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Abstract 
Electrocoagulation is a promising technology for the removal of colloids from different 
types of wastewater and it has also demonstrated good efficiencies for the breaking-up 
of emulsions. It consists of the dissolution of aluminum or iron anodes, promoting the 
formation of coagulant reagents in wastewater that helps to coagulate pollutants and 
the formation of bubbles that favors the mixing (electroflocculation) and the removal of 
suspended solids by flotation (electroflotation). During the recent years, the combination 
of this technology with other treatment technologies has become a hot topic looking for 
a synergistic improvement in the efficiencies. This work aims to review some of the more 
recent works regarding this topic, in particular the combination of electrocoagulation 
with ozonation, adsorption and ultrasound irradiation.  
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Introduction 

Electrochemical treatment techniques have attracted a great deal of attention because of their 

versatility and environmental compatibility. Electrochemical reactions take place at the anode and 

the cathode of an electrolytic cell when an external direct current voltage is applied. In fact, the 

main reagent is the electron, which is a “clean reagent”[1,2] and this fact helps to explain the 

lower production of wastes associated to these technologies. Applications studied in the recent 

years range from the oxidation of organic pollutants contained in wastewater to the 

electroremediation of soils. 
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Electrochemical methods have also been used as coagulation processes to remove color and 

cloudiness from turbid industrial wastewater. In this application, the electrochemical process 

generated numerous flocculates, achieving high efficiency in clearing the wastewater[3,4]. The 

term electrocoagulation involves the in situ generation of coagulants by electrolytic oxidation of 

an appropriate sacrificial anode (iron or aluminum), which causes the dissolution of electrode 

plates into the effluent. Metal ions, at an appropriate pH, can form wide range of coagulated 

species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb 

the dissolved contaminants. Main stages involved in the electrocoagulation process using 

aluminum anodes have been previously identified [5,6]. The anodic process involves the oxidative 

dissolution of aluminum into aqueous solution as reaction (1) indicates as well as the oxidative 

dissociation of water as reaction (2) shows. 

Al → Al3+ + 3e−  (1) 

2H2O → O2(g) + 4H+ + 4e−  (2) 

In the case of iron or steel anodes, it is not iron (III) but iron (II) the main product of the 

electrochemical process (Eq.3) [7]. Then, oxygen is known to be involved for further Fe2+ oxidation 

into Fe3+ (Eq. 4) 

Fe(s) → Fe2+ + 2e−  (3) 

4 Fe2+ + 4H+ + O2(g) → 4Fe3+ + 2H2O  (4) 

Once dissolved iron and aluminum, can participate in many chemical reactions (Eqs. 5-10). In 

fact, speciation of iron and aluminum during electrocoagulation is very complex [8,9] and the 

description of the interactions between pollutants and the coagulant species is one of the most 

relevant topics nowadays in this field [10-13].  

M(OH)4
- + H+ 

 M(OH)3 + H2O (5) 

M(OH)3 + H+  M(OH)2
+ + H2O (6) 

M(OH)2
+ + H+  M(OH)+2 + H2O (7) 

M(OH)+2 + H+  M+3 + H2O (8) 

M(OH)3(s)  M3+ + 3OH-  (9) 

It is interesting that in electrocoagulation papers little attention has been paid on cathodic 

reactions. Regardless of whether iron or aluminum is used, the main reaction that is reported is 

water reduction (Eq. 10). 

2H2O + 2e− → H2(g) + 2OH−
(aq)  (10) 

However, this reaction has three important implications on the electrocoagulation technology:  

a. provides hydroxyl ions which then react in bulk solution with iron or aluminum cations to 

form insoluble species and other coagulants (Eqs. 5 to 9);  

b. hydrogen gas is produced increasing turbulence. This process contributes in the 

destabilization of colloidal particles leading to flocculation (so-called electro-flocculation 

process), and  

c. contribution to electroflocculation which is a simple process that floats pollutants (or other 

substances) by their adhesion onto tiny the bubbles formed by the hydrogen evolution [14] 

(so-called electroflotation process) 
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As a consequence of this complex interaction, the electrochemical cell combines several 

processes at the same time in the same reactor and this becomes a significant advantage of this 

type of processes as compared with conventional coagulation treatments. In particular, from the 

economical point of view they compare favorably with coagulation processes [15-17] in many 

applications. 

As for coagulation processes, electrocoagulation highly depends on the wastewater pH and it 

becomes a critical parameter in the performance of this technology. This parameter determines 

the speciation of aluminum and iron and hence the primary coagulation mechanisms occurring in 

the electrocoagulation cell. In fact, pH is one of the key differences between coagulation and 

electrocoagulation as conventional coagulation acidifies the treated wastewater due to the acidic 

properties of the typical coagulants dosed (iron chloride, aluminum sulfate, etc.), which are known 

to behave as Lewis acid. These properties make necessary the neutralization of wastewater after 

the coagulation treatment and this process implies an undesired increase in the salinity of the 

effluent. On the other hand, electrocoagulation typically buffers the pH during the treatment in 

values within the range 8-9, which should be a proper value even for direct discharge and no 

further neutralization is required [18]. 

Recent studies shows many promising applications of electrocoagulation in the treatment of 

lowland surface water [19], water [6,20,21], metal plating wastes [22], other types of industrial 

wastewater [5,23-30], urban wastewater [31-33] and even in disinfection [34,35]. In fact, it is one 

of the most promising environmental technologies based on electrochemical engineering [36,37]. 

Electrochemical methods offer two main advantages over traditional chemical treatment: less 

coagulant ion is required and less sludge is formed [19,22,31]. In the recent years, the potential of 

this technology is tried to be even further increased by the synergistic combination with other 

treatment technologies. The objective of the present manuscript is to review the potential of 

electrocoagulation for the treatment of industrial effluents coupling it with four types of 

processes: 
 Electrocoagulation-ozone processes 

 Electrocoagulation- adsorption processes 

 Electrocoagulation-ultrasound processes 

 Electrocoagulation-pulses processes 

2. Electrocoagulation-ozone processes 

Ozonation implies the use of ozone in the treatment of wastewater. Ozone is a strong oxidant 

that oxidizes organic pollutants via two pathways: direct oxidation with ozone molecules and/or 

the generation of free-radical intermediates, such as the •OH radical, which is a powerful, 

effective, and non-selective oxidizing agent [38]. The ozonation process has the advantage of 

being able to be applied when the flow rate and/or composition of the effluents are fluctuating. 

However, the high cost of equipment and maintenance, as well as energy required to supply the 

process, constitutes some of the disadvantages. Moreover, ozonation process requires the 

transfer of ozone molecules from gas phase to liquid phase, where the attack on the organic 

molecules occurs. Therefore, mass transfer limitations are also a relevant factor to be considered 

in the oxidation process involving ozone. In many cases, the ozone consumption rate per unit of 

volume can be so high that mass transfer is the limiting step, reducing the process efficiency and 

increasing the operating costs [39]. In addition, the ozonation performance is affected by the 

presence of organic matter, suspended solids, carbonate, bicarbonate and chlorine ions and also 
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by pH and temperature [40]. Some studies using real industrial wastewater have pointed out that 

ozone by itself does not achieve high levels of pollutant removal [41]. In particular, the oxidation 

of wastewater from molasses fermentation with ozone results in an effective color removal but is 

less effective in removing organic matter [42]. Similar results were obtained when ozone was used 

to treat textile wastewater, where ozone treatment proves to be very effective for complete color 

removal but provides only partial reduction of the chemical oxygen demand (COD) [43]. Also, 

previous research on ozone-coupled methods indicates that the ozonation of anaerobically 

pretreated wastes enhances significantly the organic removal in comparison to the ozonation of 

unpretreated wastes, and substrate conversions in the range of 40–67 % are obtained [44]. 

This behavior in the reduction of COD can be ascribed to the initial pH value of wastewater, 

where the decomposition of ozone in water to form hydroxyl radicals occurs through the following 

mechanism [45], where hydroxide ions initiate the reaction (Eqs. 11-16): 

O3 + OH−  →  O2 +  HO2
−  (11) 

O3 +  HO2
−  →  HO2

. +  O3
.−  (12) 

HO2
.  →  H+ + O2

.−  (13) 

O2
.− +  O3  →  O2 + O3

.−  (14) 

O3
.− +  H+  →  HO3

.   (15) 

HO3
.  → OH. +  O2  (16) 

According to reactions (11) and (12) the initiation of ozone decomposition can be artificially 

accelerated by increasing the pH value. Side reaction (Eq. 17) is a fast process and plays an 

important role in waters with low dissolved organic carbon and alkalinity [46] since it can reduce 

the oxidative capacity of the system: 

OH. +  O3  →  HO2
. + O2  (17) 

Regarding the combined process, Table 1 summarizes the main papers found in the literature. 

Typically, the iron provided by the electrochemical reactor is not enough to remove all the 

pollutants present in aqueous solution. Thus, the ozone contributes importantly to improve the 

pollutant removal. Initially, the ozone contribution in the integrated process increases the 

oxidation of pollutants that are dissolved in the solution and that cannot be eliminated via 

electrocoagulation. An advantage of supplying ozone into the reactor is that it promotes the 

mixing between the reactants and also maximizes the organics oxidation, that results in the 

decreasing of COD and color [28,47,48]. Furthermore, the ozone provides good mixing thought the 

reactor which improves the mass transfer. The ozone action also contributes to reduce the 

amount of sludge produced. 

In addition to processes coming from the combination of the effects of the single treatment 

technologies, the combined process involves an increased hydroxide radical production because 

Fe2+ catalyzes ozone decomposition to generate hydroxyl radicals (Eqs. 18-20) in the well-known 

Fenton process. This process helps to explain the synergistic effect of the combination of both 

technologies and the resulting high efficiencies. 

Fe2+ + O3  (FeO)2++ O2 (18)  

FeO2+ + H2O  Fe3+ + HO· + OH- (19) 

FeO2+ + Fe2+ +2H+  2Fe3+ + H2O (20) 
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Table 1. Pollutant removal using coupled electrocoagulation - ozone processes 

Wastewater Process Conditions Poll. Removal Ref. 

C.I. Reactive Yellow 84 
Ozone flow rate 20 mL min-1,  

Iron electrodes; current density 15 mA cm-2 

85 % TOC  

100 % color  
[49]  

Reactive Blue 19 
Ozone flow rate 20 mL min-1,  

Iron electrodes; current density 10 mA cm-2 

80 % TOC  

96 % Color 
[50]  

Reactive Black 5 
Ozone flow rate 20 mL min-1,  

Iron electrodes; current density 10 mA cm-2 

60 % COD  

94 % Color 

 

[51] 

Distillery effluent 
Ozone flow rate 15 L min−1; initial pH 6 

Iron electrodes; current density 3 Adm−2  

83 % COD  

100 % Color 
[52] 

Industrial wastewater 
Ozone flow rate 23 L min−1; initial pH 7 

Iron electrodes; current density 26 mA cm−2 

63 % COD  

90 % Turbidity 
[42]  

Red MX-5B 
Ozone flow rate 0.5 L min−1; initial pH 6.1 

Iron electrodes current density of 1.5 mA cm−2 
100 % Color  [53] 

Boat pressure washing 

wastewater 

Iron and aluminium electrodes 

current density 17 mA cm−2 

88.46 %,TOC  

76.28 % COD 
[54]  

Acid Orange 6 azo 

Dye 

Ozone concentration 36 mg L−1; initial pH 4.5 

Iron electrodes current density 88.6 mA cm−2 

50 % TOC 

80 % Color  
[55]  

 

Main challenge for this technology is the scale-up. Most of the studies are at the lab-scale or 

the bench-scale and typically efficiencies can be greatly improved if a proper scale up is carried 

out. The design of the reactor seems to be a critical point because it fixes the flow patterns and 

hence the interaction of the species formed by electrocoagulation with ozone. Another challenge 

for this technology is the production of ozone by simultaneous anodic oxidation, taking advantage 

of the possibilities of electrochemical technology to produce oxidants[56]. A good possibility could 

be the use of cells equipped with bipolar cells such as the recently proposed by Llanos et al. [35] 

3. Combined electrocoagulation- adsorption processes 

Adsorption is a very well-known water and wastewater treatment process, which is gaining 

prominence as a means of reducing metal ion and organic concentrations in industrial efflux-

ents [57]. The biosorbents derived from dead biomass, are considered the cheapest and most 

abundant environmentally friendly option [58,59]. Nowadays, the development of inexpensive 

adsorbents for the treatment of wastewater is an important area in the environmental 

sciences [60,61].  

The use of an electrochemical treatment in combination with adsorption as a pre-treatment 

step to enhance adsorption capability of biosorbents has been assessed in many cases. However, 

the applications must be carefully evaluated, because technical incompatibilities may arise. This 

combined technology demonstrates a very good efficiency in the removal of many different 

pollutants as it is shown in Table 2. The filtering capacity of the sorbent bed is an efficient 

treatment to remove the suspended solids produced by the electrocoagulation process while 

simultaneously it helps to remove all soluble pollutants that were not effectively trapped by the 

flocs. Most of the studies select aluminum instead of iron as anode because aluminum coagulants 

promotes neutralization coagulation processes instead of enmeshment into growing precipitates 

which helps avoiding operational problems in the filtering system. 
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Table 2. Pollutant removal using coupled electrocoagulation-adsorption processes 

Wastewater Process Conditions Pollutant Removal Ref. 

Cr(VI) 
Al electrodes, sorbent red onion skin,  
pH 3-6 

97 % Cr [62]  

Cardboard paper mill 
effluents 

Al electrodes, current density 4.41 mA cm
-2

 
sorbent granular activated carbon, pH 5.3 

99 % COD [63]  

Marine Blue Erionyl MR 
Al electrodes, sorbent granular activated 
carbon, pH 6.0 

100 % dye  [64]  

Reactive Black 5 
current density 277 A m

 -2
 

sorbent granular activated carbon, pH 7 
100 % dye, 100 % COD, 100% 
Toxicity 

[65] 

Cr(VI) 
Al-Fe, current density 26.7 mA cm

-2
 

Sorbent granular activated carbon 
99 % Cr(VI)  [66]  

Indigo carmine 
Al electrodes  
Sorbent granular activated carbon 

99 % Colorant  [67] 

Nakdong River Al electrodes, Al-fiber filter 65 % TOC  [20] 

Industrial Wastewater 
Al electrodes, current density 45.45 A m

−2
 

Sorbent Ectodermis of Opuntia, pH 8  

84 % COD, 78 %, BOD5,  
97 % color, 98 % turbidity,  
99 % fecal coliforms  

[68] 

 

Thus, the coupling of electrochemical and adsorption processes might prove a judicious choice 

for treating industrial wastewater with mixtures of different types of pollutants including both 

organic and inorganic pollutants. This technology has also been studied in systems in which an 

adsorbent bed used for the fast removal of pollution from wastewater is continuously regenerated 

using electrolysis [69,70]. Efficiencies obtained are high enough to consider this technology as a 

promising choice in the treatment of many effluents polluted with organic species. Most studied 

found in the literature are carried out at the lab or bench-scale. As for the combination of 

electrocoagulation with ozone, it is expected that with a proper scale-up, which develop an 

efficient cell from the view point of the filtering, adsorption and electrochemical processes, 

efficiencies obtained would be even higher. 

4. Combined electrocoagulation-ultrasound processes 

The treatment of wastewater in an electrolytic cell by ultrasound irradiation is expected to 

improve significantly the kinetics and the effectiveness of the electrode processes taking place in 

the cell [71-73]. A number of favorable impacts of using ultrasound in electrocoagulation are the 

following: 
 Destruction of the compact layer formed at the electrode surfaces by the products of 

electrode reactions. 

 Decrease in the thickness of the diffuse part of the electrical double layer created at the 

electrode surface.  

 Direct activation of the ions in the reaction zone at the electrodes by ultra-sound waves.  

 Activation of the electrode surfaces by means of generation of defects in the crystal lattices 

of the electrodes.  

 Local augmentation of the temperature at the electrode surfaces as a result of friction 

between the liquid and the surfaces. 

However, the ultrasound used may cause a few negative effects directly related to the 

purification process, such as the following:  
 Destruction of a part of the obtained colloidal hydroxides by the action of the acoustic 

waves. This means a diminution of the solid phase that takes part in the adsorption process 

and a diminution of the removed contaminations respectively.  
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 Destruction of a part of the formed adsorption layer at the surface of the colloidal particles 

and possible return of the adsorbed ions to the liquid phase. 

 Disorganization of the migration processes in the medium by the ultra-sonic waves. 

Main studies found in the literature regarding this combined technology are shown in Table 3.  

Table 3. Pollutant removal using coupled electrocoagulation- US irradiation processes 

Pollutant Process Conditions Pollutant Removal, % Ref. 

Cl - SO4
-2

 

treatment time 60 min; Ultrasonic low-frequency  
Electrocoagulation Fe, current density 40 mA cm

−2
 

Media Cl- 500 ppm pH 3.8; Media SO4
-2

 500 ppm  
pH 2.8; Mine water 

Very important removals with an 
increase in the amount of sludge 
at 25Hz.  

[71] 

Cr(VI) 

Ultrasonic and sludge obtained for Electrocoagu-
lation Fe of pharmaceutical wastewater ;  
EC: Conditions: rpm = 150, pH = 7.0 and  
sludge = 10 g L

-1
.; Sono-EC Conditions:  

frequency 30 kHz, pH = 7.0 and time = 100 min. 

100 % of removal at 275 min 
when used 200 mg L

-1
 of Cr(VI); 

100 % of removal at 190 min 
when used 200 mg L

-1
 of Cr(VI)  

[72] 

Cu(II)  

Current 1.0 A. Electrolysis 8 h In the sonicated field, 
voltage and temperature were constantly increased, 
in order to maintain the same thermal conditions for 
non-sonicated solutions. Temperature was adjusted 
to match those during the sonicated process.  

Electrolysis 100 and 200 mg L
-1

 
removed 55 an 63 % of Cu(II) 
increasing concentration of Cu 
the removal was of 93 %; Sono-
Electrolysis 100 and 200 mg L

-1
 

removed 94.6 an 95.5 % of Cu(II) 
increaseing concentration of Cu 
the removal  

[73] 

Non-ionic 
surfactants 
(SA)  

Current density 0.5–2.5 A dm
-2

, treatment time  
5–40 min, ultrasonic power density 0.5–3.0 W cm

-2
. 

Frequency 22 ± 1 kHz. Treatment time: 10 min 

68 % of AS only CE 
EC with US 90 % 

[74] 

car-washing 
wastewater 

I=1.2 A pH= 6  
treatment time 20 min 

COD 68.77 % and  
turbidity 96.27 % 

[75] 

 

Main results of these studies show that the combined process promotes the flocculation 

through vigorous mixing and the oxidation through the formation of radicals that contribute to the 

enhancement of the efficiency of electrocoagulation processes by chemical polishing of the 

surface of the flocs and by the oxidation of soluble pollutants in the bulk. This fact helps to explain 

the high efficiencies reached. In this case, performance of iron electrodes is better than that of 

aluminum electrodes. This fact can be explained in terms of the enhanced performance of the 

enmeshment of the pollutant into growing metal hydroxide flocs which is much more important 

for iron than for aluminum coagulants.  

Hence, sono-electrocoagulation treatment has demonstrated superior performances in 

treatment of industrial effluents than single electrocoagulation. However, and as it was described 

for the other two previous technologies, scale-up should be considered as a major challenge.  

5. Electrocoagulation-pulsed processes 

Pulsed electrocoagulation technology is a novel method for wastewater treatment. It uses the 

interactions of electrochemical technology and polarity reversal in an electrical field to induce 

dipole formation in nonpolar particles in the wastewater, thus enabling the formation of micro-

aggregates of insoluble substances.  

The aggregates formed are further assisted in forming macro-aggregates. Charge neutralization 

of ions or charged materials also takes place in the electrochemical reactor, turning them into 

insoluble, suspended substances in the wastewater. The neutralization process enhances the 

efficiency of removing electrical conductivity [76]. In Table 4, there are some examples of using 
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electrocoagulation pulsed treatments, which show that has been done with wastewater of 

different origins. As it can be observed, it has proven effective in the treatment of urban 

wastewater and different types of industrial wastes. 

Table 4. Pollutant removal using coupled electrocoagulation-pulsed processes 

Wastewater Process Conditions Pollutant Removal Ref. 

Higher Cr(VI) 
concentrations 

Cr(VI) initial concentrations (50- 1000 mg L
-1

) 
Electrical energy consumption (EEC) range: 
 4-58 kWh m

-3
 wastewater, current density (CD): 

56–222 A m
-2

, operating time: 20–110 min,  
pH 3–9 (pHoptimum 5), voltage: 15–25 V.  

99 % [47]  

Synthetic solutions 
containing mercury(II) 

Hg (II) 2×10
−5

 M,distance between the electrodes 
was 3 cm, current density ranging from 2.5 to 3.1 
A dm

−2
; charge loading 9.33- 15.55 F m

−3
 ,  

iron and aluminum electrodes, 3 - 7. 

99.9 %. With iron, 15 min of 
electrolysis was sufficient to 
reach the highest removal; 
aluminum required 25 min 
for the same result. 

[77] 

Solutions of a dye Dianix 
Yellow CC (DY) and 
Procion Yellow (PY) 

Range pH (4-8), Current density (40-120 A m
-2

) 
Frequency (200-900 Hz

-1
),  

Operation time (100 min) 
99 % [78]  

Industrial and municipal 
wastewater  

Pilot plant of electrochemical treatment system 
(0.3 m

3
h

−1
). Ti/RuO2–TiO2 anode was larger than 

with a platinum anode 

The removal of T-N, T-P, 
NH4–N and COD was 
approximately 90 % 

[79]  

Berberine hydrochloride 
(BH) wastewater 

Fe electrodes and Al electrodes. The optimal 
conditions of reaction time of 3.5 h, pulse duty 
cycle of 0.3, pulse frequency of 1.0 kHz, current 
density of 19.44 mA cm

-2
, and  

electrode distance of 2.0 cm 

90.1 % BH and  
62.6 % COD 

[80] 

Dye wastewater 
Fe electrodes and 1000 mg L

-1
 Dye solution in a 

15 mins electrolyzing time 
99.62% of color removal and 
91.15% of COD 

[81] 

Old corrugated 
containerboard (OCC)-
based Paper Mill 
Wastewater 

Current density of 0 to 240 A m
-1

 , a hydraulic 
retention time of 8 to 16 min and a coagulant 
(anionic polyacrylamide) dosage of 0 to 30 mg L

-1
 

Electrical conductivity:  
47.7 %; Suspended.  
Solids: 99.3 %;COD: 75 % 

[76] 

Cooking oil (1800 mg/L, 
scour (1000 mg/L) and 
sodium sulfate (1g/L) 

Al electrodes, dimensions of 50×110×2 mm;  
AC power (SMD 30) 

Passivation of Al electrodes 
is not observed 

[82] 

Electroplating 
wastewater  

Having a pH of 4, voltage 2.5 V,  
hydraulic retention time of 15 minutes,  
current density of 25 A m

-2
 

99.5 % [83]  

Oil wastewater Electrode distance of 3.3 cm, pH of 4, current 
density of 49.38 mAcm

-2
, reaction time of 15 min 

and pole switching time of 10 s. 

96.21% [84] 

Conclusions 

Electrocoagulation has demonstrated to be a promising technology in the removal of pollutants 

from different types of wastewater. However its combination with other technologies can help to 

increase efficiency due to synergistic effects such as those derived from the formation of radicals 

in the ozonation (by interaction of ozone with iron (II)) or in the US irradiation. Results depend on 

the particular application (technology combined and type of wastewater) and should be evaluated 

carefully. Scale-up is the major challenge of this technology for the next years, although the very 

positive results obtained at the lab and bench scales make these studies very promising.  
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