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Summary 

The development of a high performance controller for a quadrotor unmanned aerial 
vehicle (UAV) is a challenging issue since a quadrotor is an underactuated and a highly 
unstable nonlinear system. In this paper, the contribution is focused on the design and 
optimization of a controller for an autonomous quadrotor UAV. Firstly, the dynamic model of 
the aerial vehicle is mathematically formulated. Then, an optimal backstepping controller 
(OBC) is proposed. Conventionally, control parameters of a backstepping controller (BC) are 
often chosen arbitrarily. To this end, it is necessary to invoke a well-established optimization 
algorithm in order to find the best parameters. Here, the particle swarm optimization (PSO) is 
utilized as a new key idea to determine the optimal values of the BC parameters. In the 
algorithm, the control parameters are computed by minimizing the fitness function defined by 
using the integral absolute error (IAE) performance index. Since the control law is derived 
based on the Lyapunov theorem, the asymptotical stability of the system can be guaranteed.  
Finally, the efficiency of the proposed OBC is illustrated by implementing several simulation 
experiments. 

Key words: quadrotor, underactuated system, backstepping control, particle swarm 
optimization  

1. Introduction 

Unmanned Aerial Vehicles are being widely used in a number of applications involving 
surveillance of indoor or outdoor environments, remote inspection and monitoring of hostile 
environments. Among UAVs, quadrotors are emerging as a popular platform, due to their 
larger payload capability and their higher manoeuvrability with respect to single-rotor vehi-
cles. Furthermore, quadrotors have a set of advantages over traditional helicopters in terms of 
structure, motion control and cost. Therefore, quadrotors have received increasing attention 
from scientists and engineers, and have also become a promising option for various unmanned 
military and civilian applications. However, the quadrotor UAV poses great scientific and 
engineering problems in terms of vertical take-off and landing (VTOL), autonomous hovering 
and manoeuvring due to its features including underactuation, strong coupling, multivariable 
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and unknown nonlinearities. Hence, the control of a quadrotor becomes quite a complex and 
difficult task mainly due to its underactuated properties and nonlinearities.  

The backstepping control scheme is a nonlinear control method based on the Lyapunov 
theorem. The backstepping control design techniques have received great attention because of 
its systematic and recursive design methodology for nonlinear feedback control [1-5]. Unlike 
the feedback linearization method with the problems such as the precise model requirement 
and the cancellation of useful nonlinear terms, the backstepping approach offers a choice of 
design tools for accommodation of nonlinearities, and can avoid unwanted cancellations. The 
advantage of backstepping compared with other control methods lies in its design flexibility, 
due to its recursive use of Lyapunov functions. The key idea of the backstepping design is to 
select recursively some appropriate state variables as virtual inputs for lower dimension 
subsystems of the overall system and the Lyapunov functions are designed for each stable 
virtual controller [6]. Therefore, the designed final actual control law can guarantee the 
stability of the total control system.  

In aviation technology, the backstepping technique has been used to solve the 
stabilization and trajectory tracking problems of quadrotor UAVs [7-11]. Although the 
backstepping method can provide a systematic process for controller design, it is not easy to 
get satisfactory performance because the controller parameters obtained by the backstepping 
method are chosen arbitrarily. It is necessary to select proper parameters to obtain a good 
response because an improper selection of the parameters leads to inappropriate responses or 
may even lead to instability of the system. This can also happen if the parameters are properly 
chosen, but it cannot be said that the optimal parameters are selected.  

Genetic algorithm (GA) and particle swarm optimization (PSO) are well-established 
optimization algorithms that belong to the class of evolutionary algorithms (EA). These 
heuristics are routinely used to generate useful solutions to optimization and search problems 
in a wide range of engineering and computer sciences [12-17]. GA is a technique inspired by 
natural evolution, such as inheritance, mutation, selection, and crossover. GA has 
demonstrated the ability to reach near optimal solutions to big problems. However, it may 
require a long processing time to reach a near optimal solution. Similarly to GA, PSO is also a 
population based optimizer. The method has been motivated by the behaviour of organisms, 
such as fish schooling and bird flocking [18]. Unlike GA, PSO does not contain any crossover 
and mutation processes. Compared to GA, the advantages of PSO are that PSO is easy to 
implement and there are few parameters to adjust. In addition, PSO has a memory, so the 
knowledge of good solutions is retained by all the particles and optimal solutions are found by 
the swarm particles if they follow the best particle. This swarm feature allows more of the 
space to be searched which decreases the chances of getting caught up in a local optimum. 
This is the major advantage of PSO as compared to the gradient descent and other convex 
optimization techniques. Thus, in this study, PSO is used to off-line compute the optimal 
parameters for the backstepping controller of quadrotor systems. So far, this technique has not 
been developed with the backstepping method in aviation applications. 

2. Quadrotor system modelling  

In order to develop the model of the quadrotor, reasonable assumptions are made in 
order to accommodate the controller design. The assumptions are as follows [19]: 

Assumption 1: Quadrotor is a rigid body and has a symmetric structure.  

Assumption 2: Aerodynamic effects can be ignored at low speed. 

Assumption 3: The rotor dynamics is relatively fast and thus can be neglected. 

Assumption 4: The quadrotor centre of mass and the body-fixed frame origin coincide. 
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Fig. 1  Configuration of a quadrotor UAV 

2.1 Quadrotor kinematic model 

Let us consider the earth fixed frame � � ��� , �� , ��	 and the body fixed frame	� ���� , �� , ��	, as seen in Fig. 1. Let 
 � ��, �, �, �, �, �� ∈ �� be the generalized coordinates 
for the quadrotor, where ��, �, �� denote the absolute position of the rotorcraft and ��, �, �� 
are the three Euler angles (roll, pitch, and yaw) that describe the orientation of the aerial 
vehicle. Therefore, the model could be divided into two coordinate subsystems: translational 
and rotational. They are defined respectively by: � � ��, �, �� ∈ �� �1� � � ��, �, �� ∈ �� �2� 

The kinematic equations of the translational and rotational movements are obtained by 
means of the rotation R and transfer T matrices respectively. The expression of the rotation R 
and transfer T matrices can be defined accordingly by (3) and (4) [20]: 

� � �	���� ������ � ���� ������ � ����	���� ������ � ���� ������ � ������� ���� ���� 	  �3� 
" � �1 ��#� ��#�0 �� ���0 ��/�� ��/��  �4� 

where s�∙�, c�∙� and t�∙� are abbreviations for sin�∙�, cos�∙� and tan�∙�, respectively. 

The translational kinematic can be written as: �( � �) �5� 
where �( � ��( , �( , �(� and ) � �+, ,, -� are respectively the linear velocity vector w.r.t. the 
earth fixed frame E and the body fixed frame B.  

The rotational kinematics can be defined as follows: �( � ". �6� 
where �( � 0�( , �( , �( 1 and . � �2, 
, 3� are the angular velocity vector w.r.t. the earth fixed 
frame E and the body fixed frame B, respectively.  
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2.2 Quadrotor dynamic model 

The dynamic model of a quadrotor is derived from the Newton-Euler approach. It can 
be useful to express the translational dynamic equations w.r.t. the earth fixed frame E and the 
rotational dynamic equations w.r.t. the body fixed frame B. 

Therefore, the translational dynamic equations of a quadrotor can be written as follows: 4�5 � �4678 � +9�78 �7� 
where 4 denotes the quadrotor mass, 6	the gravity acceleration, 78 � �0,0,1�9 the unit vector 
expressed in the frame E and +9 the total thrust produced by the four rotors. +9 � ∑ <= � >∑ Ω=@A=BCA=BC  �8� 
where <=	and Ω=	denote respectively, the thrust force and the speed of the rotor E	and > is the 
thrust factor. 
The rotational dynamic equations of a quadrotor can be written as follows: F.( � �. G F. � HI � J �9� 
where F is the inertia matrix, –.	 G F. and HI are the gyroscopic effect due to rigid body 
rotation and the propeller orientation change, respectively, while J is the control torque 
obtained by varying the rotor speeds. HI	 and J are defined as: HI � ∑ MN�. G 78���1�=OCΩ=A=BC  �10� 

J � �JPJQJR � S T>�ΩA@ � Ω@@�T>�Ω�@ � ΩC@�U�Ω@@ � ΩA@ � ΩC@ �Ω�@�V �11� 
where MN is the rotor inertia, T represents the distance from the rotors to the centre of mass and U is the drag factor. 

Then, by recalling (7) and (9), the dynamic model of a quadrotor in terms of position ��, �, �� and rotation ��, �, �� is written as: 

��5�5�5 � �+(,(-(  � � 00�6 � CW��P�Q�R � �P�R�P�Q�R � �P�R�P�Q  	+9 �12� 
S�5�5�5V � �2(
(3(  � X

YYZ

3 [\]]^\__\`` a
23 b\__^\``\]] c
2
 [\``^\]]\__ ad

eef�X
Z gh\`` 
Ωi� gh\]] 2Ωi0 d

f �
X
YZ

C\`` JPC\]] JQC\__ JRd
ef �13� 

Consequently, a quadrotor is an underactuated system with six outputs ��, �, �, �, �, �� 
and four control inputs	�	+9 , JP, JQ	, JR�. 
Finally, the quadrotor dynamic model can be written in the following form:  �5 � +( � 0�P�Q�R � �P�R1 CW +C  �5 � ,( � 0�P�Q�R � �P�R1 CW +C  �5 � -( � �6 � 0�P�Q1 CW +C  �5 � 2( � 
3 [\]]^\__\`` a � gh\`` 
Ωi � j\`` +@  

�5 � 
( � 23 b\__^\̀ `\]] c � gh\]] 2Ωi � j\]] +�  �5 � 3( � 2
 [\``^\]]\__ a � C\__ +A  

�14�
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with the renaming of the control inputs as: +C � >�ΩC@ � Ω@@ � Ω�@ � ΩA@�+@ � >�ΩA@ � Ω@@�+� � >�Ω�@ � ΩC@�+A � U�Ω@@ � ΩA@ � ΩC@ � Ω�@�
 �15�	

and the definition of disturbance as: ki � k@ � kA � kC � k� �16� 
3. Backstepping control system for a quadrotor 

The dynamic model (14) can be represented by a nonlinear dynamic equation described 
as follows: l5 � m�l� � 6�l�+ �17� 
where + and l are respectively the input and the state vector given as follows: + � n+C	+@	+�	+Ao9 �18� l � n�C	�@	��	�A	�p	��	o9 � n�	�	�	�	�	�	o9 �19� 

From (14) and (19), the nonlinear dynamic function m�l� and nonlinear control function 6�l� matrices can be written accordingly as: 

m�l� �
X
YYY
ZmC�l�m@�l�m��l�mA�l�mp�l�m��l�d

eee
f �

X
YYZ

00�6
3qC � 
q@Ωi23q� � 2qAΩi2
qp d
eef �20� 

 6�l� �
X
YYY
Z6C�l� 0 0 06@�l� 0 0 06��l� 0 0 00 6A�l� 0 00 0 6p�l� 00 0 0 6��l�d

eee
f �

X
YYY
YZ
+r CW 0 0 0+s CW 0 0 0+8 CW 0 0 00 >C 0 00 0 >@ 00 0 0 >�d

eee
ef

 

with the abbreviations qC � 0Fss � F881/Frr , q@ � MN/Frr , q� � �F88 � Frr�/Fss , qA �MN/Fss , qp � 0Frr � Fss1/F88 , >C � T/Frr , >@ � T/Fss , >� � 1/F88 , +r � 0�P�Q�R � �P�R1, +s � 0�P�Q�R � �P�R1 , +8 � 0�P�Q1  
The control objective is to design a suitable control law so that the state trajectory l  

of the quadrotor system can track a desired reference trajectory li � n�Ci	�@i	��i	�Ai	�pi	��i	o9. Since the description of the control system design of the 
quadrotor is similar for each one of the six controllable degrees of freedom (DOF), for 
simplicity only one DOF is considered. 
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The design of backstepping control is described step-by-step as follows: 

Step 1: Define the tracking error: 7C �	�Ci	–	�C �21� 
where �Ci is a desired trajectory specified by a reference model. Then the derivative of the 
tracking error can be represented as: 7(C �	�(Ci	–	�(C �22� 
The first Lyapunov function is chosen as: )C�7C� � C@ 7C@ �23� 
The derivative of )C is: )(C�7C� � 7C7(C � 7C0�(Ci	–	�(C1 �24� �(C can be viewed as a virtual control. The desired value of virtual control known as a 
stabilizing function can be defined as follows:  tC �	�(Ci �	uC7C �25�	
where uC is a positive constant and should be determined by the PSO algorithm. 

By substituting the virtual control by its desired value, Eq. (24) then becomes: )(C�7C� � �uC7C@ v 0 �26� 
Step 2: The deviation of the virtual control from its desired value can be defined as: 7@ � �(C � tC � �(C � �(Ci �	uC7C �27� 
The derivative of 7@ is expressed as: 7(@ � �5C � t(C					� mC�l� � 6C�l�+C � �5Ci � uC7(C �28� 
The second Lyapunov function is chosen as: )@�7C, 7@� � C@ 7C@ � C@ 7@@ �29� 
Finding derivative of (29) yields: )(@�7C, 7@� � 7C7(C � 7@7(@																			� 7C0�(Ci	–	�(C1 � 7@��5C � t(C�																			� 7C��7@ � uC7C� � 7@�mC�l� � 6C�l�+C � �5Ci � uC7(C�																			� �uC7C@ � 7@��7C � mC�l� � 6C�l�+C � �5Ci � uC7(C�

 �30� 
Step 3: For satisfying )(@�7C, 7@� v 0, the control input +C is selected as: +C � Cwx�y� �7C � uC7(C � �5Ci � mC�l� � u@7@� �31� 
where u@ is a positive constant and should be also determined by the PSO algorithm. The 
term u@7@ is added to stabilize the tracking error	7C. 

Substituting (31) into (30), the following equation can be obtained: )(@�7C, 7@� � �uC7C@ � u@7@@ � ��9z� v 0 �32� 
where � � n7C	7@o9 and	z � UEq6�uC, u@�. Since	)(@�7C, 7@� v 0,	)(@�7C, 7@� is a negative 
semi-definite. 

Therefore, the control law in (31) will asymptotically stabilize the system. 
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4. Optimization of backstepping control parameters  

4.1 Overview of particle swarm optimization 

The PSO method is a member of a wide category of swarm intelligence methods for 
solving optimization problems. It is a population based search algorithm where each 
individual is referred to as a particle and represents a candidate solution. Each particle in PSO 
moves through the search space with an adaptable velocity that is dynamically modified 
according to its own moving experience and also to the moving experience of the other 
particles. In PSO each particle strives to improve itself by imitating the traits of its successful 
peers. Further, each particle has a memory and hence it is capable of remembering the best 
position in the search space it has ever visited. The position corresponding to the best fitness 
is known as pbest and the overall best out of all the particles in the population is called gbest. 

The basic PSO algorithm consists of three steps: generating particles positions and 
velocities, velocity update, and finally, position update. Here, a particle refers to a point in the 
design space that changes its position from one move (iteration) to another based on velocity 
updates. First, the positions, �={ , and velocities,	,={, of the initial swarm of particles are 
randomly generated using the upper and lower bounds on the design variables values,	�W=| 
and �WIr , as expressed in Eqs. (33) and (34) [21].  �=} � �W=| � 3q~U��WIr � �W=|�  �33� ,=} � �W=| � 3q~U��WIr � �W=|� �34� 

Here, the positions and velocities are given in a vector format with the subscript and 
superscript denoting the ith particle at iteration	u, respectively. In Eqs. (33) and (34), rand is a 
uniformly distributed random variable that can take any value between 0 and 1. This initialization 
process allows the swarm particles to be randomly distributed across the design space. 

The second step is to update the velocities of all particles at iteration u � 1	using the 
objective or fitness values of particles, which are functions of the particle current positions in 
the design space at iteration	u. The fitness function value of a particle determines which 
particle has the best global value in the current swarm,	6>7�#, and also determines the best 
position of each particle over iteration, 2>7�#, i.e. in the current and all previous moves. The 
velocity update formula uses these two pieces of information for each particle in the swarm 
along with the effect of current motion,	,={ , to provide a search direction,	,={OC, for the next 
iteration. The velocity update formula includes some random parameters, represented by the 
uniformly distributed variables, rand, to ensure good coverage of the design space and avoid 
entrapment in local optima. The three values that effect the new search direction, namely, 
current motion, particle own memory, and swarm influence, are incorporated via a summation 
approach as shown in Eq. (35) with three weight factors, namely, inertia factor, -, self 
confidence factor, �C, and swarm confidence factor, �@. ,={OC � - ∙ ,={ � �C ∙ 3q~U ∙ 02>7�# � �={1 � �@ ∙ 3q~U ∙ �6>7�# � �={� �35� 

The appropriate value range for	�C and	�@ is 1-2, but 2 is the most appropriate in many 
cases. The following inertia weight is used [22]: - � -WIr � �-WIr 	� 	-W=|� u uWIr⁄  �36� 
where uWIr , u is the maximum number of iterations and the current number of iterations, 
respectively. Where, -W=| and -WIr are the minimum and maximum weights, respectively. 
Appropriate values for -W=| and -WIr are 0.4 and 0.9, respectively [23].  

Position update is the last step in each iteration. The Position of each particle is updated 
using its velocity vector as shown in Eq. (37) and depicted in Fig. 2. �={OC � �={ � ,={OC �37� 
TRANSACTIONS OF FAMENA XXXVIII-3 (2014) 33



 

The three steps of velocity update, position update, and fitness calculations are repeated 
until a desired convergence criterion is met.  

 

Fig. 2  Depiction of the velocity and position updates in PSO 

4.2 Optimal backstepping control system 

The dynamic model in (14) can be divided into two subsystems ΠC and Π@, listed as 
follows: 

ΠC:
���
�� �5 � 
3 [\]]^\__\`` a � gh\`` 
Ωi � j\`` +@�5 � 23 b\__^\``\]] c � gh\]] 2Ωi � j\]] +��5 � 2
 [\``^\]]\__ a � C\__ +A																					

 �38� 

Π@: ���
���5 � 0�P�Q�R � �P�R1 CW +C�5 � 0�P�Q�R � �P�R1 CW +C�5 � �6 � 0�P�Q1 CW +C								

 �39� 
ΠC in (38) represents the rotation subsystem related to the dynamics of quadrotor roll 

motion �, pitch motion � and yaw motion �. Π@ in (39) represents the position subsystem 
related to the dynamics of quadrotor longitude motion �, latitude motion � and altitude 
motion �. Hence, the control scheme advocated for the overall system is then logically 
divided into a rotation controller and a position controller. 

In the previous section, a controller (31) has been designed to stabilize one DOF of the 
overall system. The coefficients	uC, u@ are the control parameters and need to be positive to 
satisfy stability criteria. In a conventional backstepping method, these parameters are usually 
selected arbitrarily. It is also possible that the parameters are properly chosen, but it cannot be 
said that the optimal parameters are selected.  To overcome this drawback, this paper adopts 
the PSO for determining the optimal value of the backstepping control parameters. The PSO 
is utilized off line to determine the backstepping controller parameters. The performance of 
the controller varies according to adjusted parameters. As aforementioned, each rotation and 
position subsystem is comprised of three DOFs. Thus, there are, in sum, six control 
parameters that need to be selected simultaneously for each subsystem. 

In the present study, an integral absolute error (IAE) is utilized to judge the performance 
of the controller. IAE criterion is widely adopted to evaluate the dynamic performance of the 
control system [24]. The index IAE is expressed as follows: F�� � � |7�#�|d#�}  �40� 

Since the system is comprised of two subsystems, hence the vector integral absolute 
error for the rotation subsystem is taken as		F��� � n	F��P		F��Q		F��Ro, where the 
subscripts denote roll, pitch and yaw, respectively. On the other hand, the vector integral 
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absolute error for the position subsystem is taken as		F��� � n	F��r		F��s		F��8o, where the 
subscripts denote longitude, latitude and altitude, respectively. 

For the rotation controller, the PSO algorithm is utilized to minimize the fitness 
function	M�, expressed as: M� � F��� ∙ � �41� 
and for the position controller, the PSO algorithm is utilized to minimize the fitness 
function	M�, expressed as: M� � F��� ∙ � �42� 
where � � n�C		�@		��o9 is the weighting vector used to set the priority of the multiple 
objective performance index (MOPI) parameters and the value of “�” varies from 0 to 1. In 
this case, equal weights for the three objectives to be met by each controller are considered. 

For fitness function calculation, the time-domain simulation of 
the quadrotor system model is carried out for the simulation 
period, #. The aim is to minimize this fitness function in order 
to improve the system response in terms of the steady-state 
errors. The PSO based approach to find out the optimal set of 
backstepping controller parameters is shown in Fig. 3. 

Fig. 3  The flowchart of the PSO-based backstepping control parameter 
optimization 

5. Simulation results  

In this section, the performance of the proposed 

approach is evaluated. The corresponding algorithm is 

implemented in the MATLAB/SIMULINK simulation 

environment. The quadrotor system is modelled in 

SIMULINK and the PSO algorithm is implemented in 

MATLAB. The model parameter values of the quadrotor 

system are listed in Table 1 [25]. Initially, the controller 

parameter optimization is searched with the quadrotor control 

model, and later the identified parameter values are transferred 

to the controller in the quadrotor system developed in 

MATLAB/SIMULINK for further evaluation. 
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Table 1  Parameters of the quadrotor 

Parameter Description Value Units 

g Gravity 9.81 m/s2 
m Mass 0.5 kg 
l Distance 0.2 m 
Ixx Roll inertia 4.85×10-3 kg · m2 
Iyy Pitch inertia 4.85×10-3 kg · m2 
Izz Yaw inertia 8.81×10-3 kg · m2 
b Thrust factor 2.92×10-6  
d Drag factor 1.12×10-7  

In this study, the following values are assigned for controller parameter optimization: 

i. Dimension of the search space = 6 ( i.e., u=BC…� or  u=B�…C@); 

ii. Population/swarm size = 15; 

iii. The number of maximum iteration = 20; 

iv. The self and swarm confident factor, �C and �@ = 2; 

v. The inertia weight factor - is set by (36), where  -WIr � 0.9 and -W=| � 0.4; 

vi. The searching ranges for the backstepping parameters are limited to	n0, 20o; 
vii. The simulation time,	# is equal to 10s; 

viii. Optimization process is repeated 20 times;  

The finest set of values among the simulation runs is selected as the best optimized 
controller value. The parameter and fitness values of each particle during the simulation for 
the rotation and position controller are summarized in Table 2 and 3 respectively. For the 
rotation controller, the best fitness value is 7.3127 � 008, which appeared in the iteration 
number 7, and the optimal parameters are uC � 14.64, u@ � 14.14, u� � 14.38, uA � 14.21,up � 14.61 and 	u� � 14.11. The variation of the fitness function with the number of 
iterations is shown in Fig. 4.  

 

Fig. 4  The convergence of fitness function for the rotation controller with the number of iterations 

36 TRANSACTIONS OF FAMENA XXXVIII-3 (2014)



 

On the other hand, the variations of backstepping control parameters with respect to the 
number of iterations are shown in Fig. 5. For the position controller, the best fitness value is 0.1543, which appeared in the iteration number 9, and the optimal parameters are u� � 15.21, u� � 14.29, u� � 15.01, uC} � 14.75,	 uCC � 15.42 and	uC@ � 14.95. The variation of the 
fitness function with the number of iterations is shown in Fig. 6, while the variations of 
backstepping control parameters with respect to the number of iterations are shown in Fig. 7.  
As can be seen for both control parameter optimization, throughout about 20 iterations, the 
PSO method can prompt convergence and obtain a good fitness value. These results show that 
the PSO approach can search optimal backstepping controller parameters quickly and 
efficiently. 

 
Fig. 5  The variations of rotation controller parameters versus the number of iterations 

 

 

Fig. 6  The convergence of fitness function for the position controller with the number of iterations 
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Fig. 7  The variations of position controller parameters versus the number of iterations 

Table 2  The rotation controller parameters and the fitness value of each optimal particle 

Iteration No. Optimal parameters Fitness value 

1 uC � 12.82, u@ � 12.46 u� � 13.69, uA � 15.50 up � 15.53, u� � 13.51 

2.5117 � 007 
 

3 
 

uC � 14.74, u@ � 13.74 u� � 14.00, uA � 14.29 up � 15.44, u� � 13.49 

1.6967 � 007 
 

7 
 

uC � 14.64, u@ � 14.14 u� � 14.38, uA � 14.21 up � 14.61, u� � 14.11 

7.3127 � 008 	
20 
 

uC � 14.64, u@ � 14.14 u� � 14.38, uA � 14.21 up � 14.61, u� � 14.11 

7.3127 � 008 
 
 

Table 3  The position controller parameters and the fitness value of each optimal particle 

Iteration No. Optimal parameters Fitness value 

1 u� � 14.85, 			u� � 13.32 u� � 14.45, 		uC} � 15.20 uCC � 15.39, uC@ � 16.68 

2.5117 � 007 
 

5 
 

u� � 15.45, 			u� � 14.74 u� � 15.84, 		uC} � 16.00 uCC � 15.33, uC@ � 16.00 

1.6967 � 007 
 

9 
 

u� � 15.21, 			u� � 14.29 u� � 15.01, 		uC} � 14.75 uCC � 15.42, uC@ � 14.95 

7.3127 � 008 	
20 
 

u� � 15.21, 			u� � 14.29 u� � 15.01, 		uC} � 14.75 uCC � 15.42, uC@ � 14.95 

7.3127 � 008 
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To explore the effectiveness of the proposed optimal backstepping controller, three 

simulation experiments have been performed on the quadrotor. In the first experiment, the 

simulation results of the proposed controller in a stabilizing problem are given. In the second, 

the performance of the scheme is investigated in the attitude tracking problem. Finally, the x-y 

position tracking problem is carried out in order to demonstrate the effectiveness of the 

designed controller. 

5.1 Simulation experiment 1: stabilizing problem 

In this simulation experiment, the control objectives are to reach and maintain the 

quadrotor at a certain desired altitude/attitude, such that the helicopter can hover at a fixed 

point. The desired altitude/attitude is given by	�=i � n�i , �i , �i , �io � 	 n15, 0, 0, 0o9. The 

initial states are given by	� � 0,	� � 0.2,	� � 0.2 and � � 0.2. Simulation results show the 

control design is able to stabilize the helicopter in a hover mode. Under the proposed OBC, it 

can be observed that the altitude/attitude of the quadrotor can be maintained at the desired 

altitude/attitude, that is, the hovering flight is stable, as shown in Fig. 8. One can also note 

from this figure that the attitude states converge rapidly to the zero set-point for a given initial 

condition as the system starts, and hence the stabilization of the quadrotor system is achieved.   

 

 

Fig. 8  Altitude/attitude of the hovering quadrotor using OBC 

 

5.2 Simulation experiment 2: attitude tracking problem 

In this simulation experiment, the performance of the proposed control approach is 

investigated in the attitude tracking problem of the quadrotor. The periodic sinusoidal 

functions are used as a reference to the attitude angles and the response is shown in Fig. 9. As 

it can be seen, the attitude angles track the desired reference trajectories smoothly. The results 

also show that the OBC gives a very small tracking error, which indicate a satisfactory 

tracking performance. 
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Fig. 9  Attitude tracking of the quadrotor using OBC 

 

5.3 Simulation experiment 3: position tracking problem 

To further highlight the advantage of the proposed control structure, the OBC for x-y 
position tracking is simulated. Considering that the turning curve manoeuver is an important 
practical trajectory manoeuver that the quadrotor needs to perform, the control performance of ∞-shape trajectory tracking is examined. The desired trajectory is generated using the 
following command: 

��i � 5 cos b2�5 #c,										
�i � 5 n1 � sin [�5 #ao.		 																																																																																													�43� 

 

The initial state of the quadrotor is set to be n�}, �}o � n5,5om. The simulation results of 
x-y position tracking for the OBC approach are shown in Fig. 10. As it can be seen, the 
quadrotor can track the desired reference trajectory accurately by using the proposed control 
scheme. 

 

5.4 Comparison with the improperly selected BC parameters 

As mentioned before, the improper selection of the backstepping control parameters 
leads to inappropriate responses of the system. Results from Figs. 11-13 demonstrate that the 
poorly defined backstepping control parameters �u=BC…C@ � 5� will degrade the performance 
response of the system. From Fig. 11, some oscillation in the transient response can be 
observed. The settling time is also significantly longer than that achieved by using OBC. At 
the same time, the ability of the system to track the reference trajectory is also affected as 
shown in Figs. 12 and 13.  
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Fig. 10  x-y position ∞-shape trajectory tracking response using OBC 

 

 

 

Fig. 11  Altitude/attitude of the hovering quadrotor using BC with improper parameters 
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Fig. 12  Attitude tracking response due to periodic sinusoidal function  
using BC with improper parameters 

 

 

Fig. 13  x-y position ∞-shape trajectory tracking response using BC 
with improper parameters 
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6. Conclusions 

In this paper, the application of an optimal backstepping controller for manoeuvring a 
quadrotor UAV is successfully demonstrated. First, a mathematical model of the quadrotor is 
introduced. Then, the proposed optimal backstepping controller which can automatically 
select the controller parameters by using the PSO algorithm is developed. The backstepping 
control design is derived based on the Lyapunov function so that the stability of the system 
can be guaranteed. Finally, the proposed control scheme is applied for the quadrotor UAV 
stabilization and trajectory tracking missions. Simulation results show that high-precision 
transient and tracking responses can be achieved by using the proposed control system. 
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