnEπ,

then the null-space of the k ×m-matrix, the columns of which are

(

0 · · · 0 gi hν · · · hk

)T

for i ∈ [n], ν ∈ {2, . . . , k}, and where (hν , . . . , hk) ∈ H
k+1−ν

, is a perfect 1-error-
correcting group (m,m− k)-code in Hm.

Proof. By Proposition 2, the columns of H multiplied to the right by the elements
in the set Eπ induce a partition of Hk. The remaining part of the proof uses similar
arguments as those used in the proof of Theorem 3.

4.1. Some constructions of partitions

Lemma 2. Let G be any subgroup of the set of units in a ring R. Then the following
relation is valid:

aG ∩ bG 6= ∅ =⇒ aG = bG. (6)

For the sake of completeness, we include a trivial proof of the lemma.

Proof. Assume aG ∩ bG 6= ∅, that is, aga = bgb for two elements ga and gb of G.
Then, for every g ∈ G,

ag = ((bgb)g
−1
a )g ∈ bG.

Thus aG ⊆ bG. Similarly, we can deduce that bG ⊆ aG.

Hence, in any finite ring R, and with any subgroup G of the group of units in R,
it is easy to partition the non-zero elements of R into left cosets to G by successively
forming cosets r0G, r1G, ..., rnG, such that for i = 1, 2, . . . , n− 1,

ri+1 6∈ r0G ∪ r1G ∪ . . . ∪ riG.

As Z[i]π is a ring for every π ∈ Z[i] and the set G = {±1,±i} is a subgroup of
the set of units in Z[i]π , we easily get partitions of every such Z[i]π into cosets to G.

Example 3. Let π = 3 + 2i. Following the “naive” recipe described above we get
the following partition

Z[i]π \ {0} = 1{±1,±i} ∪ 2{±1,±i} ∪ (1 + i){±1,±i}.
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Observe that this naive method of forming partitions of the set of non-zero el-
ements into cosets of a group of units has in general no success in H(Z)π or Hπ .
Consider for example the Lipschitz prime π = 3 + 2e1 + 2e2. Let us start with the
coset 1Eπ. Then, for example a = −2+ 3e1 + e2 − 2e3 does not belong to this coset,
while it is easy to check that

a(−e1) ∈ aEπ ∩ 1Eπ,

which makes the naive method fail. Evidently, relation (6) is not always true either
in H(Z)π or in Hπ.

Our constructions of perfect 1-error-correcting codes also require that the number
of elements in each coset giEπ is equal to the number of elements in Eπ, as otherwise
the error-correcting process fails. Let for example π = 2 + 2i in the preceding
example. Then the set 2{±1,±i} consists of exactly two distinct elements in the
ring Z[i]π. However, as remarked in Section 2, if N(π) is equal to a prime number
p > 5, then Z[i]π is a commutative ring with p elements, and thus a finite field.
Then the set Eπ = {±1,±i} is a subgroup of the multiplicative group of that field.
This proves the following theorem:

Theorem 5. Assume that π ∈ Z[i] has a norm equal to an odd prime p ≥ 5. Then
the set of non-zero elements of Z[i]π admits exactly one partition

Z[i]π \ {0} = Eπ ∪ g2Eπ ∪ . . . ∪ gtEπ

into t = (p− 1)/4 mutually disjoint cosets of Eπ, all of the same size.

Despite the failure in general of the construction above of partitions in H(Z)π , we
can provide partitions H(Z)π \ {0} into left cosets of Eπ. The coset representatives
to the left ideal 〈π〉 must however be chosen with great care. In this context, the
choice of coset representatives to 〈π〉 given in the next proposition turns out to be
fruitful.

Proposition 3. Let π = a0+ a1e1+ a2e2+ a3e3 be a Lipschitz prime with p = ππ⋆.
Then, for any two distinct elements ei and ej in {e0 = 1, e1, e2, e3} such that p does
not divide a2i + a2j , it is true that

Ci,j = {xiei + xjej : xi, xj ∈ Zp}

is a complete selection of non-congruent coset representatives to 〈π〉 in H(Z). Fur-
thermore, Ci,j is E-homogeneous.

Proof. We show that no two elements in a set Ci,j are congruent modulo π. The
first part of the proposition then follows, as by Theorem 1 the size of such a set is
equal to the size of H(Z)π .

We consider the case i = 0 and j = 1, and assume that a20 + a21 6≡ 0 (mod p).
The other cases are treated in the same way. Assume that

x0e0 + x1e1 − (x′
0e0 + x′

1e1) = (t0 + t1e1 + t2e2 + t3e3)π,
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for some integers t0, t1, t2, t3. Then,








a0 −a1 −a2 −a3
a1 a0 a3 −a2
a2 −a3 a0 a1
a3 a2 −a1 a0

















t0
t1
t2
t3









=









x0 − x′
0

x1 − x′
1

0
0









. (7)

We multiply by the transpose of the 4× 4-matrix above and get








pt0
pt1
pt2
pt3









=









a0 a1 a2 a3
−a1 a0 −a3 a2
−a2 a3 a0 −a1
−a3 −a2 a1 a0

















x0 − x′
0

x1 − x′
1

0
0









. (8)

Thus we obtain the following system of equations
{

a0(x0 − x′
0) + a1(x1 − x′

1) ≡ 0 (mod p),
−a1(x0 − x′

0) + a0(x1 − x′
1) ≡ 0 (mod p).

The assumption that p is a prime number that does not divide the determinant
a20 + a21 of the system above implies that p divides both x0 − x′

0 and x1 − x′
1. This

means that x0 and x′
0 represent the same element in the ring Zp, and similarly for

x1 and x′
1.

§

Finally, p belongs to 〈π〉, and so does pei, for i = 1, 2, 3. This implies that we
can add elements in C0,1 in the same way as we add elements in Zp × Zp.

Now let us turn to the question of E-homogeneity. We note that

(x0 + x1e1)e1 = −x1 + x0e0.

Hence, if h̄ and h̄′ are two distinct elements in C0,1, then h̄e1 and h̄′e1 are distinct,
and similarly for multiplication to the right with −e1, (and −1). Multiplying a
coset representative in C0,1 by ±e2 and ±e3, gives a coset representative in C2,3.
As C2,3 is also complete, this means that distinct elements of C0,1 by the latter
multiplication by each of the units above, give distinct elements in C2,3. Hence C0,1

is E-homogeneous.

Theorem 6. For any Lipschitz prime π = a0+a1e1+a2e2+a3e3 with p = ππ⋆ and
such that p ≡ 3(mod 4), we can find a set of coset representatives to 〈π〉 forming
the set H(Z)π and admitting a partition

H(Z)π \ {0} = g1Eπ ∪ g2Eπ ∪ . . . ∪ g(p2−1)/8Eπ,

where giEπ ∩ gjEπ = ∅, for i 6= j.

§It follows that the size of H(Z)π equals p2, that is, that Theorem 1 is valid. That C0,1 contains
coset representatives from p2 distinct cosets to 〈π〉 is proved above. Let

A =

(

a0 −a1
a1 a0

)

and B =

(

a2 −a3
a3 a2

)

.

Let (x′ y′)T = (a22 + a23)
−1

AB
T (x y)T for any two arbitrary elements x, y. Then

−xe2 − ye3 + x′ + y′e1 ∈ 〈π〉.

It follows that every coset to 〈π〉 contains an element in C0,1. (For details, see the proof of Theorem
6, in particular equation (9)).
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Note that it follows from the theorem that |giEπ| = |Eπ|, for i ∈ [(p2 − 1)/8].

Proof. Assume that a20 + a21 6≡ (mod p). The other cases are treated similarly. We
choose the elements gi from the selection C0,1 of coset representatives defined in the
previous proposition. For such an element gi = x+ ye1,

(x+ ye1)(±ei) ∈ C2,3,

if i = 2, 3. Because of this fact, we start by searching for the relation between coset
representatives to cosets of 〈π〉 in C2,3 and C0,1. The fact is that every element
xe2 + ye3 in C2,3 is congruent modulo π to a unique element

x′ + y′e1 = j(xe2 + ye3)

in C0,1.
There are integers t0 and t1 such that

{

t0a2 − t1a3 ≡ x (mod p),
t0a3 + t1a2 ≡ y (mod p),

that is, x = t0a2 − t1a3 + b2p and y = t1a2 + t0a3 + b3p for some integers b2 and b3.
Such integers t0 and t1 can be found by using the formula

(

t0
t1

)

= (a22 + a23)
−1

(

a2 a3
−a3 a2

)(

x
y

)

,

where (a22 + a23)
−1 denotes the unique integer c in the interval 0 < c < p with the

property
c(a22 + a23) ≡ 1(mod p).

Let
{

x′ = (−t0a0 + t1a1) (mod p),
y′ = (−t0a1 − t1a0) (mod p),

and thus, x′ = −t0a0 + t1a1 + b0p and y′ = −t0a1 − t1a0 + b1p for some integers b0
and b1. Then we get the equality

xe2 + ye3 − x′ − y′e1 = (t0 + t1e1)π − (b0 + b1e1 − b2e2 − b3e3)π
⋆π.

The element on the right-hand side belongs to 〈π〉. Hence, xe2 + ye3 and x′ + y′e1
are congruent modulo π.

Our calculations above thus show that the following relation in Zp ×Zp between
the coefficients (x, y) of an element xe2 + ye3 in C2,3 and the coefficients (x′, y′) of
its congruent element x′ + y′e1 in C0,1, is true:

(

x′

y′

)

= (a22 + a23)
−1

(

−a0 a1
−a1 −a0

)(

a2 a3
−a3 a2

)(

x
y

)

. (9)

We use the notation: if (x, y) and (x′, y′) are related as in the equation above, then

(x′, y′) = j((x, y)).
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We define the p-norm of an element (x, y) in Zp×Zp to be the following element
in Zp:

Np(x, y) = (x2 + y2)(mod p).

The relation between the p-norm of an element α ∈ Zp × Zp and the p-norm of the
element j(α) is essential in our proof. By using the relation in (9), we get

(x′ y′)

(

x′

y′

)

= (a20 + a21)(a
2
2 + a23)

−1(x y)

(

x
y

)

.

As (a20 + a21) + (a22 + a23) ≡ 0(mod p), we get that

x′2 + y′2 ≡ −(x2 + y2)(mod p).

Thus
Np(j(α)) = −Np(α). (10)

Let
E0 = {±1,±e1}, E1 = {±e2,±e3},

and let L(x, y) denote the set

L(x, y) = (x+ ye1)E0 = {x+ ye1,−x− ye1,−y + xe1, y − xe1}.

It follows from (9) that the relation between the coefficients in xe2 + ye3, with its
congruent element x′ + y′e1, is of the form

(

x′

y′

)

=

(

a −b
b a

)(

x
y

)

.

for some elements a and b in Zp. By using the relation above, it is easy to verify
that

x′ + y′e1 = j(xe2 + ye3) =⇒ j(L(x, y)) = L(x′, y′), (11)

and hence, as

(x+ ye1)E1 = {xe2 + ye3,−xe2 − ye3,−ye2 + xe3, ye2 − xe3},

we can conclude that
(x+ ye1)E1 = L(x′, y′).

It follows that for each a = x+ ye1 in C0,1, the set aEπ is the union of two sets
L(x, y) and L(x′, y′). These two sets are mutually disjoint, as the p-norm of elements
in the set L(x′, y′) differs from the p-norm of the elements in L(x, y).

Let (x0, y0) be any element in Zp × Zp such that x2
0 + y20 6≡ 0(mod 4), and let

(xi, yi) denote the element

(xi, yi) = ji(x0, y0) = j ◦ · · · ◦ j(x0, y0).

Let N(x0, y0) denote the smallest positive integer N such that

jN (L(x0, y0)) = L(x0, y0).
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We observe that

Np(xi, yi) = (−1)iNp(x0, y0).

As p is an odd integer, we get that a 6= −a in Zp if a 6= 0. We may thus conclude
that N(x0, y0) must be an even integer.

We may now adjust the “naive” method in order to produce a partition of H(Z)π
into cosets of Eπ. We start with the elements contained in the cycle of sets L(xi, yi)
found above and form the following cosets to Eπ

(x0 + y0e1)E = (x0 + y0e1)E0 ∪ (x0 + y0e1)E1 = L(x0, y0) ∪ L(x1, y1)
(x2 + y2e1)E = (x2 + y2e1)E0 ∪ (x2 + y2e1)E1 = L(x2, y2) ∪ L(x3, y3)

...
...

(xs + yse1)E = (xs + yse1)E0 ∪ (xs + yse1)E1 = L(xs, ys) ∪ L(xs′ , ys′),

where s′ = s+1 = N(x0, y0)− 1. Then we continue with a new cycle, starting with
an element z0 + u0e1 not belonging to any of the sets in the enumeration above and
such that z20 + u2

0 6≡ 0(mod p).
The element −1 is a non-square in Zp, if p 6≡ 1(mod 4). Hence in that case

x+ ye1 ∈ C0,1 =⇒ x2 + y2 6≡ 0(mod p),

for every pair of elements (x, y) ∈ Zp×Zp \ {(0, 0)}. We may thus derive a partition
of all non-zero elements in H(Z)π into cosets of Eπ.

We give an example of a partition of H(Z)π in the case the Lipschitz prime π
has a norm p, that is congruent to 1 modulo 4.

Example 4. Let π = 2 + e1 and let E = {±1,±e1,±e2,±e3}. Then

H(Z)π = 1Eπ ∪ (1 + e2)Eπ ∪ (1 + e3)Eπ.

We have not yet found any general method for finding partitions ofHπ into cosets
of the set of units in H. Anyway, let us give an example, verifying the existence of
partitions in one particular case.

Example 5. Let π = 2 + e1 + e2 + e3, and let E denote the set of units in H, that
is,

E = {±1,±e1 ± e2,±e3} ∪ w{±1,±e1 ± e2,±e3} ∪ w⋆{±1,±e1 ± e2,±e3}.

Then we have the following partition of Hπ \ {0} into cosets of Eπ:

H2+e1+e2+e3 \ {0} = Eπ ∪ (1 + e1)Eπ.

5. Some new perfect codes

We are now able to combine the results of Section 4 to construct some new perfect
1-error-correcting codes.
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5.1. Perfect 1-error-correcting codes in the Mannheim metric

We consider the ring H = Z[i]π, where π = a + bi, and a2 + b2 is equal to an odd
prime number p. Then p = 4n + 1 for some integer n. By Theorem 5, there exists
a partition of the set Z[i]π \ {0} into n = (p − 1)/4 cosets of Eπ = {±1,±i}. By
Theorems 3 and 4, we can thus find perfect 1-error-correcting (m, k)-linear codes
in the Mannheim metric, with m = (pl − 1)/4 and k = (pl − 1)/4 − l, for any
non-negative integer l.

If C is any perfect 1-error-correcting code in Z[i]mπ with the Mannheim metric,
then

(4m+ 1)|C| = pm.

As p is a prime number, we can deduce thatm = (pl−1)/4 and logp |C| = (pl−1)/4−l
for some non-negative integer l. This shows that every perfect 1-error-correcting code
in the Mannheim metric must have the same length and size as some of those we
have found.

Also note that by the well-known Christmas theorem of Fermat, first proved by
Euler, it follows that to every prime number p congruent to 1 modulo 4, there are
two unique non-negative integers a and b such that p = a2 + b2. Thus, we can
construct perfect 1-error-correcting Mannheim weight codes for every prime p with
p ≡ 1(mod 4).

5.2. Perfect 1-error-correcting codes in H(Z)nπ

Let π = a0 + a1e1 + a2e2 + a3e3 be a Lipschitz prime of a norm p such that p ≡
3(mod 4). Then, by combining Theorem 3, Theorem 4, and Theorem 6, we can
find perfect 1-error-correcting Lipschitz weight group (n, k)-codes over H(Z)π . The
parameters of these codes are n = (p2l − 1)/8 and k = (p2l − 1)/8 − l, where l can
be any non-negative integer.

By a theorem of Lagrange, every non-negative integer is a sum of four squares
of integers. Thus the construction above works for every prime number p such that
p ≡ 3(mod 4).

5.3. Perfect 1-error-correcting codes in Hn
π

By combining Theorem 3 with Example 5, we get perfect 1-error-correcting Hurwitz
weight group (2, 1)-codes over Hπ for π = 2 + e1 + e2 + e3.

5.4. Another example of a perfect code

Let π be any prime Lipschitz integer of norm 5, for example π = 2 + e1. Let C
′ be

any perfect 1-error-correcting code in a direct product S′ = GF(25)n of n copies of
the finite field with 25 elements. For example, let C′ be the Hamming code of length

n = 25s + 25s−1 + · · ·+ 25 + 1

for some integer s. Let ϕ be any bijective map from GF(25) to Hπ, such that
ϕ(0) = 0. We extend ϕ to a bijective map, also denoted by ϕ, from S′ to S = Hn

π . As
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N(π) = 5, we know by Example 1 that the non-zero elements of Hπ can be identified
with the elements of E . Consequently, with dH(x̄, ȳ) denoting the Hamming distance
in S′ and dHz the Hurwitz distance in S, we then get that

dH(x̄, ȳ) = dHz(ϕ(x̄), ϕ(ȳ)).

In other words, the map ϕ is an isometry from S′ to S. It follows that the code

C = ϕ(C′)

is a perfect 1-error-correcting Hurwitz weight code in S.

6. Perfect 2-error-correcting codes in the Mannheim, Lipschitz

and Hurwitz metric

We have not yet found any multiple-error-correcting codes in the metrics we are
studying. Computer search has made it possible to exclude the existence of perfect
2-error-correcting codes for a large number of lengths.

While one error during transmission of a word occurs in exactly one coordinate
position, two errors either occur in one coordinate position as a sequence of two single
errors made in that coordinate position, or in two distinct coordinate positions. In
the latter case, the number of possibilities to make two errors in a word of length n
is equal to

(

n

2

)

|Eπ|
2,

where |Eπ| is equal to 4 in the Mannheim metric, 8 in the Lipschitz metric and 24
in the Hurwitz metric.

We need to identify the error vectors ē = (0, . . . , 0, ǫi, 0, . . . , 0), with all but one
coordinate position equal to zero, and such that the distance between ē and all zero
word is equal to 2. If that is the case, then the non-zero element ǫi belongs to the
following set:

E2 = (Eπ + Eπ) \ (Eπ ∪ {0}), (12)

where E is the set of units related to the metric under consideration. The size of
E2 depends in general on π. For instance, in the case of the Hurwitz metric in Hπ ,
where π = 2 + e1 + e2 + e3, we get that

E2 = E2(π) = {±(1± ei) : i ∈ [3]} ∪ {±(ei ± ej) : i, j ∈ [3], i 6= j},

and hence that |E2(2 + e1 + e2 + e3)| = 24.
Let Hπ denote either the sets Z[i]π , H(Z)π or Hπ. In general, the following

well-known necessary condition for the existence of a perfect 2-error-correcting code
in Hn

π is true:

Lemma 3. If a perfect 2-error-correcting code C exists in the direct product Hn
π

where the norm of π is equal to an odd prime number p, then

1 + n|Eπ|+

(

n

2

)

|Eπ|
2 + n|E2(π)| = |Hπ|

np−k,

where k denotes the integer k = logp(|C|).
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Note that the size of Hπ is equal to p if Hπ = Z[i]π and p2 in the other cases.
The lemma above is called the sphere packing condition. It is the main tool

used in our computer search that gives the non-existence results reported in the
subsections that follow.

The number of known non-trivial multiple-error-correcting codes is very limited.
The two Golay codes found in 1948 [4] may be the only ones. Thus it is of greatest
interest to investigate the existence of multiple-error-correcting codes in these new
metrics.¶

6.1. Perfect 2-error-correcting codes in the Mannheim metric

We assume that the element π = a+ bi of Z[i] has the norm p, where p is a prime
number. In the ring Z[i]π we get that

E2(π) = {±2,±2i} ∪ {±(1± i)} .

Thus, if a perfect 2-error-correcting Mannheim weight code C of length n exists,
then, by Lemma 3

pt =

{

8n2 − 4n+ 1 if p = 5,
8n2 + 4n+ 1 if p ≥ 13,

(13)

where t = n− k.
Computer search for solutions of equation (13) in the case when p is a prime

number and (n+ 1, t) ∈ [9999]× [26] gave just one solution:

(p, n, t) = (29, 10, 2).

Consequently, we cannot use the packing condition to exclude the existence of a
perfect 2-error correcting code C in Z[i]10π , if π = ±2± 5i or π = ±5± 2i. The size
of C would be |C| = 298.

6.2. Perfect 2-error correcting codes in the Lipschitz metric

Let π be any Lipschitz prime of norm p. In H(Z)π , we get that E2(π) is a union of
the following four sets.

G2 = {±(1± e1),±(e2 ± e3)} , G3 = {±(1± e2),±(e1 ± e3)} ,
G4 = {±(1± e3),±(e1 ± e2)} , G5 = {±2,±2e1,±2e2,±2e3} .

Hence, by using the relation in (12), applying Lemma 3, and using the fact that in
this case |Eπ| = 8, we can derive the following necessary conditions for the existence
of a perfect 2-error-correcting Lipschitz weight (n, k)-code over H(Z)π :

pt =







32n2 − 8n+ 1 if p = 5,
32n2 + 1 if p = 7, 11,
32n2 + 8n+ 1 if p ≥ 13,

(14)

¶Furthermore, as one of the reviewers pointed out to us, the existence of 2-perfect codes in the
Mannheim and Lipschitz metrics implies the existence of tilings of Z2n or Z

4n with radius-2 Lee
balls, which are periodic, with period p or p2 in all basic directions. That is, we will get 2-perfect
Lee codes in Z

N
p or Z

N
p2

. This is a partial case of the well-known Golomb-Welch conjecture that

such codes do not exist [5].
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where t = 2(n − k). Computer search for solutions to the equations above, in the
cases when p is a prime number, showed that the only solutions in the intervals
(n + 1, t) ∈ [9999] × [24] occur when the 3-tuple (p, n, t) is equal to one of the
following two:

(29, 5, 2), (33461, 5915, 2).

The sizes of codes with these parameters would be 298 and 3346111828, respectively.

6.3. Perfect 2-error-correcting codes in the Hurwitz metric

In this subsection, we presume that π is an odd Lipschitz prime integer with norm
N(π) = p > 3. Let e0 = 1. By applying the relation in (12), some tedious but trivial
calculations modulo π in Hπ give the following:

Proposition 4. There are six possible sizes of the sets E2(π), where π is a Lipschitz
prime integer with N(π) ≥ 5. These sizes are

|E2(π)| =































0 if N(π) = 5,
24 if N(π) = 7,
72 if N(π) = 11,
88 if N(π) = 13 and π ∈ {±ei0 + (±2)ei1 + (±2)ei2 + (±2)ei3},
112 if N(π) = 13 and π ∈ {±3ei0 ± 2ei1},
112 if N(π) > 13.

As |E1| = 24, from Lemma 3 we get that if a perfect 2-error-correcting Hurwitz
weight (n, k)-code exists in Hn

π , then the following equality must be satisfied:

pt =































288n2 − 264n+ 1 if p = 5,
288n2 − 240n+ 1 if p = 7,
288n2 − 184n+ 1 if p = 11,
288n2 − 176n+ 1 if p = 13 with π ∈ {±ei0 + (±2)ei1 + (±2)ei2 + (±2)ei3},
288n2 − 152n+ 1 if p = 13 with π ∈ {±3ei0 ± 2ei1},
288n2 − 152n+ 1 if p > 13,

where t = 2(n− k).
Our computer search gave that if p is an odd prime number, then none of these

equations has a solution for (n+ 1, t) ∈ [9999]× [24].

7. Comparison between codes over H, codes over Z[ρ] and

codes over Z[i]

In this section, we compare codes over H, codes over Z[ρ] defined in [14], and codes
over Z[i] in terms of average energy, code rate and bandwidth occupancy, where

ρ = 1+i
√
3

2 . We first compare the average energy of codes over Hπ with the average
energy of codes over Z[ρ]. Let π = 2 + e1 + e2 + e3 and α = 5 + 3ρ. Then the
elements of the set H2+e1+e2+e3 − {0} correspond to the vertices of the 48−cell
polytope, see Figure 1A, and the elements of the set Zα[ρ] form a lattice, see Figure
1B. Considering constellations with the same cardinality, we show that the average
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energy for the transmitted signal is smaller in the case of H than in the case of Z[ρ],
see Table I.

Note that the average energy is calculated as:

E =
1

M

M−1
∑

s=0

|qs|
2,

where qs belongs to the signal space and has a magnitude (distance from the origin)

of |qs| =
√

q2s,0 + q2s,1 + q2s,2 + q2s,3, and where M denotes the cardinality of the signal

set.

Alphabet Base ring Average energy
GF (49) H 1.47
GF (49) Z[ρ] 7.22

Table I: Comparison between codes over Hπ and Zα[ρ].

We now compare the average energy of codes over H with the average energy
of codes over Z[i]. Let π = 2 + e1 and α = 4 + 3i. Then the elements of the set
H2+e1 − {0} correspond to the vertices of the 24−cell polytope, see Figure 1C, and
the elements of the set Z[i]α form a lattice, see Figure 1D. Considering constella-
tions with the same cardinality, we show that the average energy for the transmitted
signal is smaller in the case of Hπ than in the case of Z[i]α, see Table II.

Alphabet Base ring Average energy
GF (25) H 0.96
GF (25) Z[i] 4.16

Table II: Comparison between codes over Hπ and Z[i]α.

Then we compare the code rate with the bandwidth occupancy of the codes over
Hπ and Zα[ρ], Z[i]α, when the alphabets considered have the same cardinality. The
codes given in Section 5.3 and the OMEC codes presented in [7] can be generalized

to the lengths n = p2−1
24 and n = p2−1

4 , respectively. Let p ≡ 1 (mod 12). We now
have p ≡ 1 (mod 6) and p ≡ 1 (mod 4). In this case, a code C1 over Hπ has the

length n1 = p2−1
24 , a code C2 over Zα[ρ] has the length n2 = p2−1

6 and a code C3 over

Z[i]α has the length n3 = p2−1
4 . Hence, if the dimensions k1, k2 and k3 of the codes

C1,C2 and C3 equal k, then the rate R1 of C1 is greater than the rate R2 of C2 and
the rate R3 of C3, since R1 = k1

n1

= 24k
p2−1 , R2 = k2

n2

= 6k
p2−1 and R3 = k3

n3

= 4k
p2−1 . For

example, let P = 13 and k = 1. Then we get R1 = 1
7 , R2 = 1

28 and R3 = 1
42 . It is

shown that the bandwidth occupancy of the code C1 is smaller than the bandwidth
occupancy of the code C2 and the bandwidth occupancy of the code C3.

8. Remarks

We have not yet found any general constructions of partitions of either H(Z)π or
Hπ \ {0} into cosets aiE of the appropriate set of units E . We have found examples
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Figure 1A: The set H2+e1+e2+e3−{0} is displayed as the vertices of the 48− cell polytope

Figure 1B:The set Zα[ρ] is displayed as the points in the complex plane, where α = 5 + 3ρ

that indicate that there actually exist such partitions whenever π is any Lipschitz
prime. Nevertheless, we think that such partitions deserve a study of their own.

There are no perfect multiple-error-correcting codes in the Hamming metric over
alphabets of a size equal to a power of a prime number, see [15] or [16]. Hence, from
Section 5.4 it follows that there are no perfect multiple-error-correcting Hurwitz
weight codes in Hπ if N(π) = 5.

Just in some instances, perfect codes with given parameters (q, n, e), where q
denotes the size of the alphabet, n the length and e the number of errors that can
be corrected, are unique up to equivalence. As our construction is dependent on
the selection of elements to be placed as entries in the parity-check matrices H, we
are convinced that there will exist some non-equivalent 1-error-correcting perfect
codes in the metrics and spaces we have treated in the present study. By using the
fact that the partition of Z[i]π described in Theorem 5 is unique, it can be proved
that all perfect 1-error-correcting Mannheim weight linear codes in Z[i]nπ, for given
π and n, are unique up to equivalence. Hence, all such codes are now classified and
characterized.
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Figure 1C: The set H2+e1 − {0} is displayed as the vertices of the 24− cell polytope

Figure 1D: The set Z4+i3 is displayed as the points in the complex plane
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