Non-metric continua and multi-valued mappings

IVAN LONČAR*

Abstract. A continuum is an arboroid if it is hereditarily unicoherent and arcwise connected. A metric arboroid is a dendroid. A generalized dendrite is a locally connected arboroid. Among other things, we shall prove that a locally connected continuum X is a generalized dendrite if and only if X has the fixed point property for continuous, closed set-valued mappings.

Key words: arcwise connected, arboroid, dendrite, hyperspace, inverse system

AMS subject classifications: Primary 54B20, 54F15; Secondary 54B35

Received January 22, 2007 Accepted April 11, 2007

1. Introduction

All spaces in this paper are Tychonoff and all mappings are continuous. We shall use the notion of an inverse system as in [6, pp. 135-142]. An inverse system is denoted by $\mathbf{X} = \{X_a, p_{ab}, A\}$.

Let X be a space. We define its hyperspaces as the following sets:

$$2^{X} = \{F \subseteq X : F \text{ is closed and nonempty}\},\$$

$$\mathcal{C}(X) = \{F \in 2^{X} : F \text{ is connected}\}.$$
 (1)

The topology on 2^X is the Vietoris topology and $\mathcal{C}(X)$ is a subspaces of 2^X .

Let X and Y be the spaces and let $f : X \to Y$ be a mapping. Define $2^f : 2^X \to 2^Y$ by $2^f(F) = f(F)$ for $F \in 2^X$. By [13, 5.10] 2^f is continuous and $2^f(\mathcal{C}(X)) \subset \mathcal{C}(Y)$. The restriction $2^f|\mathcal{C}(X)$ is denoted by $\mathcal{C}(f)$.

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of compact spaces with natural projections $p_a : \lim X \to X_a, a \in A$. Then $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$ and $\mathcal{C}(\mathbf{X}) = \{\mathcal{C}(X_a), \mathcal{C}(p_{ab}), A\}$ are inverse systems.

Lemma 1. [9, Lemma 2] Let $X = \lim \mathbf{X}$. Then $2^X = \lim 2^{\mathbf{X}}$ and $\mathcal{C}(X) = \lim \mathcal{C}(\mathbf{X})$.

A function $F: X \to 2^Y$ is upper semi-continuous at a point $p \in X$ provided that for every open set $V \subset Y$ such that $F(p) \subset V$ there is an open set $U \subset X$

^{*}Faculty of Organization and Informatics Varaždin, University of Zagreb, Pavlinska 2, HR-42000 Varaždin, e-mails: ivan.loncarl@vz.htnet.hr, ivan.loncar@foi.hr

such that $p \in U$ and satisfying $F(x) \subset V$ for all $x \in U$. The function F is said to be *upper semi-continuous* if it is upper semi-continuous at each of its points.

We say that a function $F: X \to 2^Y$ is *lower semi-continuous at a point* $x_0 \in X$ provided for every open $G \subset Y$ such that $F(x_0) \cap G \neq \emptyset$ there exists a neighbourhood $U(x_0)$ of x_0 such that $F(x) \cap G \neq \emptyset$ for every $x \in U(x_0)$. The function F is said to be *lower semi-continuous* if it is lower semi-continuous at each of its points.

If $F: X \to 2^Y$ is both upper and lower semi-continuous, then F is said to be *continuous*.

Let X be a space and C a class of set-valued mappings of X into itself. We say that X has the fixed point property for C if, for each $f \in C$, there exists $x \in X$ such that $x \in f(x)$.

Let A be a partially ordered directed set. We say that a subset $A_1 \subset A$ majorates [4, p. 9] another subset $A_2 \subset A$ if for each element $a_2 \in A_2$ there exists an element $a_1 \in A_1$ such that $a_1 \geq a_2$. A subset which majorates A is called *cofinal* in A. A subset of A is said to be a *chain* if every two elements of it are comparable. The symbol sup B, where $B \subset A$, denotes the lower upper bound of B (if such an element exists in A). Let $\tau \geq \aleph_0$ be a cardinal number. A subset B of A is said to be τ -closed in A if for each chain $C \subset B$, with $|B| \leq \tau$, we have $\sup C \in B$, whenever the element $\sup C$ exists in A. Finally, a directed set A is said to be τ -complete if for each chain C of A of elements of A with $|C| \leq \tau$, there exists an element $\sup C$ in A.

Suppose that we have two inverse systems $\mathbf{X} = \{X_a, p_{ab}, A\}$ and $\mathbf{Y} = \{Y_b, q_{bc}, B\}$. A morphism of the system X into the system \mathbf{Y} [4, p. 15] is a family $\{\varphi, \{f_b : b \in B\}\}$ consisting of a nondecreasing function $\varphi : B \to A$ such that $\varphi(B)$ is cofinal in A, and of continuous maps $f_b : X_{\varphi(b)} \to Y_b$ defined for all $b \in B$ such that the following

$$\begin{array}{ccc} X_{\varphi(b)} & \stackrel{p_{\varphi(b)\varphi(c)}}{\longleftarrow} & X_{\varphi(c)} \\ \downarrow f_b & \downarrow f_c \\ Y_b & \stackrel{q_{bc}}{\longleftarrow} & Y_c \end{array} \tag{2}$$

diagram commutes. Any morphism $\{\varphi, \{f_b : b \in B\}\} : \mathbf{X} \to \mathbf{Y}$ induces a continuous map, called the *limit map of the morphism*

$$\lim\{\varphi, \{f_b : b \in B\}\} : \lim \mathbf{X} \to \lim \mathbf{Y}$$
(3)

In the present paper we deal with the inverse systems defined on the same indexing set A. In this case, the map $\varphi : A \to A$ is taken to be the identity and we use the following notation $\{f_a : X_a \to Y_a; a \in A\} : \mathbf{X} \to \mathbf{Y}$.

An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be σ -directed if for each sequence $a_1, a_2, ..., a_k, ...$ of members of A there is an $a \in A$ such that $a \ge a_k$ for each $k \in \mathbb{N}$.

We say that an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is factorizing [4, p. 17] if for each real-valued function $f : \lim \mathbf{X} \to \mathbb{R}$ there exists an $a \in A$ and a function $f_a : X_a \to \mathbb{R}$ such that $f = f_a p_a$.

An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be τ -continuous [4, p. 19] if for each chain B in A with $|B| < \tau$ and $\sup B = b$, the diagonal product $\Delta \{p_{ab} : a \in B\}$ maps the space X_b homeomorphically into the space $\lim \{X_a, p_{ab}, B\}$.

Let us recall that the weight of a space X is the least cardinal number which is the cardinal number of a basis of open sets for the topology of X; we denote the weight of X by w(X). Let $\omega_{\tau(X)}$ be the initial ordinal number of cardinality of w(X). Let W(X) be the set of all ordinal numbers $\alpha < \omega_{\tau(X)}$.

An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be a τ -system [4, p. 19] if:

- a) $w(X_a) \leq \tau$ for every $a \in A$,
- **b)** The system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is τ -continuous,

c) The indexing set A is τ -complete.

If $\tau = \aleph_0$, then τ -system is called a σ -system. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is a σ -system of compact spaces, then each X_a is metrizable. The following theorem is called the *Spectral Theorem* [4, p. 21].

Theorem 1. [4, Theorem 1.3.4, p. 19]. If a τ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ with surjective limit projections is factorizing, then each map of its limit space into the limit space of another τ -system $\mathbf{Y} = \{Y_a, q_{ab}, A\}$ is induced by a morphism of cofinal and τ -closed subsystems. If two factorizing τ -systems with surjective limit projections and the same indexing set have homeomorphic limit spaces, then they contain isomorphic cofinal and τ -closed subsystems.

Let us remark that the requirement of surjectivity of limit projections of systems in *Theorem 1* is essential [4, p. 21].

The Spectral Theorem and the following theorem are the main tools of this paper.

Theorem 2. [10, Theorem 4, p. 202]. Let X be compact Hausdorff space such that $w(X) \ge \aleph_1$. There exists an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that X is homeomorphic to $\lim \mathbf{X}$ and A is the set of all countable subsets of W(X) ordered by inclusion.

A space X is said to be *rim-metrizable* if it has a basis \mathcal{B} such that Bd(U)) is metrizable for each $U \in \mathcal{B}$. Equivalently, a space X is rim-metrizable if and only if for each pair F, G of disjoint closed subsets of X there exists a metrizable closed subset of X which separates F and G.

In the sequel we shall use the following theorem.

Theorem 3. [10, Theorem 10, p. 207]. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -system of compact spaces and surjective bonding mappings p_{ab} . If $\lim \mathbf{X}$ is a locally connected space (rim-metrizable continuum), then there exists an $a \in A$ such that the projection p_b is monotone, for every $b \geq a$.

2. Decomposable continua and multi-valued mappings

A continuum X is said to be *decomposable* provided that X can be written as the union of two proper subcontinua. A continuum X is said to be *hereditarily decomposable* provided that each subcontinuum of X is decomposable.

A connected topological space X is said to be *unicoherent* provided that whenever A and B are closed, connected subsets of X such that $X = A \cup B$, then $A \cap B$ is connected. A connected topological space is said to be *hereditarily unicoherent* provided that each of its closed, connected subsets is unicoherent. **Proposition 1.** Every rim-metrizable hereditarily decomposable continuum is the limit of a σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric hereditarily decomposable continua X_a .

Proof. By Theorem 2 we infer that there is an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that X is homeomorphic to lim \mathbf{X} . It follows that each X_a is metric since \mathbf{X} is a σ -system. Moreover, there exists a subset B cofinal in A such that the projection p_b is monotone for every $b \in B$ (Theorem 3). From [3, Theorem XIV, p. 217] it follows that each X_b is hereditarily decomposable since each p_b is monotone. \Box

Theorem 4. [2, (2.8'), p. 334]. Let X be a hereditarily decomposable metric continuum. If X is not hereditarily unicoherent, then there exists an upper semicontinuous mapping $f: X \to C(X)$ which is fixed point free.

We shall prove the following generalization.

Theorem 5. Let X be a hereditarily decomposable non-metric locally connected (or rim-metrizable) continuum. If X is not hereditarily unicoherent, then there exists an upper semi-continuous mapping $f: X \to C(X)$ which is fixed point free.

Proof. By Theorem 3 there exists an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that X is homeomorphic to $\lim \mathbf{X}$ and each projection $p_a: X \to X_a$ is a monotone surjection. Moreover, each X_a is metric since **X** is a σ -system. Let us prove that each X_a is hereditarily decomposable. This follows from [3, Theorem XIV, p. 217] since each p_b is monotone. From [15] it follows that there exists a subset B of A such that for each $b \in B$ the continuum X_b is not hereditarily unicoherent. From Theorem 4 it follows that there exists an upper semi-continuous mapping $f_b : X_b \to C(X_b)$ which is fixed point free. Define $f : X \to C(X)$ by $f(x) = p_b^{-1} f_b p_b(x)$ since it is obvious that f is a continuum-valued mapping. Let us prove that f is upper semicontinuous. Let x be any point in X and U open set in X such that $f(x) \subset U$. This means that $p_b^{-1}(f_b p_b(x)) \subset U$. From the fact that p_b is closed, it follows that there is an open set U_b such that $f_b p_b(x) \subset U_b$ and $p_b^{-1}(U_b) \subset U$. There exists an open set V_b containing $p_b(x)$ such that $y \in V_b$ implies $f(y) \subset U_b$. Now, the set $V = p_b^{-1}(V_b)$ has the property that $x \in V$ implies $p_b^{-1}(f_b p_b(x)) \subset U$ and, consequently, $x \in V$ implies $f(x) \subset U$. Hence, f is upper semi-continuous. Finally, let us prove that f is fixed point free. Suppose that there exists a point $x \in X$ such that $x \in f(x)$, i.e., $x \in p_b^{-1}(f_b p_b(x))$. It follows that $p_b(x) \in f_b p_b(x)$, i.e., $p_b(x)$ is the fixed point of f_b which is impossible since $f_b: X_b \to C(X_b)$ is fixed point free.

3. Arcwise connected continua and multi-valued mappings

A continuum X with precisely two non-separating points is called a *generalized arc*. A continuum X is said to be *arcwise connected* provided for every pair x, y of points of X there is a generalized arc with the end points x, y.

The following result is known.

Theorem 6. [22, Theorem 2]. Let X be an arcwise connected metric continuum. If X is not hereditarily unicoherent then there exists an upper semi-continuous mapping $f : X \to C(X)$ which is fixed point free.

We shall generalize this result as follows.

Theorem 7. Let X be an arcwise connected non-metric locally connected (or rim-metrizable) continuum. If X is not hereditarily unicoherent, then there exists

an upper semi-continuous mapping $f: X \to C(X)$ which is fixed point free.

Proof. By Theorem 3 there exists an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric continua X_a such that X is homeomorphic to $\lim \mathbf{X}$ and each projection $p_a: X \to X_a$ is a monotone surjection. Let us prove that each X_a is connected by arcs. Let x_a, y_a be a pair of points in X_a . There exists a pair of points in X such that $x_a = p_a(x)$ and $y_a = p_a(y)$. Moreover, there exists a generalized arc L in X such that $x, y \in L$. This means that $x_a, y_a \in p_a(L)$. Finally, from [19] it follows that $p_a(L)$ is arcwise connected. Hence, each X_a is connected by arcs. From [15] it follows that there exists a subset B of A such that for each $b \in B$ the continuum X_b is not hereditarily unicoherent. By virtue of Theorem 6 there exists an upper semi-continuous mapping $f_b : X_b \to C(X_b)$ which is fixed point free. Define $f : X \to C(X)$ by $f(x) = p_b^{-1} f_b p_b(x)$ since it is obvious that f is a continuum-valued mapping. Let us prove that f is upper semi-continuous. Let x be any point in X and U open set in X such that $f(x) \subset U$. This means that $p_b^{-1}(f_b p_b(x)) \subset U$. From the fact that p_b is closed, it follows that there is an open set U_b such that $f_b p_b(x) \subset U_b$ and $p_b^{-1}(U_b) \subset U$. There exists an open set V_b containing $p_b(x)$ such that $y \in V_b$ implies $f(y) \subset U_b$. Now, the set $V = p_b^{-1}(V_b)$ has the property that $x \in V$ implies $p_b^{-1}(f_b p_b(x)) \subset U$ and, consequently, $x \in V$ implies $f(x) \subset U$. Hence, f is upper semi-continuous. Finally, let us prove that f is fixed point free. Suppose that there exists a point $x \in X$ such that $x \in f(x)$, i.e., $x \in p_b^{-1}(f_b p_b(x))$. It follows that $p_b(x) \in f_b p_b(x)$, i.e., $p_b(x)$ is the fixed point of f_b which is impossible since $f_b: X_b \to C(X_b)$ is fixed point free.

From *Theorems* 7 and Theorem 1 [22] we have the following corollary.

Corollary 1. Let X be an arcwise connected non-metric locally connected (or rim-metrizable) continuum. A necessary and sufficient condition that X has the fixed point property for the class of upper semi-continuous, continuum valued mappings is that X is hereditarily unicoherent.

4. Arboroids

A continuum is an *arboroid* if it is hereditarily unicoherent and arcwise connected. A metric arboroid is a dendroid.

Now we shall prove the expanding theorem of arboroids into inverse systems of dendroids.

A chain $\{U_1, ..., U_n\}$ is a finite collection of sets U_i such that $U_i \cap U_j \neq \emptyset$ if and only if $|i - j| \leq 1$. A continuum X is said to be *chainable* or *arc-like* if each open covering of X can be refined by an open covering $u = \{U_1, ..., U_n\}$ such that $\{U_1, ..., U_n\}$ is a chain.

If $\{A_1, ..., A_n\}$ is a chain and A_1 intersects A_n , then it is a circular chain. A collection \mathcal{B} of sets is *coherent* if, for each nonempty proper subcollection \mathcal{C} of \mathcal{B} , there is an element of \mathcal{C} that intersects an element of $\mathcal{B} \setminus \mathcal{C}$.

A finite coherent collection \mathcal{T} of open sets is a *tree chain* if no three elements of \mathcal{T} have a point in common and no subcollection of \mathcal{T} is a circular chain.

A metric continuum M is *tree-like* if for each positive number ε , there is a tree chain with mesh less than ε covering M. Every tree-like continuum is hereditarily unicoherent.

I. Lončar

A Hausdorff continuum M is *tree-like* if for each open cover u of X, there is a tree chain covering M which refines u. It follows that a continuum X is tree-like if and only if for each open cover u of X there is a metric tree (i.e., a connected acyclic graph) X_u and an u-mapping $f_u : X \to X_u$ (the inverse image of each point is contained in a member of u).

Theorem 8. Every non-metric arboroid X is the limit of an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of dendroids.

Proof. By [5, Corollary, p.20] X is tree-like. Theorem 4 of [12, p. 19] implies that for a tree-like continuum X there is a σ -system $X = \{X_a, p_{ab}, A\}$ of metric tree-like continua X_a such that $X = \lim X$. Moreover, every X_a is hereditarily unicoherent since every tree-like continuum is hereditarily unicoherent. Let us prove that every X_a is arcwise connected. Let x_a, y_a be a pair of points in X_a . There exists a pair of points in X such that $x_a = p_a(x)$ and $y_a = p_a(y)$. Moreover, there exists a generalized arc L in X such that $x, y \in L$. This means that $x_a, y_a \in p_a(L)$. From [19] it follows that $p_a(L)$ is arcwise connected. Hence, each X_a is connected by generalized arcs. Finally, each X_a is a dendroid.

A λ -arboroid is an hereditarily decomposable and hereditarily unicoherent continuum. For λ -arboroids we have the following result.

Theorem 9. Every non-metric rim-metrizable λ -arboroid X is the limit of an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of λ -dendroids.

Proof. By [5, Corollary, p.20] X is tree-like. Theorem 4 of [12, p. 19] implies that there is a σ -system $X = \{X_a, p_{ab}, A\}$ of metric tree-like continua X_a such that $X = \lim X$. Moreover, every X_a is hereditarily unicoherent since every every tree-like continuum is hereditarily unicoherent. Using *Theorem 3* we may assume that each projection $p_a : \lim \mathbf{X} \to X_a$ is monotone. In order to complete the proof it suffices to prove that X is hereditarily decomposable. This follows from [3, Theorem XIV, p. 217] since p_a is monotone.

We close this section with the following result.

Theorem 10. Let X be a non-metric rim-metrizable and arcwise connected continuum. The following conditions are equivalent:

(a) X has the fixed point property for the class of upper semi-continuous, continuum valued mappings,

(b) X is an arboroid.

Proof. Apply *Theorem 1*.

5. Dendrites

A *generalized dendrite* is a locally connected arboroid. In this section we shall use the following results.

Theorem 11. [8]. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of (hereditarily) locally connected continua and surjective bonding mappings. Then $X = \lim \mathbf{X}$ is (hereditarily) locally connected. Moreover, if each X_a is a generalized arc, then $\lim \mathbf{X}$ is a generalized arc.

Lemma 2. Let $f : X \to Y$ be a monotone surjection. If X is a generalized arc, then Y is a generalized arc.

Proof. See [21, (1.1), p. 165].

Theorem 12. [11, Corollary 2.7, p. 233]. A continuum X is a generalized dendrite if and only if there exists an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of dendrites X_a and monotone bonding mappings p_{ab} such that X is homeomorphic to $\lim \mathbf{X}$.

Corollary 2. [11, Theorem 2.8, p. 233]. Each generalized dendrite is hereditarily locally connected.

Theorem 13. A continuum X is a generalized dendrite if and only if it is hereditarily locally connected and hereditarily unicoherent.

In this section we generalize the following theorem.

Theorem 14. [18]. A Peano continuum X has the fixed point property for continuous closed set-valued mappings if and only if X is a dendrite.

We start with the following lemma.

Lemma 3. A generalized dendrite X has the fixed point property for continuous mappings $f: X \to 2^X$, i.e., for continuous closed set-valued mappings.

Proof. By Theorem 12 there exists an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric dendrites X_a and monotone bonding mappings p_{ab} such that X is homeomorphic to lim **X**. By Lemma 1 we have the inverse system $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$ whose limit is 2^X . Let $f: X \to 2^X$ be a continuous mapping. From Theorem 1 it follows that there exists a subset B cofinal in A such that for every $b \in B$ there exists a continuous mapping $f_b: X_b \to 2^{X_b}$ with the property that $\{f_b: b \in B\}$ is a morphism which induce f. From Theorem 14 it follows that the set $F_b \subset X_b, b \in B$, of fixed points of f_b is non-empty. Let us prove that F_b is a closed subset of X_b . We shall prove that $U_b = X_b \setminus F_b$ is open. Let $x_b \in U_b$. This means that x_b and $f_b(x_b)$ are disjoint closed subset of X_b . By the normality of X_b there exists a pair of open sets U, V such that $x \in U$ and $F_b \subset V$. From the upper semi-continuity of f_b it follows that there exists an open set $W \subset U$ such that for every $x \in W$ we have $f(x) \subset V$. Hence, U_b is open and, consequently, F_b is closed. Now, we shall prove that the collection $\{F_b, p_{bc} | F_c, B\}$ is an inverse system. To do this we have to prove that if c > b, then $p_{bc}(F_c) \subset F_b$. Let x_c be a point of F_c . This means that $x_c \in f_c(x_c)$. Hence, $p_{bc}(x_c) \in p_{bc}(f_c(x_c)) = f_b p_{bc}(x_c)$. We conclude that the point $x_b = p_{bc}(x_c)$ has the property $x_b \in f_b(x_b)$, i.e., $x_b = p_{bc}(x_c) \in F_b$. Finally, $p_{bc}(F_c) \subset F_b$ and $\{F_b, p_{bc} | F_c, B\}$ is an inverse system with non-empty limit. Let $F = \lim \{F_b, p_{bc} | F_c, B\}$. In order to complete the proof we shall prove that for every $x \in F$ we have $x \in f(x)$. Now we have $p_b(x) \in F_b$, i.e., $p_b(x) \in f_b(p_b(x)) = p_b f(x)$, for every $b \in B$. It follows that $x \in f(x)$ since $x \notin f(x)$ implies that there is a $b \in B$ such that $p_b(x) \notin p_b f(x)$. We conclude that f has the fixed point property.

The obtained results can be summarized as follows.

Theorem 15. If X is a locally connected arcwise connected continuum, then the following statements are equivalent.

- (1) X is a generalized dendrite,
- (2) X has the fixed point property for the class of continuous, closed set-valued mappings,

(3) X has the fixed point property for the class of upper semi-continuous, continuum-valued mappings.

Proof. (1) \Rightarrow (2). Apply Lemma 3. (2) \implies (3). Obviously. (3) \implies (1). Apply Lemma 1.

Corollary 3. If X is a hereditarily locally connected continuum, then the following statements are equivalent.

- (1) X is a generalized dendrite,
- (2) X has the fixed point property for the class of continuous, closed set-valued mappings,
- (3) X has the fixed point property for the class of upper semi-continuous, continuum-valued mappings,

Proof. Every hereditarily locally connected continuum X is a continuous image of a generalized arc [17]. This means that X is arcwise connected [19]. Apply *Theorem 15.* \Box

Theorem 16. For a locally connected continuum X the following conditions are equivalent:

- a) X is a dendrite,
- **b)** for every two upper semi-continuous functions $F_1 : X \to C(X)$ and $F_2 : X \to C(X)$ there are two points x_1 and x_2 in X such that $x_1 \in F_2(x_2)$ and $x_2 \in F_1(x_1)$.

Proof. a) \implies b). Now X has property (3) from Theorem 15. Let F_1 : $X \to C(X)$ and $F_2: X \to C(X)$ be upper semi-continuous. Define the mapping $F_2F_1: X \to C(X)$ by $F_2F_1(x) = \bigcup \{F_2(y): y \in F_1(x)\}$ [2, (4.1), p. 337]. It is obvious that the definition of F_2F_1 is correct. By (3) of Theorem 15 there is a point $x_1 \in F_2F_1(x_1)$. This means that there is a point $x_2 \in F_1(x_1)$ such that $x_1 \in F_2(x_2)$. $b) \implies a$. Let $F: X \to C(X)$ be an upper semi-continuous function. Set $F_1 = F$ and $F_2(x) = x$. By b) there exists x_1 such that $x_1 \in F_2(x_2) = x_2$ (i.e., $x_1 = x_2$) and $x_2 \in F_1(x_1) = F(x_1)$. It follows that $x_1 \in F(x_1)$. By (3) of Theorem 15 we conclude that X is a generalized dendrite. \Box

A continuum X is hereditarily unicoherent if and only if for each closed subset A of there exists a unique continuum M_A such that M_a is irreducible about A. Obviously, $M_A = \bigcap \{ M \in C(X) : A \subset M \}$. This characterization of hereditarily unicoherent continua induces a natural function $f : 2^X \to C(X)$ defined by $f(A) = M_A$.

Theorem 17. [7, Theorem 1, p. 3]. The function $f : 2^X \to C(X)$ is continuous if and only if X is a dendrite.

In another formulation [1, Theorem 1.2 (1)(13), pp. 230-231] we have the following result.

Theorem 18. A hereditarily unicoherent continuum is a dendrite if and only if the function $f: 2^X \to C(X)$ is continuous.

Now we shall prove the following generalization of this result.

Theorem 19. A hereditarily unicoherent continuum is a generalized dendrite if and only if the function $f: 2^X \to C(X)$ is continuous.

Proof. The only if part. If X is a generalized dendrite, then it is locally connected and $f: 2^X \to C(X)$ is continuous. See the proof of Theorem 1 in [7, p. 3].

The if part. If $f: 2^X \to C(X)$ is continuous, then X is locally connected [7, Theorem 1, p.3]. It remains to prove that X is arcwise connected. By Theorems 2 and 3 there exists a σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric continua and monotone surjection p_a such that X is homeomorphic to $\lim \mathbf{X}$. Each X_a is locally connected [23, Lemma 1.5, p. 70] and, consequently, arcwise connected. Let us prove that each X_a is hereditarily unicoherent. If K and L are subcontinua of X_a , then $p_a^{-1}(K)$ and $p_a^{-1}(L)$ are subcontinua of X since p_a is monotone. This means that $p_a^{-1}(K) \cap$ $p_a^{-1}(L)$ is a subcontinuum of X since X is hereditarily unicoherent. It follows that $p_a(p_a^{-1}(K) \cap p_a^{-1}(L)) = K \cap L$ is a subcontinuum of X_a . Hence, X_a is hereditarily unicoherent and, consequently, it is a metric dendrite. Now we are ready to prove that X is arcwise connected. Let $x, y, x \neq y$, be a pair of points of X. There exists an $a \in A$ such that for every $b \ge a$ we have $p_b(x) \ne p_b(y)$. There exists a unique arc L_b in X_b with end points $p_b(x), p_b(y)$ since X_b is a dendrite. If $c \ge b$, then $p_{bc}(L_c) = L_b$ since $p_{bc}(L_c)$ is an arc by 2 and X_b is hereditarily unicoherent. Now we have a σ -directed inverse system $\mathbf{L} = \{L_b, p_{bc} | L_c, c \geq b\}$ of arcs. By Theorem 11 $L = \lim \mathbf{Y}$ is a generalized arc. Hence, X is arcwise connected.

A continuum is said to be *selectible* provided that there exists a mapping $s : C(X) \to X$ such that $s(A) \in A$ for each continuum $A \subset X$ [14, p. 253].

For metric continua we have the following result [1, Theorem 1.2 (1)(18), pp. 230-231]. See also [16, Exercise 10.53 (c), p. 190].

Theorem 20. A locally connected continuum is a dendrite if and only if it is selectible.

We shall prove the following generalization of this result.

Theorem 21. A locally connected continuum X is a generalized dendrite if and only if it is selectible.

Proof. The only if part. If X is a generalized dendrite, then we may define a continuous selection $s : C(X) \to X$ as in metric settings. See [16, Exercise 10.53 (b), p.190].

The if part. Suppose now that X is a locally connected continuum and there is a continuous selection $s: C(X) \to X$: The proof requires the following steps.

Step 1. A selection $s : C(X) \to X$ is a surjection.

Step 2. X is arcwise connected. By [20] C(X) is arcwise connected. Hence, X is arcwise connected [19].

Step 3. X is hereditarily unicoherent. We shall use the inverse system method since the proof given in [14, pp. 256-257.] is not valid in non-metric settings. By *Theorem* 2 there exists a σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric continua X_a such that X is homeomorphic to lim \mathbf{X} . We may assume that the projection p_a are monotone surjections (*Theorem 3*). From [23, Lemma 1.5, p. 70] it follows that each X_a is locally connected since X is locally connected. Using *Theorem 1* for $\tau = \aleph_0, \mathbf{X}$, $C(\mathbf{X}) = \{C(X_a), C(p_{ab}), A\}$ and $s : C(X) \to X$ we obtain a collection of mappings $\{s_b : C(X_b) \to X_b; b \in B\} : C(\mathbf{X}) \to \mathbf{X}$, where B is cofinal in A. Let us prove that I. LONČAR

each s_b is a selection. For every subcontinuum K_b of X_b (i.e., $K_b \in C(X_b)$) there is a subcontinuum K of X (i.e., $K \in C(X)$) such that $C(p_b)(K) = K_b$ or $p_b(K) = K_b$. From the commutativity of the diagram

$$C(X_b) \stackrel{C(p_b)}{\leftarrow} C(X)$$

$$\downarrow s_b \qquad \qquad \downarrow s$$

$$X_b \stackrel{p_b}{\leftarrow} X$$

$$(4)$$

it follows that $p_b s(K) = s_b(C(p_b)(K)) = s_b(K_b)$. Since $s(K) \in K$ we conclude that $p_b s(K) \in p_b(K) = K_b$ and $s_b(K_b) \in K_b$. Hence, each s_b is a selection.

Final Step. From *Theorem 20* it follows that each X_b is a metric dendrite. Applying *Theorem 12* we conclude that X is a generalized dendrite. \Box

Acknowledgement. The author is very grateful to the referee for his/her help and valuable suggestions.

References

- J. J. CHARATONIK W. J. CHARATONIK, *Dendrites*, Aportaciones Mat. Comun. 22(1998), 227-253.
- [2] J. J. CHARATONIK, The fixed point property for set-valued mappings of some acyclic curves, Colloq. Math. 26(1972), 331-338.
- [3] J. J. CHARATONIK, Confluent mappings and unicoherence of continua, Fund. Math. 56(1964), 213-220.
- [4] A. CHIGOGIDZE, Inverse Spectra, Elsevier, 1996.
- [5] H. COOK, Tree-likeness of dendroids and λ -dendroids, Fund. Math. **68**(1970), 19-22.
- [6] R. ENGELKING, General Topology, PWN, Warszawa, 1977.
- [7] J. T. GOODYKOONTZ, Some function on hyperspaces of hereditarily unicoherent continua, Fund. Math. 95(1971), 2-10.
- [8] G. R. GORDH, JR., S. MARDEŠIĆ, Characterizing local connectedness in inverse limits, Pacific J. Math. 58(1975), 411-417.
- [9] Y. KODAMA, S. SPIEŻ, T. WATANABE, On shape of hyperspaces, Fund. Math. 100(1979), 59-67.
- [10] I. LONČAR, Hyperspaces which are products or cones, Math. Commun. 6(2001), 1-17.
- [11] I. LONČAR, A note on hyperspaces of a generalized dendrite, JP Jour. Geom. Topol. 3(2003), 225-243.
- [12] I. LONČAR, The fixed point property for arc component preserving mappings of non-metric tree-like continua, Math. Commun. 10(2005), 15-21.

- [13] E. MICHAEL, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 7(1951), 152-182.
- [14] S. B. NADLER, JR., Hyperspaces of Sets, M. Dekker, 1978.
- [15] S. B. Nadler, Multicoherence techniques applied to inverse limits, Trans. Amer. Mat. Soc. 157 (1971), 227-234.
- [16] S. B. NADLER, Continuum Theory, Marcel Dekker, Inc., New York, 1992.
- [17] J. NIKIEL, The Hahn-Mazurkiewicz theorem for hereditarily locally connected continua, Topology Appl. 32(1989), 307-323.
- [18] R. L. PLUNKETT, A fixed point theorem for continuous multi-valued transformations, Proc. Amer. Math. Soc. 7(1956), 160-163.
- [19] L. B. TREYBIG, Arcwise connectivity in continuous images of ordered compacta, Glas. Mat. III Ser. 21(41)(1986), 201-211.
- [20] M. M. MCWATERS, Arcs, semigroups, and hyperspace, Can. J. Math. 20(1968), 1207-1210.
- [21] G. T. WHYBURN, Analytic Topology, Amer. Math. Soc. 28(1971), ??.
- [22] L. E. WARD, Characterization of the fixed point property for a class of set valued-mappings, Fund. Math. 50(1961), 159-164.
- [23] R. L. WILDER, Topology of manifolds, Amer. Math. Soc. 32(1979), ??.