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Abstract. We are interested in the regularity of positive, spherically
symmetric solutions of a class of quasilinear elliptic equations involving
the p-Laplace operator, with an arbitrary positive growth rate e0 on the
gradient on the right-hand side. We study the regularity of a class of strong
and weak solutions at the origin. Furthermore, we find some conditions
under which strong solutions are classical.

1. Introduction

This work is a continuation of studies of spherically symmetric solutions
of quasilinear elliptic equations in the ball, see [3–7]. Also, some results of
this studies has been applied in [2]. While in these references the emphasis
was put mostly on the problem of existence and nonexistence of solutions,
here we concentrate on the problem of regularity of solutions near the origin.
The main results are contained in Theorem 1.3 and Corollaries 1.5 and 1.7.
The proofs make use of a suitable integral representation of solutions (see [6]),
introduced in [5], and further extended in [3].

This paper provides some generalizations of the main results in [7], where
the problem of existence of positive symmetric strong solutions of quasilinear
elliptic equations has been studied, involving p-Laplacian in the ball. These
equations allowed simultaneous strong dependence of the right-hand on both
the unknown function and its gradient and also studied a posteriori regularity
of solutions. Here, we consider some qualitative properties of a class of strong
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and weak solutions of quasilinear elliptic equations with strong dependence on
the gradient such that the exponent on the gradient is any positive number.

In this paper we study the regularity of positive, spherically symmetric
solutions of the following quasilinear elliptic problem:







−∆pu = g̃0|x|
m + f̃0|∇u|e0 in B \ {0},

u = 0 on ∂B,
u(x) spherically symmetric and decreasing.

(1.1)

Here B is an open ball of radius R centered at the origin in R
N , 1 < p <

∞, and ∆pu = div(|∇u|p−2∇u) is the p-Laplacian. The Lebesgue measure
(volume) of B in R

N is denoted by |B|, and the volume of the unit ball is
denoted by CN . The dual exponent of p > 1 is defined by p′ = p

p−1 . We

assume that g̃0, f̃0 and e0 are positive real numbers. By a strong solution we
mean a function u ∈ C2(B \ {0}) ∩ C(B) which satisfies (1.1) pointwise.

In [4] we showed that the exponent e0 = p − 1 on the gradient in (1.1)
is critical in the following sense: if 0 < e0 < p − 1 problem (1.1) is solvable

for all positive g̃0 and f̃0 (which is known result), while for e0 > p − 1 we
have nontrivial existence and nonexistence regions in the positive quadrant
of (g̃0, f̃0)-plane. The main results in [4] have been given in the next two
theorems.

Theorem 1.1. (see [4]). Assume that m > max{−p,−N}, N ≥ 2.

(a) If 0 < e0 < p − 1 and m ≤ e0/(p − e0 − 1), then the problem (1.1)

possesses a strong solution for all positive g̃0 and f̃0.
(b) Let e0 > p− 1. Then there exist two explicit positive constants C̃1 and

C̃2, C̃1 < C̃2, such that
(b1) if m ≤ e0/(p− e0 − 1), m 6= −1 and if

(1.2) f̃0 g̃
e0

p−1
−1

0 ≤ C̃1,

then there exists a strong solution of quasilinear elliptic problem
(1.1);

(b2) if m < e0/(p− 1− e0) and

(1.3) f̃0 g̃
e0

p−1
−1

0 ≥ C̃2,

then problem (1.1) has no strong solutions.

The explicit values of C̃1 and C̃2 can be expressed in dependence on N ,
p, m, T and e0 (see [3, 4]).

We have proved the existence result stated in Theorem 1.1 by studying
the corresponding singular ODE, (see [3, 4]):

(1.4)
dω

dt
= g0γt

γ−1 + f0
ω(t)δ

tε
, t ∈ (0, T ),
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where γ, δ, ε, g0, f0, are positive constants, depending on N , p, m, f̃0, g̃0 and
e0.

For ε > 0 this equation is singular at t = 0. An existence result of ODE
(1.4) was obtained for ω in the set:

(1.5) DM = {ϕ ∈ C([0, T ]) : 0 ≤ ϕ(t) ≤ Mtγ},

for γ > 0 and for suitably chosen constant M , which enables to apply
Schauder’s fixed point theorem.

Following the terminology introduced in [3], we say that u is an ω- solution
of a quasilinear elliptic problem (1.1), if it is a strong solution which can be
obtained as an integral representation

u(x) =

∫ |B|

CN |x|N

ω(t)p
′−1

tp
′(1− 1

N
)
dt,(1.6)

generated by a solution ω of equation (1.4), with additional requirement that
0 ≤ ω(t) ≤ Mtγ , for suitably chosen constant M > 0. Furthermore, the
following relation holds for all r ∈ (0, R]:

(1.7) ũ′(r) = −|∇u| = −NC
1/N
N

(

ω(s)

s1−
1
N

)p′−1

, s = CN |x|N ,

where ũ(r) is defined by ũ(r) = u(x), r = |x|. Under some additional
conditions, strong solutions of (1.1) described above are also weak solutions
in the Sobolev space W 1,p(B).

Theorem 1.2 ([4]). Assume that N ≥ 2, m > max{−p,−N}, and m >

−1− N(p−1)
e0

. Then any ω-solution of quasilinear elliptic problem (1.1) is also
a weak solution.

2. Main results

In Theorem 1.1 we have proved more than just existence of strong
solutions: there exist ω-solutions of quasilinear elliptic problem (1.1). It is
easy to see that ω-solutions are in C∞(B \ {0}). Indeed, from (1.4) for any
solution ω ∈ D of (1.4) we can see inductively that ω ∈ Ck((0, T )) for all
k ∈ N. Using integral representation (1.6) for any strong ω-solution u we see
to be in Ck(B \{0}) for all k ∈ N, hence it is in C∞(B \{0}). The main result
of this section is Theorem 1.3 about the regularity of ω-solutions of (1.1) at
the origin. This result extends [7, Theorem 3.2]. Namely, in [7], the author in
discussion of regularity of solutions at the origin considered equations with the
natural growth on the gradient, that is, when the exponent on the gradient
is e0 = p. Here, we allow that the exponent on the gradient e0 could be
any positive number. Also in Theorem 1.3, and in Lemma 1.9, we give some
results about the higher order derivative of the solutions at the origin. As a
special case of this generalisation, for the second order derivative, with some
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other assumptions given in Lemma 1.6, we find the conditions under which
the strong solution is classical.

Theorem 1.3 (Regularity of ω-solutions at the origin). Let m >
max{−p,−N}, N ≥ 2, m ≤ e0

p−e0−1 and k ∈ N. Assume that for a

given k ≥ 2, we have m /∈ {0, N, 2N, . . . , (k − 2)N}. Let u be any ω-
solution of quasilinear elliptic problem (1.1) and let ũ be the function given
by ũ(r) = u(x), where r = |x|. Let dk be a real constant depends on m, p and
N defined in Lemma 1.9 below.

(a) If m < k(p− 1)− p and dk 6= 0, then limr→0 ũ
(k)(r) = (sign dk) · ∞

(b) If m ≥ k(p− 1)− p, then

(1.1) lim
r→0

ũ(k)(r) =

{

dkg̃
p′−1
0 if m = k(p− 1)− p,

0 if m > k(p− 1)− p.

We shall give the proof of this theorem in the next section.

Remark 1.4. We see that if m increases, then the regularity of ω-solution
u at x = 0 also increases. Let us mention that (see Lemma 1.9 below):

(1.2) d1 = −
1

(m+N)p′−1
< 0 and d2 = −

m+ 1

(p− 1)(m+N)p′−1
.

It follows that for m > −1 we have d2 < 0, while for m < −1 we have
d2 > 0. We can consider this case because N ≥ 2 andm > max{−p,−N}. We
have the following conclusion about the qualitative properties of ω-solution
of quasilinear elliptic problem (1.1):

(a) If m < −1, then there exists ε̃ > 0, such that ũ is strictly convex for
0 < r < ε̃, since then ũ′′(r) > 0 on (0, ε̃).

(b) If m > −1, then there exists ε̃ > 0, such that ũ is strictly concave for
0 < r < ε̃, since then ũ′′(r) < 0 on (0, ε̃).

In the case k = 1 we obtain from Theorem 1.3 a result on the sharpness of
the spike of the graph of the solution u of (1.1) at the origin in dependence
on the m. It is interesting that the sharpness of the spike does not depend of
the coefficient f̃0 near the gradient.

Corollary 1.5. Let m > max{−p,−N}, N ≥ 2.

(a) Assume that 0 < e0 < p− 1 and m ≤ e0
p−e0−1 . Let u be any ω-solution

of (1.1) and ũ(r) = u(x), for r = |x|. Then:

(1.3) lim
r→0

ũ
′

(r) =







−∞, for m < −1,

−( g̃0
−1+N )p

′−1, for m = −1,

0 for m > −1.
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(b) Assume that e0 > p − 1, m ≤ e0
p−e0−1 , and m 6= −1. Let u be any

ω-solution of (1.1) and ũ(r), defined below. Then:

(1.4) lim
r→0

ũ
′

(r) =

{

−∞, for m < −1,
0 for m > −1.

Proof. The proof follows directly from Theorem 1.3, using (1.1). For
m = −1 in the case for 0 < e0 < p− 1, we have

lim
r→0

ũ
′

(r) = −

(

g̃0
−1 +N

)p′−1

.

For k = 2 we obtain sufficient conditions for existence of a classical solution of
(1.1), which is a special case of Theorem 1.3. Let us recall that u is a classical
solution of (1.1) if u ∈ C2(B) and if u satisfies (1.1) pointwise.

We shall need the following lemma.

Lemma 1.6. Let u ∈ C2(B \ {0})∩C(B) and let ũ(r) = u(x), for r = |x|.
If limr→0 ũ

′′(r) = 0 and if |ũ′(r)| ≤ Crα, where α > 1, and C is some positive
constant, then u ∈ C2(B).

Corollary 1.7. Let k = 2, m 6= 0 and let m > max{−p,−N}, N ≥ 2,
m ≤ e0

p−e0−1 . Let u be any ω-solution of (1.1) and ũ(r) = u(x), for r = |x|.

Then:

lim
r→0

ũ
′′

(r) =







−∞, for −1 < m < p− 2,

−m+1
p−1 · ( g̃0

m+N )p
′−1, for m = p− 2,

0 for m > p− 2.

In particular for m > p−2 any ω-solution of (1.1) is also a classical solution.

Proof. The proof follows directly from Theorem 1.3, using (1.1) and
(1.2). For the ω- solution u to be also the classical solution, we have to prove
that all partial derivatives of the second order are continuous at x = 0. This
follows directly from Lemma 1.6 and Theorem 1.3, from which it follows that
for m > p− 2, we have ũ′′(r) → 0 when r → 0, and

1

r
ũ(r) ∼

1

r
K̃r

p

p′
(m+1)

= K̃r
m+1

p−1
−1 → 0,

where K̃ is some positive constant, if and only if m+1
p−1 − 1 > 0, that is, for

m > p− 2.

3. Proofs of Theorem 1.3 and of auxiliary results

Let us first introduce some notation. For γ ∈ R and n ∈ N we define
(γ)n = γ(γ− 1)(γ− 2) . . . (γ−n+1) and (γ)0 = 1. For any two real functions

a, b : (0, T ] → R, we write a(t) ∼ b(t) when t → 0, if limt→0
a(t)
b(t) = 1.

The next two lemmas will be used in the proof of Theorem 1.3.
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Lemma 1.8. Assume that δ > 0, δ > ε−1
γ + 1, γ > 0, N ≥ 2. Let ω,

0 ≤ ω(t) ≤ Mtγ be a solution of (1.4). Assume that n ∈ N ∪ {0} and for
n ≥ 3 we assume that γ /∈ {1, 2, . . . , n− 1}. Then

(1.1) ω(n)(t) = (γ)nt
γ−ng0 +O(tγδ−ε+1−n), when t → 0.

In particular:

(1.2) ω(n)(t) ∼ (γ)nt
γ−ng0, when t → 0.

Lemma 1.9. Let m > max{−p,−N}, N ≥ 2, m ≤ e0
p−e0−1 and k ∈ N. If

k ≥ 2, we assume that m /∈ {0, N, 2N, · · · (k− 2)N}. Then for any ω-solution
u of quasilinear elliptic problem (1.1) we have

(1.3) lim
r→0

ũ(k)(r)

r
p′

p
(m+1)−k+1

= dkg̃
p′−1
0 ,

where dk = dk(m,N, p) is a real constant, depending on k, m, p and N and
the function ũ : (0, R] → R is given by ũ(r) = u(x), r = |x|, r ∈ (0, R].

The proofs of the results of Lemmas 1.8 and 1.9 easily follow by induction,
so we omit it. In the proof of Lemma 1.9 we can obtain the explicit values of
the real constant dk depending on k, m, p and N . For some conclusion about
the qualitative properties of ω-solutions of quasilinear elliptic problem (1.1),
we have the values of d1 and d2:

d1 = −
1

(m+N)p′−1
< 0 and d2 = −

m+ 1

(p− 1)(m+N)p′−1
.

Now we prove Theorem 1.3.

Proof of Theorem 1.3. The claim follows directly from Lemma 1.9.

Namely, fromm < k(p−1)−p it follows that p′

p (m+1)−(k−1) = m+1
p−1 −k+1 <

0. Then from (1.3) and dk 6= 0 we have that limr→0 ũ
(k)(r) = (sign dk) · ∞.

If m = k(p − 1) − p (which is equivalent with p′

p (m + 1) − k + 1 = 0), then

limr→0 ũ
(k)(r) = dkg̃

p′−1
0 . For m > k(p− 1)− p we have limr→0 ũ

(k)(r) = 0.

Now we prove Lemma 1.6.

Proof of Lemma 1.6. It suffices to see that all partial derivatives of
the second order of the function u are continuous at x = 0. Since r = |x| =
√

x2
1 + x2

2 + · · ·+ x2
N , we have

∂2u

∂x2
i

=
∂

∂xi

(

ũ′(r)
xi

r

)

= ũ′′(r)
x2
i

r2
+ ũ′(r)

r2 − x2
i

r3
.
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From
x2
i

r2 =
x2
i

x2
1
+···+x2

N

≤ 1, it follows that

ũ′′(r)
x2
i

r2
→ 0, when r → 0.

Also,

0 ≤
r2 − x2

i

r3
≤

r2

r3
=

1

r
.

We conclude that |ũ′(r)| ≤ Crα, where α > 1 and C is some positive constant.
We see that 1

r |ũ
′(r)| ≤ 1

rCrα = Crα−1. Since α > 1, we have

ũ′(r)
r2 − x2

i

r3
→ 0, when r → 0.

For any i, j = 1, . . . , N we obtain the same conclusion for

∂2u

∂xi∂xj
= ũ′′(r)

xjxi

r2
− ũ′(r)

xixj

r3
.

Since
∣

∣

xixj

r2

∣

∣ ≤ 1, we have

ũ′′(r)
xjxi

r2
− ũ′(r)

xixj

r3
→ 0, when r → 0.
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[3] L. Korkut, M. Pašić and D. Žubrinić, A singular ODE related to quasilinear elliptic

equations, Electron. J. Differential Equations 2000, No. 12, 37 pp.
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Department of Mathematics, Faculty of Economics
University of Zagreb
Kennedyev trg 6, 10000 Zagreb
Croatia
E-mail : jkraljevic@efzg.hr
Received : 11.10.2013.


