THE GRAPH OF EQUIVALENCE CLASSES OF ZERO-DIVISORS OF A POSET

Hongxing Liu

Shandong Normal University, P. R. China

ABSTRACT. In this paper, we give the definition of the graph of equivalence classes of zero-divisors of a poset P. We prove that if [a] has maximal degree in $V(\Gamma_E(P))$, then $\operatorname{ann}(a)$ is maximal in $\operatorname{Anih}(P)$. Also, we give some other properties of the graph $\Gamma_E(P)$. Moreover, we characterize the cut vertices of $\Gamma_E(P)$ and study the cliques of these graphs.

1. Introduction

The concept of zero-divisor graph was first introduced by Beck in [7] to investigate the interplay between ring-theoretic properties and graph-theoretic properties. The concept of zero-divisor graph has also been extended to many algebraic structures such as rings, semigroups, semirings (see [4–11,16]). Halaš and Jukl ([13]) introduced the zero-divisor graph of a poset. Since then, many authors continued to study the zero-divisor graphs of posets, see [1,15,16,20]. Let R be a ring and $r, s \in R$. Define $r \sim s$ if and only if $\operatorname{ann}(r) = \operatorname{ann}(s)$. Write $[r] = \{s \in R \mid r \sim s\}$ and $R_E = \{[r] \mid r \in R\}$. Denote by $\Gamma_E(R)$ the graph of equivalence classes of zero-divisors of R. The set of vertices $V(\Gamma_E(R))$ is $R_E \setminus \{[0], [1]\}$ and two vertices are adjacent if and only if [r][s] = [0], if and only if rs = 0. Motivated by ideas in paper [18], Spiroff and Wickham ([19]) studied the graph of equivalence classes of zero-divisors of a commutative Noetherian ring. Anderson and LaGrange ([2]) continued to study these graphs. In [2], the graph is called the compressed zero-divisor graph. In this paper, we will extend the graph of equivalence classes of zero-divisors to a poset P and study the properties of these graphs.

 $^{2010\} Mathematics\ Subject\ Classification.$ 05E99, 06A07. Key words and phrases. Zero-divisor graph, poset, cut vertex, equivalence class, clique.

The paper is constructed as follows: In Section 2, we give some relevant definitions and notations of graphs and posets. In Section 3, we give the definition of the graph of equivalence classes of zero-divisors of a poset P and study the basic properties of these graphs. In Section 4, we investigate the cut vertices and clique number of the graph $\Gamma_E(P)$.

Throughout, all posets P will be a poset with 0 and 1 and all graphs will be simple graphs.

2. Preliminaries

Let (P, \leq) be a partially ordered set (abbreviated as a poset) and $X \subseteq P$. Let $L(X) = \{y \in P \mid y \leq x \text{ for all } x \in X\}$ denote the lower cone of X. Dually, let $U(X) = \{y \in P \mid y \geq x \text{ for all } x \in X\}$ denote the upper cone of X. If $X = \{x_1, \ldots, x_n\}$, we shall write $L(x_1, \ldots, x_n)$ or $U(x_1, \ldots, x_n)$ instead of L(X) or U(X).

Let P be a poset and $\emptyset \neq I \subseteq P$. Then I is called an ideal of P if $x \in I$ and $y \leq x$, then $y \in I$. A proper ideal I of P is called prime if for all $x, y \in P, L(x, y) \subseteq I$ implies $x \in I$ or $y \in I$.

For $x \in P$, the set $\operatorname{ann}(x) = \{y \in P | L(x,y) = \{0\}\}\$ is called the annihilator of x.

For $x \in P$, x is called a zero-divisor of P if there exists $0 \neq y \in P$ such that $L(x,y) = \{0\}$. Denote by Z(P) the zero-divisors of P and write $Z(P)^{\times} = Z(P) \setminus \{0\}$.

The zero-divisor graph of P, denoted by $\Gamma(P)$, is as follows: the set of vertices is $V(\Gamma(P)) = Z(P)^{\times}$ and distinct vertices x and y are adjacent if and only if $L(x,y) = \{0\}$ ([1]).

Let G be a graph. For $k \geq 2$, a graph is called a k-partite graph if the vertices of the graph are partitioned into k disjoint sets such that there is no edge between two vertices in the same set. A 2-partite graph is usually called a bipartite graph. It is well known that a graph is bipartite if and only if it contains no cycle of odd length. A complete bipartite graph is a bipartite graph such that every vertex in one set is connected to every vertex in the other set. The complete graph K_n is a graph with n vertices in which each vertex is connected to each of the others. The diameter of a graph G is the largest distance between two vertices in G, denoted by diam(G). A clique of a graph G is a subset of its vertices such that there exists an edge between each pair of vertices in the subset. The clique number $\operatorname{cl}(G)$ of a graph G is the number of vertices in a maximum clique in G.

3. Basic properties of the graph $\Gamma_E(P)$

In this section, we will define the graph of equivalence classes of zero-divisors of a poset P and investigate the properties of this graph.

An element $0 \neq p$ of a poset P is called an atom if there exists no element $x \in P$ such that 0 < x < p. The set of atoms of P is denoted by Atom(P). If $p \in P$, set $atom(p) = \{a \in Atom(P) \mid a \leq p\}$.

For any elements $a, b \in P$, define a relation on P by $a \sim b$ if and only if $\operatorname{ann}(a) = \operatorname{ann}(b)$. Then \sim is an equivalence relation on P.

For any $a \in P$, let $[a] = \{r \in P \mid r \sim a\}$. It is easy to get the following statements.

Lemma 3.1. Let P be a poset. Then:

- 1) $ann(1) = \{0\}$ and ann(0) = P. Moreover, if $a \neq 0$, then $[a] \neq [0]$.
- 2) $[a] \subseteq Z(P)$, for all $a \in P \setminus \{0,1\}$.

Let $\overline{P} = \{[a] \mid a \in P\}$. Define a partial order relation on \overline{P} by $[a] \leq' [b]$ if and only if $\operatorname{ann}(b) \subseteq \operatorname{ann}(a)$. It is clear that this partial order relation is well-defined and (\overline{P}, \leq') is a poset. [0] is the least element in \overline{P} and [1] is the largest element in \overline{P} . Without causing confusion, we will let \leq represent the partial order relation on both P and \overline{P} in the following.

Now, we give the definition of the graph of equivalence classes of zero-divisors of a poset P.

DEFINITION 3.2. The graph of equivalence classes of zero-divisors of a poset P is the graph $\Gamma_E(P) = \Gamma(\overline{P})$ whose vertices are the elements in $\overline{P}\setminus\{[0],[1]\}$, such that two distinct vertices [a] and [b] are adjacent if and only if $L([a],[b]) = \{[0]\}$.

Let P be a poset as below. Then one can check that $\operatorname{diam}(\Gamma(P)) = 2$ while $\operatorname{diam}(\Gamma_E(P)) = 1$. The properties of the graph $\Gamma_E(P)$ and the graph $\Gamma(P)$ are different.

Lemma 3.3. Let P be a poset and $a, b \in P$. Then

- 1) If $a \leq b$, then $ann(b) \subseteq ann(a)$ and $[a] \leq [b]$ in \overline{P} .
- 2) If $[a] \neq [1]$, $[b] \neq [1]$, and $L([a], [b]) = \{[0]\}$, then $L(a, b) = \{0\}$.
- 3) If $L(a,b) = \{0\}$, then $L([a],[b]) = \{[0]\}$.

PROOF. 1) Obvious.

2) Suppose $x \in L(a,b)$. Then $x \le a$ and $x \le b$. It follows that $\operatorname{ann}(a) \subseteq \operatorname{ann}(x)$ and $\operatorname{ann}(b) \subseteq \operatorname{ann}(x)$. Hence, $[x] \le [a]$ and $[x] \le [b]$. Therefore, we have [x] = [0], and so x = 0 by 1) in Lemma 3.1. Hence, $L(a,b) = \{0\}$.

3) Suppose $[c] \in L([a], [b])$. Then $[c] \leq [a]$ and $[c] \leq [b]$. Hence, $\operatorname{ann}(a) \subseteq \operatorname{ann}(c)$ and $\operatorname{ann}(b) \subseteq \operatorname{ann}(c)$. By $L(a,b) = \{0\}$, we have $b \in \operatorname{ann}(a) \subseteq \operatorname{ann}(c)$, and so $L(b,c) = \{0\}$. Thus $c \in \operatorname{ann}(b) \subseteq \operatorname{ann}(c)$. It follows that c = 0, and so [c] = [0]. Therefore, $L([a], [b]) = \{[0]\}$.

PROPOSITION 3.4. Let P be a poset. If $[x] = [x_1]$ and $[y] = [y_1]$, then $L(x,y) = \{0\}$ if and only if $L(x_1,y_1) = \{0\}$.

PROOF. \Rightarrow : Suppose $[x] = [x_1]$ and $[y] = [y_1]$. Then $\operatorname{ann}(x) = \operatorname{ann}(x_1)$ and $\operatorname{ann}(y) = \operatorname{ann}(y_1)$. Since $L(x,y) = \{0\}$, we have $y \in \operatorname{ann}(x) = \operatorname{ann}(x_1)$, and hence $L(x_1,y) = \{0\}$. That is, $x_1 \in \operatorname{ann}(y) = \operatorname{ann}(y_1)$. Thus $L(x_1,y_1) = \{0\}$.

 \Leftarrow : The proof is similar to that of " \Rightarrow ".

REMARK 3.5. By Definition 3.2, Lemma 3.3, and Proposition 3.4, we know that the graph $\Gamma_E(P)$ is isomorphic to a subgraph of $\Gamma(P)$.

Let a be a vertex of a graph G. The degree of a is the number of edge ends at a, denoted by $\deg(a)$. Let N(a) be the set of vertices which are adjacent to a, then $|N(a)| = \deg(a)$. For any two vertices u and v of a graph G, define $u \approx v$ if and only if N(u) = N(v). Let $\Gamma(P)$ be the zero-divisor graph of a poset P and $u, v \in P$. Note that $N(u) = \operatorname{ann}(u) \setminus \{0\}$. Then $u \approx v$ if and only if $\operatorname{ann}(u) = \operatorname{ann}(v)$, if and only if [u] = [v]. Let $\bar{u} = \{r \in G \mid r \approx u\}$ and $G/_{\approx} = \{\bar{u} \mid u \in G\}$. Then $G/_{\approx}$ becomes a graph in the natural way with [u] and [v] are adjacent in $G/_{\approx}$ if and only if u and v are adjacent in G. Using Lemma 3.3, we get the following analog of [2, Theorem 2.4].

THEOREM 3.6. Let P be a poset. Then $\Gamma_E(P) \cong \Gamma(P)/_{\approx}$.

PROOF. Suppose $a \in P$. Define a map $\varphi : \Gamma_E(P) \to \Gamma(P)/_{\approx}$ by $[a] \mapsto \bar{a}$. By the above comments, the map φ is well-defined. One can easily check that φ is also bijective. If [a] - [b] is an edge in $\Gamma_E(P)$, then $L([a], [b]) = \{[0]\}$, and hence $L(a, b) = \{0\}$ by Lemma 3.3. Therefore, $\bar{a} - \bar{b}$ is an edge in $\Gamma(P)/_{\approx}$.

Conversely, if $\bar{a} - b$ is an edge in $\Gamma(P)/_{\approx}$, then a and b are adjacent in $\Gamma(P)$, and hence $L(a,b) = \{0\}$. By Lemma 3.3, we get $L([a],[b]) = \{[0]\}$. Therefore, [a] - [b] is an edge in $\Gamma_E(P)$.

The diameter of the graph $\Gamma_E(R)$ is less or equal to 3, where R is a commutative ring with identity (Proposition 1.4 in [19]). The following statement gives a similar result for the graph $\Gamma_E(P)$, where P is a poset.

THEOREM 3.7. Let P be a poset. Then $\Gamma_E(P)$ satisfies the following conditions.

- 1) $\Gamma_E(P)$ is connected.
- 2) $diam(\Gamma_E(P)) \leq 3$.

PROOF. By the definition of $\Gamma_E(P)$, we know that it is also a zero-divisor graph of the poset \overline{P} . Using [1, Theorem 3.3], we have that $\Gamma_E(P)$ is connected and $\operatorname{diam}(\Gamma_E(P)) \leq 3$.

In [19], Spiroff and Wickham investigated infinite graphs of equivalence classes of zero-divisors of a ring R and associated primes of R, where R is a commutative Noetherian ring with identity. We shall study the corresponding problems in poset settings.

PROPOSITION 3.8. Let P be a poset and $a, b \in P$. Then ann([a]) = ann([b]) if and only if [a] = [b].

PROOF. \Rightarrow : Let $a, b \in P$ and $\operatorname{ann}([a]) = \operatorname{ann}([b])$. Suppose $z \in \operatorname{ann}(a)$. By Lemma 3.3, we have $[z] \in \operatorname{ann}([a]) = \operatorname{ann}([b])$, and so $L([z], [b]) = \{[0]\}$. Using Lemma 3.3 again, we have $L(z, b) = \{0\}$. This proves that $z \in \operatorname{ann}(b)$, and hence $\operatorname{ann}(a) \subseteq \operatorname{ann}(b)$. Similarly, one can prove that $\operatorname{ann}(b) \subseteq \operatorname{ann}(a)$. Therefore, [a] = [b].

←: Obvious.

A poset P is atomic if for all $0 < b \in P$, there exists an atom $a \in P$ such that $0 < a \le b$. Let P be a poset. Let $Anih(P) = \{ann(a) \mid a \in P, ann(a) \ne P\}$. If $a \in P$ and ann(a) is maximal among Anih(P), then ann(a) is a prime ideal of P ([13], Lemma 2.2).

PROPOSITION 3.9. Let P be a poset. If a is an atom of P, then ann(a) is maximal in Anih(P). Moreover, ann(a) is prime. Conversely, if P is atomic and ann(b) is maximal in Anih(P), then there exists an atom a such that ann(a) = ann(b).

PROOF. Suppose there exists an element $0 \neq c \in P$ with $\operatorname{ann}(a) \subset \operatorname{ann}(c)$. Then there exists $x \in \operatorname{ann}(c) \setminus \operatorname{ann}(a)$, that is, $L(x,c) = \{0\}$, but $L(x,a) \neq \{0\}$. Assume $0 \neq z \in L(x,a)$. Since a is an atom, we must have z = a. Hence $a \leq x$. Thus $L(a,c) = \{0\}$, and so $c \in \operatorname{ann}(a)$. Therefore $c \in \operatorname{ann}(c)$. This is impossible. Thus $\operatorname{ann}(a)$ is maximal. By Lemma 2.2 in [13], it follows that $\operatorname{ann}(a)$ is prime.

Conversely, suppose $\operatorname{ann}(b)$ is maximal in $\operatorname{Anih}(P)$ and a is an atom such that $0 < a \le b$. We have $\operatorname{ann}(b) \subseteq \operatorname{ann}(a)$, and so $\operatorname{ann}(b) = \operatorname{ann}(a)$ by the maximality of $\operatorname{ann}(b)$.

The following proposition is similar to Proposition 2.2 in [19].

PROPOSITION 3.10. Let P be a poset and $|Atom(P)| < \infty$. Then $|V(\Gamma_E(P))| = \infty$ if and only if there exists $x \in P$ such that ann(x) is maximal in Anih(P) and $deg([x]) = \infty$.

PROOF. \Rightarrow : Suppose Atom $(P) = \{a_1, a_2, \dots, a_n\}$. By Proposition 3.9, we know that ann (a_1) , ann (a_2) , ..., ann (a_n) are maximal in Anih(P). If

 $deg([a_1]) < \infty$, there exist infinitely many vertices [x] such that $L([x], [a_1]) \neq \{[0]\}$. By Lemma 3.3, we have $L(x, a_1) \neq \{0\}$. If $[v] \neq [x]$ and $L([x], [v]) = \{[0]\}$, then $L(x, v) = \{0\} \subseteq ann(a_1)$. Since $ann(a_1)$ is prime and $x \notin ann(a_1)$, we have $v \in ann(a_1)$, and so [v] is adjacent to $[a_1]$. If there exist infinitely many distinct vertices [v] which are adjacent to $[a_1]$, then $deg([a_1]) = \infty$. This is a contradiction. Hence, the set of [v]'s is finite. Note that [x] is adjacent to [v] and the set of [x]'s is infinite. We have $deg([v]) = \infty$ for some v. If ann(v) is maximal, we get the desired result. If $ann(v) \subseteq ann(a_i)$ for some $i \neq 1$, we have $deg([a_i]) = \infty$, and we also get the desired result.

THEOREM 3.11. Let P be a poset and $a \in P$. If [a] has maximal degree in $V(\Gamma_E(P))$, then ann(a) is maximal in Anih(P).

PROOF. Suppose $\operatorname{ann}(a) \subseteq \operatorname{ann}(b)$. It is easy to show $N([a]) \subseteq N([b])$. By the maximality of the degree of [a], we have N([a]) = N([b]). If there exists $z \in \operatorname{ann}(b) \setminus \operatorname{ann}(a)$, by Lemma 3.3 we get [z] is adjacent to [b], but not adjacent to [a]. That is, $[z] \in N([b])$, but $[z] \notin N([a])$. This is a contradiction. Therefore, $\operatorname{ann}(a) = \operatorname{ann}(b)$.

The following example proves that the converse of the preceding theorem is not true.

EXAMPLE 3.12. Let P_A be the poset in Figure (A). Then ann(b) is maximal in $Anilh(P_A)$. One can check that deg([b]) = 2 and deg([a]) = 3. Hence, the degree of [b] is not maximal.

4. Cut vertices, cliques of the graph $\Gamma_E(P)$

In this section, we will give a characterization of the cut vertices of the graph $\Gamma_E(P)$ and also study the cliques of these graphs.

Let G be a graph. A vertex a is called a cut vertex of G if the removal of a along with edges through a leads to more components than G. That is, a vertex a is called a cut vertex if there exist distinct vertices b and c such that a is in every b-c path, where both b and c are different from a. Axtell et al. ([6]) studied cut vertices in zero-divisor graphs of commutative rings with identity and proved that if x is a cut vertex of the graph $\Gamma(R)$, then

the annihilator of x is properly maximal (see [6, Proposition 2.7]). In the following, we investigate cut vertices in the graph $\Gamma_E(P)$.

PROPOSITION 4.1. Let P be a poset. If [a] is a cut vertex in $\Gamma_E(P)$, then [a] is an atom in \overline{P} .

PROOF. Suppose [x] - [a] is an edge in $\Gamma_E(P)$ and $[0] \neq [b] < [a]$. Then [x] - [b] is also an edge in $\Gamma_E(P)$. Using this fact, one can prove that if [a] is not an atom in \overline{P} , then [a] is not a cut vertex in $\Gamma_E(P)$.

Let P be a poset and $0 \neq x, 0 \neq y \in P$. By Lemma 3.3, [x] - [y] is an edge in $\Gamma_E(P)$ if and only if x - y is an edge in $\Gamma(P)$. Hence, we have the following lemma.

LEMMA 4.2. Let P be a poset and $a \in P$. If a is a cut vertex in $\Gamma(P)$, then [a] is also a cut vertex in $\Gamma_E(P)$.

The following example shows that the converse of Lemma 4.2 is not true.

EXAMPLE 4.3. Let P_B be the poset in Figure (B). In $\Gamma_E(P_B)$, $[a_1] = [a_2]$ is a cut vertex, since $[b] - [a_1] - [y]$ is the only path from [b] to [y]. While, both $b - a_1 - y$ and $b - a_2 - y$ are paths from b to y in $\Gamma(P_B)$. Hence, a_1 is not a cut vertex.

PROPOSITION 4.4. Let P be a poset and $a \in P$. If [a] is a cut vertex in $\Gamma_E(P)$, then $[a] \cup \{0\}$ is an ideal of P.

PROOF. Suppose $b \in [a]$ and y < b. We have to show that $y \in [a]$. Since y < b, we have that $\operatorname{ann}(b)$ is contained in $\operatorname{ann}(y)$. So N([a]) = N([b]) is contained in N([y]). On the other hand, since [a] is a cut vertex, there exists no vertex [x] distinct from [a] with N([a]) containing N([x]). Hence, [y] = [a].

Let P be a poset. For $x, y \in P$, if x and y are incomparable, we denote by y||x. For $a \in Atom(P)$, we define

 $\widetilde{U}(\operatorname{Atom}(P)\backslash\{a\})=\{y\in P\mid y||a\text{ and }\forall b\in\operatorname{Atom}(P),\text{ if }b\neq a,\text{ then }y\geq b\}.$

PROPOSITION 4.5. Let P be a poset and $a \in P$. Then a is an atom in P if and only if [a] is an atom in \overline{P} and a is a minimal element in [a].

PROOF. \Rightarrow : Suppose $0 \neq [b] \in \overline{P}$ and $[b] \leq [a]$. Then we have $\operatorname{ann}(a) \subseteq \operatorname{ann}(b)$. By Proposition 3.9, $\operatorname{ann}(a)$ is maximal in $\operatorname{Anih}(P)$. So we have $\operatorname{ann}(a) = \operatorname{ann}(b)$. That is, [a] = [b]. Thus [a] is an atom in \overline{P} . Obviously, a is a minimal element in [a].

 \Leftarrow : Suppose $0 \neq b \in P$ such that $b \leq a$. We have $\operatorname{ann}(a) \subseteq \operatorname{ann}(b)$, and so $[b] \leq [a]$. Since [a] is an atom in \overline{P} , this proves that [b] = [a] or [b] = [0]. If [b] = [0], then b = 0. This is a contradiction. Therefore, we have [b] = [a]. Since a is the minimal element in [a], we have b = a, and so a is also an atom in P.

Using Proposition 4.5, we have the following theorem characterizing the cut vertices of $\Gamma_E(P)$.

THEOREM 4.6. Let P be a poset. If $[a] \in Atom(\overline{P})$ and a is a minimal element in [a], then [a] is a cut vertex in $\Gamma_E(P)$ if and only if $\widetilde{U}(Atom(P)\setminus\{a\})\neq\emptyset$.

PROOF. \Rightarrow : Without loss of generality, let [x] - [a] - [y] be a path of shortest length from [x] to [y]. By Lemma 3.3, we have that x - a - y is a path in $\Gamma(P)$. This concludes that x||a and y||a. If $\widetilde{U}(\operatorname{Atom}(P) \setminus \{a\}) = \emptyset$, then we have $u, v \in \operatorname{Atom}(P)$ with x||u and y||v. If $u \neq v$, then x - u - v - y is a path in $\Gamma(P)$. Using Lemma 3.3 again, we have that [x] - [u] - [v] - [y] is a path in $\Gamma_E(P)$. If u = v, then [x] - [u] - [y] is a path in $\Gamma_E(P)$. In either case, we have a contradiction.

 \Leftarrow : If $x \in \widetilde{U}(\text{Atom}(P)\setminus\{a\})$, then [a] is the unique vertex which is adjacent to [x]. This proves that [a] is a cut vertex.

In paper [12], Estaji and Khashyarmanesh proved that the clique number of the graph $\Gamma(L)$ is equal to the number of atoms in L, where $\Gamma(L)$ is the zero-divisor graph of a lattice L (Theorem 5.13). The following theorem shows that the clique number of the graph $\Gamma_E(P)$ is also equal to the number of atoms in P.

THEOREM 4.7. Let P be a poset. Then $cl(\Gamma_E(P)) = |Atom(P)|$.

PROOF. By Proposition 4.5, we have $|\operatorname{Atom}(P)| = |\operatorname{Atom}(\overline{P})|$. Since any two atoms in \overline{P} are adjacent, we have $\operatorname{cl}(\Gamma_E(P)) \geq |\operatorname{Atom}(P)|$. Suppose $|\operatorname{cl}(\Gamma_E(P))| > |\operatorname{Atom}(P)|$. Let $\operatorname{cl}(\Gamma_E(P)) = m$ and $|\operatorname{Atom}(P)| = n$. Then $\Gamma_E(P)$ has a complete subgraph with vertices $\{[p_1], [p_2], \dots, [p_m]\}$. Since $[p_i]$ and $[p_j]$ are adjacent in $\Gamma_E(P)$, then $\operatorname{atom}(p_i) \cap \operatorname{atom}(p_j) = \emptyset$, for all $i \neq j$. This is impossible, since m > n. Hence, $\operatorname{cl}(\Gamma_E(P)) = |\operatorname{Atom}(P)|$.

Let G be a graph and $a, b \in V(G)$. Two vertices a and b are called complements in G if a is connected to b, and no vertex in G is connected to both a and b, denoted by $a \perp b$. We say that a graph G is complemented if each vertex in G has a complement. The set of all complements in G induces a subgraph of G, denoted by G^c . It is easy to see that G is complemented if and only if $G = G^c$. Complements were studied for the zero-divisor graph $\Gamma(R)$ in [3] and for $\Gamma_E(R)$ in [2]. The next result is the analog of [2, Theorem 4.3].

Proposition 4.8. Let P be a poset. Then the following statements are equivalent.

- 1) $\Gamma_E(P) = \Gamma_E(P)^c$.
- 2) $\Gamma_E(P)$ is complemented.
- 3) $\Gamma(P)$ is complemented.

PROOF. 1) \Leftrightarrow 2) is obvious.

- $2) \Rightarrow 3$) Suppose $a \in P$ and [a] has a complement [b]. Then $[a] \neq [b]$, $[a] \neq [0]$, $[b] \neq [0]$ and $L([a], [b]) = \{[0]\}$. Therefore, $a \neq b, a \neq 0, b \neq 0$ and $L(a,b) = \{0\}$ by Lemma 3.3. If there exists a $c \in P$ such that $L(c,a) = L(c,b) = \{0\}$, then $L([c], [a]) = L([c], [b]) = \{[0]\}$ by Lemma 3.3 and $[c] \notin \{[a], [b]\}$. That is, [c] is adjacent to both [a] and [b]. This is a contradiction. Hence b is a complement of a in $\Gamma(P)$.
- $3) \Rightarrow 2)$ Suppose $[a] \in V(\Gamma_E(P))$ and $a \perp b$. Then we have $L([a], [b]) = \{[0]\}$. If there exists $[c] \in V(\Gamma_E(P))$ such that $L([c], [a]) = L([c], [b]) = \{[0]\}$, then $L(c, a) = L(c, b) = \{0\}$ and $c \notin \{a, b\}$. This is a contradiction. Hence [a] has a complement [b].

Proposition 4.9. Let P be a poset and $Atom(P) = \{a_1, a_2, \dots, a_n\}$. Then

- 1) $\Gamma(P)$ is an n-partite graph.
- 2) $\Gamma_E(P)$ is an n-partite graph.

PROOF. 1) Define

 $V_i = \{x \mid x \ge a_i \text{ and if } j < i, \text{ there exists no } a_j \text{ such that } x \ge a_j\}.$

Then V_1, \ldots, V_n are disjoint sets and $P \setminus \{0\} = \bigcup_{i=1}^n V_i$. Suppose $x, y \in V_i$, for all $i = 1, 2, \ldots, n$. Since $x \geq a_i$ and $y \geq a_i$, there is no edge between x and y. Hence, we get the desired result.

2) Let $\overline{V_i} = \{[x] \mid x \in V_i\}$. If $[x], [y] \in \overline{V_i}$, for all i = 1, 2, ..., n, it is easy to see that there is no edge between [x] and [y]. So $\Gamma_E(P)$ is an n-partite graph.

Remark 4.10. Proposition 4.9 can also be obtained directly from [13, Theorem 4.7 and Theorem 2.9].

Theorem 4.11. Let P be a poset. Then $\Gamma_E(P)$ is a complete bipartie graph if and only if |Atom(P)| = 2.

PROOF. \Rightarrow : Suppose $\Gamma_E(P)$ is a complete bipartite graph. If P has only one atom, then $\Gamma_E(P)$ is the null graph. Hence, $|\text{Atom}(P)| \ge 2$. If there exist three atoms $a, b, c \in \text{Atom}(P)$, we obviously have a triangle [a] - [b] - [c] - [a]. This is impossible, since a complete bipartite graph has no cycle of odd length.

- \Leftarrow : Suppose Atom $(P) = \{a, b\}$. Then $\Gamma_E(P)$ is a bipartite graph by Proposition 4.9.
 - 1) If $x \in P$ such that $x \ge a$ and x||b, then $\operatorname{ann}(x) = \operatorname{ann}(a)$, i.e., [x] = [a].
 - 2) Similarly, if $x \in P$ such that $x \ge b$ and x||a, then [x] = [b].
 - 3) If $x \in P$ such that $x \ge a$ and $x \ge b$, then $\operatorname{ann}(x) = \{0\}$, i.e., [x] = [1]. In all cases, $\Gamma_E(P)$ has two vertices $\{[a], [b]\}$ and so we have $\Gamma_E(P) = K_2$.

By the proof of Theorem 4.11, we get the following corollary.

COROLLARY 4.12. Let P be a poset. Then $\Gamma_E(P) = K_2$ if and only if |Atom(P)| = 2.

Estaji and Khashyarmanesh ([12]) showed that two vertices a and b are adjacent in a zero-divisor graph of a lattice if and only if $atom(a) \cap atom(b) = \emptyset$ (Theorem 5.8). The following statement is similar to Theorem 5.8 in [12].

Theorem 4.13. Let P be a poset. Then

- 1) x and y are adjacent in $\Gamma(P)$ if and only if $atom(x) \cap atom(y) = \emptyset$.
- 2) x and y are not adjacent in $\Gamma(P)$ if and only if $atom(x) \cap atom(y) \neq \emptyset$.

PROOF. 1) \Rightarrow : If there exists $a \in \text{Atom}(P)$ such that $a \in \text{atom}(x) \cap \text{atom}(y)$, then $a \leq x$ and $a \leq y$. This contradicts the fact that $L(x, y) = \{0\}$.

 \Leftarrow : Suppose $z \in L(x, y)$. If $z \neq 0$, then there exists an $a \in \text{Atom}(P)$ such that $a \leq z$. Hence, $a \in \text{atom}(x) \cap \text{atom}(y)$. This is a contradiction.

2) By 1), we obviously get 2).

By Theorem 4.13 and Proposition 3.4, we have the following theorem.

Theorem 4.14. Let P be a poset. Then

- 1) [x] and [y] are adjacent in $\Gamma_E(P)$ if and only if for all $x' \in [x]$ and $y' \in [y]$, we have $atom(x') \cap atom(y') = \emptyset$.
- 2) [x] and [y] are not adjacent in $\Gamma_E(P)$ if and only if for all $x' \in [x]$ and $y' \in [y]$, we have $atom(x') \cap atom(y') \neq \emptyset$.

ACKNOWLEDGEMENTS.

The author would like to thank the referees for their careful reviewing and valuable comments which highly improved the paper.

References

- M. Alizadeh, A. K. Das, H. R. Maimani, M. R. Pournaki and S. Yassemi, On the diameter and girth of zero-divisor graphs of posets, Discrete Appl. Math. 160 (2012), 1319–1324.
- [2] D. F. Anderson and J. D. LaGrange, Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph, J. Pure Appl. Algebra 216 (2012), 1626–1636.
- [3] D. F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), 221–241.
- [4] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500–514.
- [5] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring,
 J. Algebra 217 (1999), 434–447.
- [6] M. Axtell, N. Baeth and J. Stickles, Cut vertices in zero-divisor graphs of finite commutative rings, Comm. Algebra 39 (2011), 2179–2188.
- [7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208–226.
- [8] F. R. DeMeyer and L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra 283 (2005), 190–198.

- [9] F. R. DeMeyer, T. McKenzie and K. Schneider, *The zero-divisor graph of a commutative semigroup*, Semigroup Forum **65** (2002), 206–214.
- [10] D. Dolžan and P. Oblak, The zero-divisor graph of rings and semirings, Internat. J. Algebra Comput. 22 (2012), 1250033-1–1250033-20.
- [11] S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glas. Mat. Ser. III **44(64)** (2009), 141–153.
- [12] E. Estaji and K. Khashyarmanesh, The zero-divisor graph of a lattice, Results Math. 61 (2012), 1–11.
- [13] R. Halaš and M. Jukl, On Beck's coloring of posets, Discrete Math. 309 (2009), 4584–4589.
- [14] R. Halaš and H. Länger, The zerodivisor graph of a qoset, Order 27 (2010), 343–351.
- [15] V. Joshi, Zero divisor graph of a poset with respect to an ideal, Order 29 (2012), 499–506.
- [16] D. Lu and T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin. 26 (2010), 793–804.
- [17] H. R. Maimani, Median and center of zero-divisor graph of commutative semigroups, Iran. J. Math. Sci. Inform. 3 (2008), 69–76.
- [18] S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), 3533–3558.
- [19] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero-divisors, Comm. Algebra 39 (2011), 2338–2348.
- [20] Z. Xue and S. Liu, Zero-divisor graphs of partially ordered sets, Appl. Math. Lett. 23 (2010), 449–452.

Hongxing Liu School of Mathematical Sciences Shandong Normal University 250014 Jinan P. R. China

 $E ext{-}mail: lhxshanda@163.com$

Received: 5.5.2013. Revised: 13.11.2013.