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THE GRAPH OF EQUIVALENCE CLASSES OF

ZERO-DIVISORS OF A POSET
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Shandong Normal University, P. R. China

Abstract. In this paper, we give the definition of the graph of
equivalence classes of zero-divisors of a poset P. We prove that if [a] has
maximal degree in V (ΓE(P )), then ann(a) is maximal in Anih(P ). Also, we
give some other properties of the graph ΓE(P ). Moreover, we characterize
the cut vertices of ΓE(P ) and study the cliques of these graphs.

1. Introduction

The concept of zero-divisor graph was first introduced by Beck in [7] to
investigate the interplay between ring-theoretic properties and graph-theoretic
properties. The concept of zero-divisor graph has also been extended to many
algebraic structures such as rings, semigroups, semirings (see [4–11,16]). Halaš
and Jukl ([13]) introduced the zero-divisor graph of a poset. Since then, many
authors continued to study the zero-divisor graphs of posets, see [1,15,16,20].
Let R be a ring and r, s ∈ R. Define r ∼ s if and only if ann(r) = ann(s). Write
[r] = {s ∈ R | r ∼ s} and RE = {[r] | r ∈ R}. Denote by ΓE(R) the graph
of equivalence classes of zero-divisors of R. The set of vertices V (ΓE(R)) is
RE\{[0], [1]} and two vertices are adjacent if and only if [r][s] = [0], if and only
if rs = 0. Motivated by ideas in paper [18], Spiroff and Wickham ([19]) studied
the graph of equivalence classes of zero-divisors of a commutative Noetherian
ring. Anderson and LaGrange ([2]) continued to study these graphs. In [2],
the graph is called the compressed zero-divisor graph. In this paper, we will
extend the graph of equivalence classes of zero-divisors to a poset P and study
the properties of these graphs.

2010 Mathematics Subject Classification. 05E99, 06A07.
Key words and phrases. Zero-divisor graph, poset, cut vertex, equivalence class, clique.

263



264 H. LIU

The paper is constructed as follows: In Section 2, we give some relevant
definitions and notations of graphs and posets. In Section 3, we give the
definition of the graph of equivalence classes of zero-divisors of a poset P and
study the basic properties of these graphs. In Section 4, we investigate the
cut vertices and clique number of the graph ΓE(P ).

Throughout, all posets P will be a poset with 0 and 1 and all graphs will
be simple graphs.

2. Preliminaries

Let (P,≤) be a partially ordered set (abbreviated as a poset) and X ⊆ P.
Let L(X) = {y ∈ P | y ≤ x for all x ∈ X} denote the lower cone of X .
Dually, let U(X) = {y ∈ P | y ≥ x for all x ∈ X} denote the upper cone of
X . If X = {x1, . . . , xn}, we shall write L(x1, . . . , xn) or U(x1, . . . , xn) instead
of L(X) or U(X).

Let P be a poset and ∅ 6= I ⊆ P. Then I is called an ideal of P if
x ∈ I and y ≤ x, then y ∈ I. A proper ideal I of P is called prime if
for all x, y ∈ P,L(x, y) ⊆ I implies x ∈ I or y ∈ I.

For x ∈ P, the set ann(x) = {y ∈ P |L(x, y) = {0}} is called the
annihilator of x.

For x ∈ P, x is called a zero-divisor of P if there exists 0 6= y ∈ P
such that L(x, y) = {0}. Denote by Z(P ) the zero-divisors of P and write
Z(P )× = Z(P )\{0}.

The zero-divisor graph of P , denoted by Γ(P ), is as follows: the set of
vertices is V (Γ(P )) = Z(P )× and distinct vertices x and y are adjacent if and
only if L(x, y) = {0} ([1]).

Let G be a graph. For k ≥ 2, a graph is called a k-partite graph if the
vertices of the graph are partitioned into k disjoint sets such that there is no
edge between two vertices in the same set. A 2-partite graph is usually called
a bipartite graph. It is well known that a graph is bipartite if and only if
it contains no cycle of odd length. A complete bipartite graph is a bipartite
graph such that every vertex in one set is connected to every vertex in the
other set. The complete graph Kn is a graph with n vertices in which each
vertex is connected to each of the others. The diameter of a graph G is the
largest distance between two vertices in G, denoted by diam(G). A clique of
a graph G is a subset of its vertices such that there exists an edge between
each pair of vertices in the subset. The clique number cl(G) of a graph G is
the number of vertices in a maximum clique in G.

3. Basic properties of the graph ΓE(P )

In this section, we will define the graph of equivalence classes of zero-
divisors of a poset P and investigate the properties of this graph.
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An element 0 6= p of a poset P is called an atom if there exists no element
x ∈ P such that 0 < x < p. The set of atoms of P is denoted by Atom(P ). If
p ∈ P, set atom(p) = {a ∈ Atom(P ) | a ≤ p}.

For any elements a, b ∈ P , define a relation on P by a ∼ b if and only if
ann(a) = ann(b). Then ∼ is an equivalence relation on P.

For any a ∈ P, let [a] = {r ∈ P | r ∼ a}. It is easy to get the following
statements.

Lemma 3.1. Let P be a poset. Then:

1) ann(1) = {0} and ann(0) = P. Moreover, if a 6= 0, then [a] 6= [0].
2) [a] ⊆ Z(P ), for all a ∈ P \ {0, 1}.

Let P = {[a] | a ∈ P}. Define a partial order relation on P by [a] ≤
′

[b]
if and only if ann(b) ⊆ ann(a). It is clear that this partial order relation is

well-defined and (P ,≤
′

) is a poset. [0] is the least element in P and [1] is the
largest element in P . Without causing confusion, we will let ≤ represent the
partial order relation on both P and P in the following.

Now, we give the definition of the graph of equivalence classes of zero-
divisors of a poset P.

Definition 3.2. The graph of equivalence classes of zero-divisors of a

poset P is the graph ΓE(P ) = Γ(P ) whose vertices are the elements in

P\{[0], [1]}, such that two distinct vertices [a] and [b] are adjacent if and only

if L([a], [b]) = {[0]}.

Let P be a poset as below. Then one can check that diam(Γ(P )) = 2
while diam(ΓE(P )) = 1. The properties of the graph ΓE(P ) and the graph
Γ(P ) are different.
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Lemma 3.3. Let P be a poset and a, b ∈ P. Then

1) If a ≤ b, then ann(b) ⊆ ann(a) and [a] ≤ [b] in P .
2) If [a] 6= [1], [b] 6= [1], and L([a], [b]) = {[0]}, then L(a, b) = {0}.
3) If L(a, b) = {0}, then L([a], [b]) = {[0]}.

Proof. 1) Obvious.
2) Suppose x ∈ L(a, b). Then x ≤ a and x ≤ b. It follows that ann(a) ⊆

ann(x) and ann(b) ⊆ ann(x). Hence, [x] ≤ [a] and [x] ≤ [b]. Therefore, we
have [x] = [0], and so x = 0 by 1) in Lemma 3.1. Hence, L(a, b) = {0}.
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3) Suppose [c] ∈ L([a], [b]). Then [c] ≤ [a] and [c] ≤ [b]. Hence, ann(a) ⊆
ann(c) and ann(b) ⊆ ann(c). By L(a, b) = {0}, we have b ∈ ann(a) ⊆ ann(c),
and so L(b, c) = {0}. Thus c ∈ ann(b) ⊆ ann(c). It follows that c = 0, and so
[c] = [0]. Therefore, L([a], [b]) = {[0]}.

Proposition 3.4. Let P be a poset. If [x] = [x1] and [y] = [y1], then
L(x, y) = {0} if and only if L(x1, y1) = {0}.

Proof. ⇒: Suppose [x] = [x1] and [y] = [y1]. Then ann(x) = ann(x1)
and ann(y) = ann(y1). Since L(x, y) = {0}, we have y ∈ ann(x) = ann(x1),
and hence L(x1, y) = {0}. That is, x1 ∈ ann(y) = ann(y1). Thus L(x1, y1) =
{0}.

⇐: The proof is similar to that of “⇒”.

Remark 3.5. By Definition 3.2, Lemma 3.3, and Proposition 3.4, we
know that the graph ΓE(P ) is isomorphic to a subgraph of Γ(P ).

Let a be a vertex of a graph G. The degree of a is the number of edge ends
at a, denoted by deg(a). Let N(a) be the set of vertices which are adjacent
to a, then |N(a)| = deg(a). For any two vertices u and v of a graph G, define
u ≈ v if and only if N(u) = N(v). Let Γ(P ) be the zero-divisor graph of a
poset P and u, v ∈ P. Note that N(u) = ann(u)\{0}. Then u ≈ v if and only
if ann(u) = ann(v), if and only if [u] = [v]. Let ū = {r ∈ G | r ≈ u} and
G/≈ = {ū | u ∈ G}. Then G/≈ becomes a graph in the natural way with [u]
and [v] are adjacent in G/≈ if and only if u and v are adjacent in G. Using
Lemma 3.3, we get the following analog of [2, Theorem 2.4].

Theorem 3.6. Let P be a poset. Then ΓE(P ) ∼= Γ(P )/≈.

Proof. Suppose a ∈ P. Define a map ϕ : ΓE(P ) → Γ(P )/≈ by [a] 7→ ā.
By the above comments, the map ϕ is well-defined. One can easily check that
ϕ is also bijective. If [a]− [b] is an edge in ΓE(P ), then L([a], [b]) = {[0]}, and
hence L(a, b) = {0} by Lemma 3.3. Therefore, ā− b̄ is an edge in Γ(P )/≈.

Conversely, if ā − b̄ is an edge in Γ(P )/≈, then a and b are adjacent in
Γ(P ), and hence L(a, b) = {0}. By Lemma 3.3, we get L([a], [b]) = {[0]}.
Therefore, [a]− [b] is an edge in ΓE(P ).

The diameter of the graph ΓE(R) is less or equal to 3, where R is
a commutative ring with identity (Proposition 1.4 in [19]). The following
statement gives a similar result for the graph ΓE(P ), where P is a poset.

Theorem 3.7. Let P be a poset. Then ΓE(P ) satisfies the following

conditions.

1) ΓE(P ) is connected.

2) diam(ΓE(P )) ≤ 3.
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Proof. By the definition of ΓE(P ), we know that it is also a zero-divisor
graph of the poset P . Using [1, Theorem 3.3], we have that ΓE(P ) is connected
and diam(ΓE(P )) ≤ 3.

In [19], Spiroff and Wickham investigated infinite graphs of equivalence
classes of zero-divisors of a ring R and associated primes of R, where R is a
commutative Noetherian ring with identity. We shall study the corresponding
problems in poset settings.

Proposition 3.8. Let P be a poset and a, b ∈ P. Then ann([a]) = ann([b])
if and only if [a] = [b].

Proof. ⇒: Let a, b ∈ P and ann([a]) = ann([b]). Suppose z ∈ ann(a).
By Lemma 3.3, we have [z] ∈ ann([a]) = ann([b]), and so L([z], [b]) = {[0]}.
Using Lemma 3.3 again, we have L(z, b) = {0}. This proves that z ∈ ann(b),
and hence ann(a) ⊆ ann(b). Similarly, one can prove that ann(b) ⊆ ann(a).
Therefore, [a] = [b].

⇐: Obvious.

A poset P is atomic if for all 0 < b ∈ P, there exists an atom a ∈ P such
that 0 < a ≤ b. Let P be a poset. Let Anih(P ) = {ann(a) | a ∈ P, ann(a) 6=
P}. If a ∈ P and ann(a) is maximal among Anih(P ), then ann(a) is a prime
ideal of P ([13], Lemma 2.2).

Proposition 3.9. Let P be a poset. If a is an atom of P, then ann(a) is
maximal in Anih(P ). Moreover, ann(a) is prime. Conversely, if P is atomic

and ann(b) is maximal in Anih(P ), then there exists an atom a such that

ann(a) = ann(b).

Proof. Suppose there exists an element 0 6= c ∈ P with ann(a) ⊂ ann(c).
Then there exists x ∈ ann(c)\ann(a), that is, L(x, c) = {0}, but L(x, a) 6= {0}.
Assume 0 6= z ∈ L(x, a). Since a is an atom, we must have z = a. Hence
a ≤ x. Thus L(a, c) = {0}, and so c ∈ ann(a). Therefore c ∈ ann(c). This is
impossible. Thus ann(a) is maximal. By Lemma 2.2 in [13], it follows that
ann(a) is prime.

Conversely, suppose ann(b) is maximal in Anih(P ) and a is an atom such
that 0 < a ≤ b. We have ann(b) ⊆ ann(a), and so ann(b) = ann(a) by the
maximality of ann(b).

The following proposition is similar to Proposition 2.2 in [19].

Proposition 3.10. Let P be a poset and |Atom(P )| < ∞. Then
|V (ΓE(P ))| = ∞ if and only if there exists x ∈ P such that ann(x) is maximal

in Anih(P ) and deg([x]) = ∞.

Proof. ⇒: Suppose Atom(P ) = {a1, a2, . . . , an}. By Proposition 3.9,
we know that ann(a1), ann(a2), . . . , ann(an) are maximal in Anih(P ). If
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deg([a1]) < ∞, there exist infinitely many vertices [x] such that L([x], [a1]) 6=
{[0]}. By Lemma 3.3, we have L(x, a1) 6= {0}. If [v] 6= [x] and L([x], [v]) =
{[0]}, then L(x, v) = {0} ⊆ ann(a1). Since ann(a1) is prime and x /∈ ann(a1),
we have v ∈ ann(a1), and so [v] is adjacent to [a1]. If there exist infinitely
many distinct vertices [v] which are adjacent to [a1], then deg([a1]) = ∞. This
is a contradiction. Hence, the set of [v]’s is finite. Note that [x] is adjacent to
[v] and the set of [x]’s is infinite. We have deg([v]) = ∞ for some v. If ann(v)
is maximal, we get the desired result. If ann(v) ⊆ ann(ai) for some i 6= 1, we
have deg([ai]) = ∞, and we also get the desired result.

⇐: It is obvious.

Theorem 3.11. Let P be a poset and a ∈ P. If [a] has maximal degree in

V (ΓE(P )), then ann(a) is maximal in Anih(P ).

Proof. Suppose ann(a) ⊆ ann(b). It is easy to show N([a]) ⊆ N([b]).
By the maximality of the degree of [a], we have N([a]) = N([b]). If there
exists z ∈ ann(b)\ann(a), by Lemma 3.3 we get [z] is adjacent to [b], but not
adjacent to [a]. That is, [z] ∈ N([b]), but [z] /∈ N([a]). This is a contradiction.
Therefore, ann(a) = ann(b).

The following example proves that the converse of the preceding theorem
is not true.

Example 3.12. Let PA be the poset in Figure (A). Then ann(b) is
maximal in Anilh(PA). One can check that deg([b]) = 2 and deg([a]) = 3.
Hence, the degree of [b] is not maximal.
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4. Cut vertices, cliques of the graph ΓE(P )

In this section, we will give a characterization of the cut vertices of the
graph ΓE(P ) and also study the cliques of these graphs.

Let G be a graph. A vertex a is called a cut vertex of G if the removal
of a along with edges through a leads to more components than G. That is,
a vertex a is called a cut vertex if there exist distinct vertices b and c such
that a is in every b− c path, where both b and c are different from a. Axtell
et al. ([6]) studied cut vertices in zero-divisor graphs of commutative rings
with identity and proved that if x is a cut vertex of the graph Γ(R), then
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the annihilator of x is properly maximal (see [6, Proposition 2.7]). In the
following, we investigate cut vertices in the graph ΓE(P ).

Proposition 4.1. Let P be a poset. If [a] is a cut vertex in ΓE(P ), then
[a] is an atom in P.

Proof. Suppose [x] − [a] is an edge in ΓE(P ) and [0] 6= [b] < [a]. Then
[x]− [b] is also an edge in ΓE(P ). Using this fact, one can prove that if [a] is
not an atom in P , then [a] is not a cut vertex in ΓE(P ).

Let P be a poset and 0 6= x, 0 6= y ∈ P. By Lemma 3.3, [x]− [y] is an edge
in ΓE(P ) if and only if x− y is an edge in Γ(P ). Hence, we have the following
lemma.

Lemma 4.2. Let P be a poset and a ∈ P. If a is a cut vertex in Γ(P ),
then [a] is also a cut vertex in ΓE(P ).

The following example shows that the converse of Lemma 4.2 is not true.

Example 4.3. Let PB be the poset in Figure (B). In ΓE(PB), [a1] = [a2]
is a cut vertex, since [b] − [a1] − [y] is the only path from [b] to [y]. While,
both b − a1 − y and b − a2 − y are paths from b to y in Γ(PB). Hence, a1 is
not a cut vertex.

Proposition 4.4. Let P be a poset and a ∈ P. If [a] is a cut vertex in

ΓE(P ), then [a] ∪ {0} is an ideal of P.

Proof. Suppose b ∈ [a] and y < b. We have to show that y ∈ [a]. Since
y < b, we have that ann(b) is contained in ann(y). So N([a]) = N([b]) is
contained in N([y]). On the other hand, since [a] is a cut vertex, there exists
no vertex [x] distinct from [a] with N([a]) containing N([x]). Hence, [y] = [a].

Let P be a poset. For x, y ∈ P, if x and y are incomparable, we denote
by y||x. For a ∈ Atom(P ), we define

Ũ(Atom(P )\{a}) = {y ∈ P | y||a and ∀b ∈ Atom(P ), if b 6= a, then y ≥ b}.

Proposition 4.5. Let P be a poset and a ∈ P. Then a is an atom in P
if and only if [a] is an atom in P and a is a minimal element in [a].

Proof. ⇒: Suppose 0 6= [b] ∈ P and [b] ≤ [a]. Then we have ann(a) ⊆
ann(b). By Proposition 3.9, ann(a) is maximal in Anih(P ). So we have
ann(a) = ann(b). That is, [a] = [b]. Thus [a] is an atom in P . Obviously, a is
a minimal element in [a].

⇐: Suppose 0 6= b ∈ P such that b ≤ a. We have ann(a) ⊆ ann(b), and
so [b] ≤ [a]. Since [a] is an atom in P, this proves that [b] = [a] or [b] = [0].
If [b] = [0], then b = 0. This is a contradiction. Therefore, we have [b] = [a].
Since a is the minimal element in [a], we have b = a, and so a is also an atom
in P.
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Using Proposition 4.5, we have the following theorem characterizing the
cut vertices of ΓE(P ).

Theorem 4.6. Let P be a poset. If [a] ∈ Atom(P ) and a is a

minimal element in [a], then [a] is a cut vertex in ΓE(P ) if and only if

Ũ(Atom(P )\{a}) 6= ∅.

Proof. ⇒: Without loss of generality, let [x] − [a] − [y] be a path of
shortest length from [x] to [y]. By Lemma 3.3, we have that x−a−y is a path

in Γ(P ). This concludes that x||a and y||a. If Ũ(Atom(P )\{a}) = ∅, then we
have u, v ∈ Atom(P ) with x||u and y||v. If u 6= v, then x− u− v− y is a path
in Γ(P ). Using Lemma 3.3 again, we have that [x] − [u] − [v] − [y] is a path
in ΓE(P ). If u = v, then [x]− [u]− [y] is a path in ΓE(P ). In either case, we
have a contradiction.

⇐: If x ∈ Ũ(Atom(P )\{a}), then [a] is the unique vertex which is adjacent
to [x]. This proves that [a] is a cut vertex.

In paper [12], Estaji and Khashyarmanesh proved that the clique number
of the graph Γ(L) is equal to the number of atoms in L, where Γ(L) is the zero-
divisor graph of a lattice L (Theorem 5.13). The following theorem shows that
the clique number of the graph ΓE(P ) is also equal to the number of atoms
in P.

Theorem 4.7. Let P be a poset. Then cl(ΓE(P )) = |Atom(P )|.

Proof. By Proposition 4.5, we have |Atom(P )| = |Atom(P )|. Since any
two atoms in P are adjacent, we have cl(ΓE(P )) ≥ |Atom(P )|. Suppose
|cl(ΓE(P ))| > |Atom(P )|. Let cl(ΓE(P )) = m and |Atom(P )| = n. Then
ΓE(P ) has a complete subgraph with vertices {[p1], [p2], . . . , [pm]}. Since [pi]
and [pj ] are adjacent in ΓE(P ), then atom(pi) ∩ atom(pj) = ∅, for all i 6= j.
This is impossible, since m > n. Hence, cl(ΓE(P )) = |Atom(P )|.

Let G be a graph and a, b ∈ V (G). Two vertices a and b are called
complements in G if a is connected to b, and no vertex in G is connected to
both a and b, denoted by a⊥b. We say that a graph G is complemented if
each vertex in G has a complement. The set of all complements in G induces
a subgraph of G, denoted by Gc. It is easy to see that G is complemented
if and only if G = Gc. Complements were studied for the zero-divisor graph
Γ(R) in [3] and for ΓE(R) in [2]. The next result is the analog of [2, Theorem
4.3].

Proposition 4.8. Let P be a poset. Then the following statements are

equivalent.

1) ΓE(P ) = ΓE(P )c.
2) ΓE(P ) is complemented.

3) Γ(P ) is complemented.
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Proof. 1) ⇔ 2) is obvious.
2) ⇒ 3) Suppose a ∈ P and [a] has a complement [b]. Then [a] 6= [b],

[a] 6= [0], [b] 6= [0] and L([a], [b]) = {[0]}. Therefore, a 6= b, a 6= 0, b 6= 0 and
L(a, b) = {0} by Lemma 3.3. If there exists a c ∈ P such that L(c, a) =
L(c, b) = {0}, then L([c], [a]) = L([c], [b]) = {[0]} by Lemma 3.3 and [c] /∈
{[a], [b]}. That is, [c] is adjacent to both [a] and [b]. This is a contradiction.
Hence b is a complement of a in Γ(P ).

3) ⇒ 2) Suppose [a] ∈ V (ΓE(P )) and a ⊥ b. Then we have L([a], [b]) =
{[0]}. If there exists [c] ∈ V (ΓE(P )) such that L([c], [a]) = L([c], [b]) = {[0]},
then L(c, a) = L(c, b) = {0} and c /∈ {a, b}. This is a contradiction. Hence [a]
has a complement [b].

Proposition 4.9. Let P be a poset and Atom(P ) = {a1, a2, . . . , an}.
Then

1) Γ(P ) is an n-partite graph.

2) ΓE(P ) is an n-partite graph.

Proof. 1) Define

Vi = {x | x ≥ ai and if j < i, there exists no aj such that x ≥ aj}.

Then V1, . . . , Vn are disjoint sets and P\{0} =
n⋃

i=1

Vi. Suppose x, y ∈ Vi, for

all i = 1, 2, . . . , n. Since x ≥ ai and y ≥ ai, there is no edge between x and y.
Hence, we get the desired result.

2) Let Vi = {[x] | x ∈ Vi}. If [x], [y] ∈ Vi, for all i = 1, 2, . . . , n, it is easy
to see that there is no edge between [x] and [y]. So ΓE(P ) is an n-partite
graph.

Remark 4.10. Proposition 4.9 can also be obtained directly from [13,
Theorem 4.7 and Theorem 2.9].

Theorem 4.11. Let P be a poset. Then ΓE(P ) is a complete bipartie

graph if and only if |Atom(P )| = 2.

Proof. ⇒: Suppose ΓE(P ) is a complete bipartite graph. If P has only
one atom, then ΓE(P ) is the null graph. Hence, |Atom(P )| ≥ 2. If there exist
three atoms a, b, c ∈ Atom(P ), we obviously have a triangle [a]− [b]− [c]− [a].
This is impossible, since a complete bipartite graph has no cycle of odd length.

⇐: Suppose Atom(P ) = {a, b}. Then ΓE(P ) is a bipartite graph by
Proposition 4.9.

1) If x ∈ P such that x ≥ a and x||b, then ann(x) = ann(a), i.e., [x] = [a].
2) Similarly, if x ∈ P such that x ≥ b and x||a, then [x] = [b].
3) If x ∈ P such that x ≥ a and x ≥ b, then ann(x) = {0}, i.e., [x] = [1].
In all cases, ΓE(P ) has two vertices {[a], [b]} and so we have ΓE(P ) = K2.
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By the proof of Theorem 4.11, we get the following corollary.

Corollary 4.12. Let P be a poset. Then ΓE(P ) = K2 if and only if

|Atom(P )| = 2.

Estaji and Khashyarmanesh ([12]) showed that two vertices a and b are
adjacent in a zero-divisor graph of a lattice if and only if atom(a)∩atom(b) = ∅
(Theorem 5.8). The following statement is similar to Theorem 5.8 in [12].

Theorem 4.13. Let P be a poset. Then

1) x and y are adjacent in Γ(P ) if and only if atom(x) ∩ atom(y) = ∅.
2) x and y are not adjacent in Γ(P ) if and only if atom(x)∩atom(y) 6= ∅.

Proof. 1) ⇒: If there exists a ∈ Atom(P ) such that a ∈ atom(x) ∩
atom(y), then a ≤ x and a ≤ y. This contradicts the fact that L(x, y) = {0}.

⇐: Suppose z ∈ L(x, y). If z 6= 0, then there exists an a ∈ Atom(P ) such
that a ≤ z. Hence, a ∈ atom(x) ∩ atom(y). This is a contradiction.

2) By 1), we obviously get 2).

By Theorem 4.13 and Proposition 3.4, we have the following theorem.

Theorem 4.14. Let P be a poset. Then

1) [x] and [y] are adjacent in ΓE(P ) if and only if for all x′ ∈ [x] and
y′ ∈ [y], we have atom(x′) ∩ atom(y′) = ∅.

2) [x] and [y] are not adjacent in ΓE(P ) if and only if for all x′ ∈ [x] and
y′ ∈ [y], we have atom(x′) ∩ atom(y′) 6= ∅.
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