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Due to the effort of several research teams across the 
world, today we have a solid base of knowledge on the 
liquid contained in the brain cavities, its composition, and 
biological roles. Although the cerebrospinal fluid (CSF) is 
among the most relevant parts of the central nervous sys-
tem from the physiological point of view, it seems that it 
is not a permanent and stable entity because its composi-
tion and biological properties evolve across life. So, we can 
talk about different CSFs during the vertebrate life span. 
In this review, we focus on the CSF in an interesting pe-
riod, early in vertebrate development before the forma-
tion of the choroid plexus. This specific entity is called “em-
bryonic CSF.” Based on the structure of the compartment, 
CSF composition, origin and circulation, and its interac-
tion with neuroepithelial precursor cells (the target cells) 
we can conclude that embryonic CSF is different from the 
CSF in later developmental stages and from the adult CSF. 
This article presents arguments that support the singular-
ity of the embryonic CSF, mainly focusing on its influence 
on neural precursor behavior during development and in 
adult life.

Received: April 13, 2014

Accepted: June 28, 2014

Correspondence to:  
Ángel Gato Casado 
Departamento de Anatomía y 
Radiología 
Facultad de Medicina, Universidad 
de Valladolid 
C/ Ramón y Cajal 7 
E-47005-Valladolid, Spain 
gato@med.uva.es

Angel Gato1,2, M. Isabel 
Alonso1,2, Cristina Martín1, 
Estela Carnicero1,2, José 
Antonio Moro1,2, Aníbal 
De la Mano1,2, José M. F. 
Fernández3, Francisco 
Lamus1, Mary E. Desmond4

1Departament of Anatomy and 
Radiology, Faculty of Medicine, 
Valladolid University, Valladolid, 
Spain

2Laboratory of Nervous System 
Development and Teratology, 
Institute of Neurosciences of 
Castilla y León (INCYL), Valladolid 
University, Valladolid, Spain

3Departament of Cellular Biology, 
Histology and Pharmacology, 
Faculty of Medicine, Valladolid 
University, Valladolid, Spain

4Department of Biology, Villanova 
University, Villanova, PA, USA

Embryonic cerebrospinal fluid 
in brain development: neural 
progenitor control

CEREBROSPINAL FLUID PHYSIOLOGY AND MOVEMENT 

 

Croat Med J. 2014;55:299-305 

doi: 10.3325/cmj.2014.55.299

mailto: gato@med.uva.es
http://dx.doi.org/10.3325/cmj.2014.55.299


CEREBROSPINAL FLUID PHYSIOLOGY AND MOVEMENT 300 Croat Med J. 2014;55:299-305

www.cmj.hr

Singular characteristics of embryonic CSF

We will first discuss what makes embryonic CSF different 
from fetal and adult CSF. According to the classic concept, 
which applies to the fetal and adult periods, CSF fills the 
cavities of the ventricular system and subarachnoid space. 
It is in direct contact with different cellular types such as 
the ventricular layer in the ventricular system and the pial 
layer in the subarachnoid space, as well as with specific cel-
lular populations such as the choroid plexus cells and the 
subventricular organs. In this period, CSF is enclosed in a 
non-distensible cavity system with permanent production, 
circulation, and reabsorption (Figure 1).

At the earliest stages of brain development, embryonic 
CSF fills a brain restricted cavity, which is closed and un-
dergoes a quick change in volume and morphology. Em-
bryonic CSF is located in a cavity in the anterior part of 
the neural tube, the brain anlagen where we can clearly 
differentiate three major parts of the brain (anterior brain, 
midbrain, and hindbrain), which evolve quickly (1). This 
cavity is surrounded by a unique and specific type of cells 
called neuroepithelial precursors. There are no specific 
cellular populations involved in the secretion and reab-
sorption of the fluid and it does not appear to circulate. 
This period begins with the formation of the neural tube 
as a result of a morphologically complex process known 
as neurulation (2,3). The critical point, which marks the be-
ginning of this process, is the closure of the anterior neu-

ropore and the subsequent medullar collapse of the cer-
vical part of the neural tube. Together they make a closed 
cavity system inside the brain anlagen (4,5) in which CSF 
and neuroepithelium function interdependently. The end 
of the embryonic CSF period is marked by two processes: 
the appearance of the choroid plexus anlagen (6,7), which 
is a new CSF production center, and the opening of the 
rombencephalic roof, an area involved in communication 
with the mesenchyme, where the subarachnoid space will 
be developed. This transitory, specific situation that lasts 
for a short period of time is a relevant period in brain de-
velopment because it includes a very intense replication 
process leading to the neural precursor population ex-
pansion, as well as the beginning of neuronal precursor 
differentiation named “neurogenesis,” a process that sud-
denly becomes very intense (1).

Regarding embryonic CSF composition, many studies in 
different species found proteins to be the most important 
components of CSF during embryonic and fetal develop-
ment (Figure 1). For example, CSF in chicken embryos has 
a thirty times higher protein concentration than in adult 
chickens (8,9). Another interesting point is that chicken 
and sheep embryonic and fetal CSF protein concentration 
increases progressively until the end of the fetal stage (10-
12), while in rats it remains elevated until after birth (13). In 
all cases, the protein concentration after birth falls dramati-
cally until it reaches the adult values. High CSF concentra-
tion of proteins such as albumin, fetuin, alpha-fetoprotein, 

Figure 1. Development of the mouse embryo after 10.5 days. (A) Transversal histological hematoxilin-eosin stained section. 
(B) Macroscopic view showing the neural tube by transilumination.
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transferrin, and lipoproteins has been demonstrated dur-
ing the early fetal stage in sheep (9,10) and rats (13). In rats, 
alpha-fetoprotein and albumin account for more than 50% 
of the total protein content. Gato et al (12) used SDS-PAGE 
electrophoresis to analyze the entire CSF protein composi-
tion at the earliest stages of development in chicken and 
rat embryos showing 21 different protein fractions. In the 
last decade, proteomic analysis of embryonic, fetal, and 
adult CSF in different species resulted in identification of 
many proteins, including extracellular matrix, enzymes, 
proteoglycans, apolipoproteins, and growth factors and 
cytokines, showing a complex composition pattern, which 
confirms the relevant biological role of this fluid (14-16). 
Taken together, these studies suggest a common protein 
pattern in the CSF but with striking differences during the 
ontogeny, which can explain the different roles of CSF dur-
ing the life span.

Increase in the accuracy and sensitivity of the proteomic 
techniques allowed the analysis of the complete molecular 
composition of the CSF in different species and at different 
stages of development. Such studies are necessary to as-
sess the CSF usefulness in therapeutic strategies.

Another specificity of the embryonic CSF is that it is con-
fined in a restricted space. In fetal and adult stages, the CSF 
is located in the brain cavities or ventricles, medullar cav-
ity, and subarachnoid space. However, at the earliest de-
velopmental stages, there is no subarachnoid space in the 
mesenchyme and no functional communication between 
the brain cavity and the space outside. Consequently, em-
bryonic CSF is restricted to the cavity of the brain vesicles. 
A specificity of the neural tube in these stages is that the 
cavity that encloses the CSF is completely surrounded and 
sealed by the apical end of the homogeneous population 
of neuroepithelial precursors, leading us to two conclu-
sions: 1) the origin of the CSF must necessarily be medi-
ated by neuroepithelial precursors and 2) neuroepithelial 
precursors must be the target cells.

Regarding the first point, the content of the sealed cavity 
must come from the cavity wall, which consists of the brain 
neuroepithelium. Two different mechanisms of the CSF or-
igin have been proposed (17): the first is apical secretion of 
specific macromolecules by neuroepithelial cells into the 
cavity. This mechanism is mainly supported by the studies 
of Gato et al (18-20), which show an active apical secre-
tion of chondroitin sulfate proteoglycan. The second is an 
active intercellular or intracellular transport of molecules, 
such as FGF2 (21) and other types of proteins (17,22) or 

ions (23) across the neuroepithelium from the basal to api-
cal side. Some studies suggest that there are specific areas 
where brain neuroepithelial transport takes place, which is 
similar to a primitive choroid plexus (17).

On the basis of these data, we can conclude that embryon-
ic CSF can be a means of inner communication between 
neuroepithelial precursor cells, in which some populations 
are involved in the creation of a complex signaling fluid, 
while other answer these signals.

SPECIFIC ROLES OF EMBRYONIC CSF: THE INTERACTION 
WITH THE NEURAL PRECURSORS DURING 
DEVELOPMENT AND IN THE ADULT BRAIN

Here we will try to review the specific roles attributed to 
the embryonic CSF during early brain development. As we 
have stated before, one of the main characteristics of em-
bryonic CSF is the permanent interaction with the apical 
end of the neuroepithelial precursors, which can be con-
sidered brain stem cells during development (Figure 1). To-
day we know that the cellular behavior of these precur-
sors at the earliest stages of development highly depends 
on the physicochemical properties of CSF, supporting the 
hypothesis that the neuroepithelium and CSF are interde-
pendent in the developing brain. In this respect, embry-
onic CSF has two roles:

The first is that embryonic CSF creates an expansive force 
inside the brain cavity, involved in the generation and reg-
ulation of the brain anlagen growth and morphogenesis. 
As we have already said, in the earliest stages of develop-
ment, the brain cavity becomes a sealed system filled by a 
fluid that exerts positive pressure against the neuroepithe-
lial wall. This positive pressure is necessary for the brain’s 
expansive growth both in the cavity and neuroepithelial 
volume and also for the normal morphogenesis (24,25). 
This mechanism is also necessary for the establishment of 
primary vesicular pattern in the brain, mainly based on the 
existence of the regional growth differences in the cephal-
ic neural tube (1).

Regulation of brain growth and morphogenesis by embry-
onic CSF has been partially explained in the sense that it is 
a physical mechanism that creates a positive hydrostatic 
pressure inside the sealed cavity against the neuroepithe-
lial wall, which has local growth differences. This mecha-
nism is created and developmentally regulated by neu-
roepithelial precursor cells synthesizing and apically 
secreting into the brain cavity osmotically active 
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molecules such as proteoglycans, together with a simulta-
neous and specific ionic transport across the neuroepithe-
lium. Proteoglycans are responsible for trapping of water 
inside the cavity, which generates the hydrostatic pressure 
(19,20,23,26). The expansive force inside the cavity must be 
coordinated with the growth of the neuroepithelial wall to 
generate not only volumetric growth but also differential 
growth, which drives morphogenesis and brain regional-
ization. Further research should investigate how this os-
motic mechanism is regulated during development and 
how it is coordinated with neuroepithelial growth in order 
to contribute to normal brain development. A recent study 
(27) made a step in this direction by proposing focal adhe-
sion kinases (FAKs) as a link between CSF pressure and neu-
roepithelial precursors replication.

The second mechanism is the regulation of basic cellular 
behavior of brain neuroepithelial precursors by embry-
onic CSF. When Desmond and Jacobson (24) showed a 
decrease in the tissue volume of the brain neuroepithe-
lium after an experimentally induced loss of embryonic 
CSF, our group started to investigate if there was a di-
rect relation between CSF and the basic behavior of neu-
roepithelial cell precursors (28). We demonstrated that 
besides the previously described physical influence on 
brain development, CSF exerted a “biological” influence, 
which is essential to regulate the key functions of brain 
neuroepithelial precursors such as cell survival, replica-
tion, and neuronal differentiation. We showed this influ-
ence by developing a neuroepithelial culture technique 
that allowed the exposure or deprivation of neuroepithe-
lial tissue (28,29). The main conclusion of these studies is 
that neuroepithelial precursors are not self-sufficient and 
need the influence of embryonic CSF to develop a nor-
mal behavior pattern.

After these studies, we focused on the identification of the 
CSF molecules responsible for these trophic properties. To 
date, several individual factors have been found to be in-
volved in each mechanism, ie, survival, replication, and dif-
ferentiation. Many studies have focused on the identifica-
tion of mitogenic factors in CSF, such as FGF2, IGF1, NGF, 
and EGF (29-31), which regulate the mitogenic activity of 
neuroepithelial precursors at different stages of develop-
ment. However, other components of embryonic CSF, such 
as retinol and retinol binding protein, involved in the regu-
lation of the synthesis of retinoic acid by some specific cell 
population in the neuroepithelium, have been shown to 

be key factors in neuronal differentiation of neuroepi-
thelial precursors (32-34). However, more CSF com-

ponents with specific roles in brain development probably 
still need to be discovered.

On the other hand, it was overlooked that embryonic CSF 
had a role as an activator of neurogenesis in the adult brain. 
Surprisingly, neural precursors have been shown to have 
“astrocytic” nature in the subventricular zone (SVZ) and in 
the dentate gyrus (DG) of the hippocampus in adult mam-
mals (35). Despite the same cellular lineage, across the life 
span they show different status (36,37) – those from the 
embryonic stages persist into the fetal stages as radial glial 
cells, and in some places such as the SVZ and DG, radial 
glia persist as a particular type of astrocytes that preserve 
the precursor characteristics, self renewing to expand the 
population and pluripotentiality to differentiate into glia 
and neurons (Figure 1).

These data lead us to the key question: Why does the same 
cellular lineage result in a quite different behavior at dif-
ferent life stages? In fact, the main difference between the 
embryonic and the adult stages is the intensity of activity 
rate, which is at its maximum in the embryonic stages and 
shows a permanent decrease later on, leading to a restrict-
ed regenerative ability.

In the last decades, many research groups have reported 
that at any life stage the degree of neural precursor activity 
is determined by the “cellular niche,” which is defined as the 
surroundings of the neural precursor cells and includes the 
mature cells (neurons and glia), immature cells generated 
by the precursors, extracellular matrix and all types of inter-
cellular signals, including those from the microvessels, and 
the fluid content in the ventricular system (38-40). The in-
tercellular signals involved in the niche concept have been 
the subject of many studies focusing on individual growth 
factors, transcription factors, cytokines, and morphogens. 
They all suggest a complex situation in which many dif-
ferent factors play similar roles (mainly mitogenic and/or 
neurogenic) at the same time, overlapped or at different 
stages. There is a group of niche-specific signals that re-
main stable across the life span, but other signal compo-
nents seem to be specific for each stage – embryonic, fetal, 
and adult (40), supporting the idea that the specific neu-
ral precursor activity rate at each ontogenic stage could 
be a result of a specific composition of the niche signals. 
A more comprehensive explanation is given in specific re-
views published in the last years (38).

Finally, literature data support the fact that the CSF is a part 
of the niche. In this way, neural precursors are in perma-



303Gato et al: Embryonic CSF and brain development

www.cmj.hr

nent and direct contact with the CSF content in the brain 
cavities, which directly influences the precursor behavior 
and is consequently considered a source of instructive sig-
nals that play a key role in the niche activity (31,41,42). In 
this context, it has been stated that CSF composition shows 
many ontogenic and phylogenic differences in different 
developmental stages (43,44) and that it could be different 
in a particular stage in each brain ventricle, conditioned by 
the specific secretion of each choroid plexus (45). These 
data support the idea that in its development from em-
bryo to adult stage CSF becomes less and less neurogen-
ic, confirming the apparently contradictory results (46,47) 
that described mitogenic but also gliogenic inductive ef-
fect of adult CSF on adult brain neural precursors, and our 
recent results (41) showing mitogenic but also neurogen-
ic inductive effect of embryonic CSF on adult brain neural 
precursors.

In conclusion, embryonic CSF plays a key role in brain 
growth by creating a hydrostatic pressure inside the brain 
anlagen cavity. Furthermore, it is a powerful mitogenic and 
neurogenic inductor in neural progenitors at the earliest 
stages of development, when the activity of neural precur-
sors is at its maximum. Neural progenitors in adult mammal 
brain remain responsive to the embryonic factors present 
in embryonic CSF, which increases the niche activity and 
enables the use of embryonic CSF-specific factors as a tool 
to induce brain neuroregeneration.
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