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A NOTE ON THE SPACES
WHICH ADMIT A WHITNEY MAP

Ivan Lon~ar

Abstract
Let X be a non-metric continuum, and C(X) be the hyperspace of sub-

continua of X. It is known that there is no Whitney map on the hyperspace 2X

for non-metrizable Hausdorff compact spaces X. On the other hand, there ex-
ist non-metrizable continua which admit and ones which do not admit a
Whitney map for C(X). In this paper we will study the propertis of non-metric
spaces X which admit a Whitney map for C(X).
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1. Introduction

All spaces in this paper are Hausdorff and all mappings are continuous. The
weight of a space X is denoted by � �w X . The cardinality of a set A is denoted by card
(A). We shall use the notion of inverse system as in �4, pp. 135-142�. An inverse sys-
tem is denoted by X�{ }X p Aa ab

, , .
A generalized arc is a Hausdorff continuum with exactly two nonseparating

points. Each separable arc is homeomorphic to the closed interval I=�0,1�.
For a space X we denote by 2X the hyperspace of all nonempty closed subsets of

X equipped with the Vietoris topology. C(X) stand for the sets of all compact con-
nected members of 2X considered as subspace of 2X.

For a mapping f X Y: � define C f C X C Y( ): ( ) ( )� by C f F f F( )( ) ( )� for F C X� ( ).
By �13, 5.10� C(f) is continuous.

An element{ }xa of the Cartesian product { }X a Aa : �� is called a thread of X if

p x x
ab b a( )� for any a b A, � satisfying a b	 . The subspace of { }X a Aa : �� consisting

of all threads of X is called the limit of the inverse system X�{ }X p Aa ab
, , and is de-

noted by lim X or by lims{ }X p Aa ab
, , �4, p. 135�.

Let X�{ }X p Aa ab
, , be an inverse system with the natural projections

p X a Aa a: lim ,X � � . Then C X C X C p Aa ab
( ) ( ), ( ),�{ }is an inverse system.

Lemma 1.1. �4, Problem 6.3.22.(f), p. 465�. Suppose that X�{ }X p Aa ab
, , is an in-

verse system. Then C C(lim ) lim ( )X X� .
We say that an inverse system X�{ }X p Aa ab

, , is 
-directed if for each sequence
a a a

k1 2, , ... , , ...of the members of A there is an a A� such that a a
k

� for each k ��.
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An inverse system X�{ }X p Aa ab
, , is factorizing �3, p. 17� if for each real-valued

continuous function f X: lim � � there exist an a A� and a mapping f Xa a: � �

such that f f pa a� .
If X�{ }X p Aa ab

, , is 
-directed inverse system and if limX is a Lindelöf space,
then we have the following theorem.

Theorem 1.2. �3, Corollary 1.3.2, p. 18�. Let X�{ }X p Aa ab
, , be a 
-directed inverse

system with surjective projections p Xa a: lim X � . If limX is Lindelöf, then
X�{ }X p Aa ab

, , is factorizing.
If limX is compact, then we have the following corollary.

Corollary 1.3. Let X�{ }X p Aa ab
, , be a 
-directed inverse system of compact spaces

with surjective projections p Xa a: lim X � . Then X is factorizing.
In the sequel we shall use the following result.

Lemma 1.4. �4, Corollary 2.5.11�. Let X�{ }X p Aa ab
, , be an inverse system and B a

subset cofinal in A. The mapping consisting in restricting all threads from X � lim X to B is
a homeomorphism of X onto the space lim , ,{ }X p B

b bc
.

We will use the following expanding theorem of non-metric compact spaces
into 
-directed inverse systems of compact metric spaces.

Theorem 1.5. Let X be compact Hausdorff space such that w X( )� �1 . There exists a

-directed inverse system X�{ }X p Aa ab

, , of metric compacta Xa such that X is ho-
meomorphic to limX.

Proof. See �10, Theorem 4�.

2. Whitney map and hereditarily irreducible mappings

The notion of an irreducible mapping was introduced by Whyburn �19, p. 162�.
If X is a continuum, a surjection f X Y: � is irreducible provided no proper
subcontinuum of X maps onto all of Y under f.

Some theorems for the case when X is semi-locally-connected are given in �19,
p. 163�.

A mapping f X Y: � is said to be hereditarily irreducible �14, p. 204, (1.212.3)� pro-
vided that for any given subcontinuum Z of X, no proper subcontinuum of Z maps
onto f(Z).

A mapping f X Y: � is light (zero-dimensional) if all fibers f y
1 ( ) are hereditarily
disconnected (zero-dimensional or empty) �4, p. 450�, i.e., if f y
1 ( )does not contain
any connected subsets of cardinality larger than one (dim ( ) )f y
 	1 0 . Every
zero-dimensional mapping is light, and in the realm of mappings with compact fi-
bers the two classes of mappings coincide.
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Lemma 2.1. Every hereditarily irreducible mapping is light.

Lemma 2.2. �14, (1.212.3), p. 204�. A mapping f X Y: � of a continuum X into contin-
uum Y is hereditarily irreducible if and only if C f C X C Y( ): ( ) ( )� is light.

Now we shall prove that the assumption that X is a continuum can be omitted.

Lemma 2.3. A mapping f X Y: � of a space X into space Y is hereditarily irreducible if
and only if C f C X C Y( ): ( ) ( )� is light.

Proof. The "if" part. Suppose that C f C X C Y( ): ( ) ( )� is light and f X Y: � is not
hereditarily irreducible. This means that there are subcontinua Z and W of X such
that Z W Z W� �, , and f Z f W( ) ( )� . Then for every subcontinuum V with
Z V W� � we have f Z f V f W( ) ( ) ( )� � . The family of all subcontinua V such that
Z V W� � is a continuum L in C (�6, Theorem, p. 1209�). Now, � �� �C f L C f W( )( ) ( )� .
This is impossible since C(f) is light.

The "only if" part. Suppose that f is hereditarily irreducible and the C(f) is not
light. This means that there exists � �K C Y� ( ) such that � �( ( )) ( )C f K
1 contains a
subcontinuum L of C(X) such that � �C f L K( )( )� . Let{ }K a Aa : � be a set of points of
L. Every Ka is a subcontinuum of X such that f K Ka( )� . On the other hand
M K a Aa� � �{ }: is compact subset of X �13, Theorem 2.5.2, p. 157�. Moreover, M is
connected �13, Proposition 2.8, p. 158�. Hence, M is a subcontinuum of X. It is clear
f M K( )� . This is impossible since f K K K Ka a( ) ,� � and f is hereditarily irreducible.

Lemma 2.4. If f X Y: � is monotone and hereditarily irreducible, then f is one-to-one.

Lemma 2.5. Every on-to-one mapping f X Y: � is hereditarily irreducible.
Lemma 2.6. If f X Y: � is a mapping such that

dim : , ( ) ,{ { } }x x X x f f x� � 	
1 0

then f is hereditarily irreducible.

Proof. Let K, L be a pair of subcontinua of X such that K L� and that K L� . This
means there exists a point x �L�K. Let U be a neighborhood of x in L�K such that
ClL�K(U)�L�K. There exists a component C of ClL�K(U) containing x and such that
C Bd U� �( ) 0 �14, Theorem (20.1), p. 625�. We infer that C is a non-degenerate con-
tinuum. From dim : , ( ){ { } }x x X x f f x� � 	
1 0 it follows that C is non contained in

� �{ }x x X x f f x: , ( )� � 
1 . This means there is a point y C� such that { }y f f y� 
1 ( ).
Hence f K f L( ) ( )� .

Let � be a subspace of 2X. By a Whitney map for � �14, p. 24, (0.50)� we will mean
any mapping � �g : ,� � ��0 satisfying

a) if � � � �A B, � � such that A B A B� �, , then � �� � � �� �g A g B� and
b) � �� �g x � 0 for each x X� such that � �x � �.
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If X is a metric continuum, then there exists a Whitney map for 2X and C(X) (�14,
pp. 24-26�, �5, p. 106�). On the other hand, if X is non-metrizable, then it admits no
any Whitney map for 2X �2�. It is known that there exist non-metrizable continua
which admit and ones which do not admit a Whitney map for C(X) �2�. Moreover,
if X is a non-metrizable locally connected or a rim-metrizable continuum, then X
admits no a Whitney map for C(X) �9, Theorem 8, Theorem 11�.

Lemma 2.7. Any metric space X admits a Whitney map for C(X).

Proof. From �17, Lemma 3.� it follows that there exists a Whitney map � for C P
(X), i.e., for the hyperspace of all compact subsets of X. Hence, � C X( ) is a Whitney
map for C(X).

The proof of the next lemma is obvious.

Lemma 2.8. If f X Y: � is a hereditarily irreducible mapping and if Y admits a Whitney
map for C(Y), then X admits a Whitney map for C(X).

Lemma 2.9. If a Hausdorff space X admits one-to-one continuous mapping f X Y: �
onto a metric space Y, then X admits a Whitney map for C(X).

Proof. By virtue of Lemma 2.7 we conclude that Y admits a Whitney map
� : ( ) , )C Y �� ��0 . Let us prove that �C f( ) is a Whitney map for C(X). If � �x C X� ( ),
then C f x f x( )( ) ( ){ } { }� and � �C f x f x( )( ) ( ){ } { }� � 0 since � is a Whitney map for
C(Y), Furthermore, let K, L be a pair of subcontinua of X such that K L K L� �, . By
virtue of Lemma 2.5 we have f K f L( ) ( )� and f K f L( ) ( )� . Moreover, { } { }f K f L( ) , ( )
� C Y( ). Therefore, � �( ( ) ) ( ( ) ){ } { }f K f L� , i.e., � � � �� �C f K C f L( )( ) ( )( )� .

Theorem 2.10. If X is a paracompact space and the diagonal � is G
�
-set in X X� , then

X admits a Whitney map for C(X).

Proof. By virtue of �4, Problem 5.5.7, p. 421� there exists one-to-one continuous
mapping f X Y: � onto a metric space Y. Apply Lemma 2.9.

Lemma 2.11. If there exists a mapping f X Y: � onto a metric space Y such that

dim : , ( ) ,{ { } }x x X x f f x� � 	
1 0

then X admits a Whitney map for C(X).

Proof. This is a part of theorem (0.51) from �14� for metric continua. By virtue of
Lemma 2.6 it follows that f is hereditarily irreducible. By virtue of Lemma 2.7 we
conclude that Y admits a Whitney map � : ( ) , )C Y �� �0 . The proof that �C f( ) is a
Whitney map for C(X) is similar to the proof of Lemma 2.9.
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3. An external characterization of non-metric spaces X

which admit a Whitney map for C(X)

In this section we shall give an external characterization of non-metric spaces
which admit a Whitney map. We shall use the inverse system method.

Theorem 3.1. Let X�{ }X p Aa ab
, , be an inverse system of spaces which admit Whitney

maps for C(Xa) and let X � lim X. If � �C C X C p Aa ab
( ) ( ), ( ),X � is factorizing, then X ad-

mits a Whitney map for C(X) if and only if there exists a cofinal subset B A� such that for
every b B� the projection p X

b b
: lim X � is hereditarily irreducible.

Proof. Necessity. Consider inverse system C C X C p Aa ab
( ) ( ), ( ),X �{ }whose limit

is C(X) (Lemma 1.1). If � �� : ( ) ,C Y � �0 is a Whitney map for C(X), then there exists a
cofinal subset B of A such that for every b B� there is a mapping � ��

b b
C X: ( ) ,� �0

with � ��
b b
C p( )since C C X C p Aa ab

( ) ( ), ( ),X �{ }is factorizing. Suppose that pb is not
hereditarily irreducible. Then there exists a pair F, G of subcontinua of X with
F G F G� �, , (i.e., F is a proper subcontinuum of G) such that p F p G

b b
( ) ( )� . It is

clear that � � � �C p F C p G
b b

( )( ) ( )( )� . This means that � � � �� �
b b b b
C p F C p G( )( ) ( )( )� .

From � ��
b b
C p( ) it follows that � � � �� �( ) ( )F G� . This is impossible since � is a

Whitney map for C(X) and from F G F G� �, it follows � � � �� �( ) ( )F G� .

Sufficiency. Suppose that there exists a cofinal subset B A� such that for every
b B� the projection p X

b b
: lim X � is hereditarily irreducible. Consider inverse sys-

tem C C X C p Aa ab
( ) ( ), ( ),X �{ } whose limit is C(X) (Lemma 1.1). Let

� ��
b b

C X: ( ) ,� �0 be a Whitney map for C(Xb), where b B� is fixed. We shall prove
that � �� �� � �

b b
C p C X( ): ( ) ,0 is a Whitney map for C(X). Let F,G be a pair of

subcontinua of X with F G F G� �, . We must prove that � � � �� �( ) ( )F G� . Now,
p F p G

b b
( ) ( )� and p F p G

b b
( ) ( )� since pb is hereditarily irreducible. We infer that

� �
b b b b

p F p G( ( ) ) ( ( ) ){ } { }� since �
b

is a Whitney map for C(Xb). Moreover,
{ } { }p F C p F

b b
( ) ( )( )� and{ } { }p G C p G

b b
( ) ( )( )� . From � �

b b b b
p F p G( ( ) ) ( ( ) ){ } { }� we have

� � � �� �
b b b b

C p F C p G( ( )( )) ( ( )( ))� , i.e., � � � �� �
b b b b
C p F C p G( )( ) ( )( )� .

Finally, � � � �� �( ) ( )F G� since � ��
b b
C p( ).

If C(X) is a Lindelöf space and X�{ }X p Aa ab
, , is 
-directed, then

C C X C p Aa ab
( ( ), ( ),X)�{ }is factorizing by Lemma 1.2. Thus, we have the following

corollary.

Corollary 3.2. Let X be a non-metric compact space. Then X admits a Whitney map for
C(X) if and only if for each 
-directed inverse system X�{ }X p Aa ab

, , of compact spaces
which admit Whitney maps for C(Xa) and X � lim X there exists a cofinal subsetB A� such
that for every b B� the projection C p C C X

b b
( ): (lim ) ( )X � is light.

Proof. Apply Theorem 3.1 and Lemma 2.3.

From Theorem 3.1 we have the following corollaries.
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Corollary 3.3. �9, Theorem 8� Locally connected compact space X admits a Whitney
map for C(X) if and only if it is metrizable.

Corollary 3.4. �9, Theorem 12� A rim-metrizable continuum X admits a Whitney map
for C(X) if and only if it is metrizable.

Corollary 3.5. If a non-metric continuum X admits a Whitney map for C(X), then each
locally connected compact subspace (or rim-metrizable subcontinuum) of C(X) is
metrizable. In particular, each arc in C(X) is metrizable.

Proof. This follows from Corollary 3.2.

Example 1. Let X be a non-metric pseudo-arc as constructed in �15�. Then X admits no
a Whitney map. It suffices to see that the pseudo-arc X is constructed as a limit of
X X pa ab

�{ }, , �1 , where each Xa is a metric pseudo-arc and each pab is monotone.
Moreover, X is non-metric.

The following theorem is from �1, Sledstvie 2, p. 392�.

Theorem 3.7. If f X Y: � is a light mapping of a compact space X onto a metric space Y,
then dim X X X� �ind Ind .

From Theorem 3.7 we have the following result.

Theorem 3.8. Let X be a non-metrizable finite-dimensional compact space. If X admits a
Whitney map for C(X), then dim X X X� �ind Ind .

Proof. Let X be compact Hausdorff space such that w X( )� �1 . There exists a

-directed inverse system X�{ }X p Aa ab

, , of metric compacta Xa such that X is
homeomorphic to lim X. If X admits a Whitney map for C(X), then there exists a
light projection p X Xa a: � onto a metric space Xa. Apply Theorem 3.7.

Theorem 3.9. Let X be a non-metrizable finite-dimensional compact space. If X admits a
Whitney map for C(X) and C(X) is finite-dimensional, then
dim ( ) ) )C X X X� �indC( IndC( .

Corollary 3.6. Let X be a non-metrizable compact space. If either
dim X X X� �ind Ind , or ind IndX X� , then X admits no a Whitney map for C(X).

Example 2. There exists a chainable continuum X such that dim X � 1 and indX �1
�11, Theorem 6, p. 225�. This means X does not admits a Whitney map for C(X).

Question 1. Is true that a chainable continuum admits a Whitney map if and
only if it is metrizable?
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4. 
-locally connected spaces

We say that a space X is 
-locally connected, provided X is the countable union of
its closed locally connected subsets �7, p. 53�.

If a metric continuum X is 
-locally connected, then so is its hyperspace C(X) �7�.
The converse implication does not hold true.

We say that a subspace Y of a space X is relatively locally connected (abr. r.l.c) in X
�7, p.54� provided for any p Y� and for any neighborhood U of p in X there is a con-
nected set K contained in U (not necessarily in Y) such thatK Y� is a neighborhood
(not necessarily open) of p in Y.

A space X is said to be 
-relatively locally connected (abbr. 
-r.l.c.) provided X is the
countable union of its closed r.l.c. subsets.

Theorem 4.1. �7, Theorem 2, p. 56�. For any metric continuum X the following condi-
tions are equivalent:

(a): C(X) is 
-locally connected,
(b): X is 
-r.l.c.,
(c): C(X) is 
-r.l.c.

Remark 3. Theorem 4.1. was proved in �7, Theorem 2, p. 56� in metric setting. A
straightforward modification of the proof shows that Theorem is valid in non-met-
ric setting.

Theorem 4.2. �7, Corollary 8, p. 59�. If X is a continuum whose hyperspace C(X) is

-locally connected and if f X Y: � is a continuous surjection, then C(Y) is 
-locally con-
nected.

Example 3. There exists non-locally connected continuum which is 
-locally connected.

Let X be the union of the well-known sin
1
x

-curve for 0 1� 	x and the segment

{ }( , ):0 1 1y y
 	 	 . Then X is non-locally connected continuum which is the count-
able union of locally connected subcontinua of X. One can construct a similar con-
tinuum C in the Cartesian product �0, 1��L , where L is any non-metric arc.

Lemma 4.3. Let X be a 
-locally connected compact space. If f X Y: � is a continuous
surjection, then Y is 
-locally connected.

Proof. From the definition of 
-local connectedness it follows that there exists a
family �X i

i
: � �� of locally connected closed subspaces of X such that

X ��X i
i
: ���. Each f(Xi) is locally connected by Lemma 1.5 of �18, p. 70�. It follows

that Y is 
-locally connected since Y� ��f X i
i

( ): ���.

Lemma 4.4. Let X be a 
-locally connected compact space. If f X Y: � is a light
surjection, then w X w Y( ) ( )� .

201

Rad Hrvat. akad. znan. umjet. 491. Matemati~ke znanosti 15 (2005), str 195-206.
I. Lon~ar A note on the spaces which admit a Whitney map



Proof. It is clear that w Y w X( ) ( )	 �4, Theorem 3.1.22, p. 171�. Let us prove that
w X w Y( ) ( )	 . Let us prove that w(X)	 w(Y). Let w(Y)=m . There exists a family �
X i

i
: ��� of locally connected closed subspaces of X such that X � ��X i

i
: ���.

Each restriction f f X
i i
� is light. This means that w X w f X m i

i i i
( ) ( ( )) ,� 	 ��, be-

cause of Theorem 1 of �12�. By virtue of Theorem 3.1.20 of �4, p. 171� if
w X w f X m

i i i
( ) ( ( ))� 	 , then w X m( )	 . Hence, w X w Y( ) ( )	 . Finally, we have

w X w Y( ) ( )� .

Corollary 4.5. Let X be a 
-locally connected compact space. If f X Y: � is a light
surjection onto a metric space Y, then X is metrizable.

The proof of the following theorem is a straightforward modification of the
proof of Theorem 9 of �10, p. 205�.

Theorem 4.6. Let X�{ }X p Aa ab
, , be an inverse system of compact spaces and

surjective bonding mappings pab. Then:
1): There exists an inverse system M M m Aa ab

( ) , ,X �{ }of compact spaces such that mab

are monotone surjections and limX is homeomorphic to limM(X),
2): If X is 
-directed, then M(X) is 
-directed,
3): If every Xa is a metric space and limX is 
-locally connected, then every Ma is

metrizable.

Theorem 4.7. If X is a non-metric �-locally connected compact space, then there exists a
�-directed system X�{ }X p Aa ab

, , of metric 
-locally connected compact spaces Xa and
monotone surjective bonding mappings pab such that X is homeomorphic to lim X.

Proof. By Theorem 1.5 there exists a 
-directed system Y�{ }Y p Aa ab
, , of metric

compacta Ya such that X is homeomorphic to limY. Applying Theorem 4.6 we ob-
tain a 
-directed system M(Y). If we set X Y� M( ), we obtain the desired 
-directed
system.

In the light of the fact that the limit of a 
-directed inverse system of locally con-
nected compact spaces is locally connected, the following question arises.

Question 2. Let X�{ }X p Aa ab
, , be a 
-directed inverse system of compact 
-lo-

cally connected spaces Xa. Is limX 
-locally connected?

Theorem 4.8. A 
-locally connected compact space admits a Whitney map for C(X) if
and only if X is metrizable.

Proof. If X is metrizable, then X admits a Whitney map for C(X). Suppose that X
is non-metric and admits a Whitney map for C(X). By Theorem 1.5 there exists a

-directed system X�{ }X p Aa ab

, , of metric continua Xa such that X is homeo-
morphic to lim X. It follows that C(X) is a limit of C C X C p Aa ab

( ) ( ), ( ),X �{ }. From
Theorem 3.1 it follows that there exists a cofinal subset B A� such that for every
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b B� the projection p X
b b

: lim X � is hereditarily irreducible, and consequently,
light (Lemma 2.1). From Corollary 4.5 it follows that X is metrizable.

Lemma 4.9. Let f X Y: � be a hereditarily irreducible mapping of 
-r.l.c. continuum X
onto a metric space Y. Then X is metrizable.

Proof. From Lemma 2.3 it follows that a mapping f X Y: � is hereditarily irre-
ducible if and only if C f C X C Y( ): ( ) ( )� is light. Now, C(Y) a metric space and C(X) is

-locally connected (Theorem 4.1). By virtue of Corollary 4.5 it follows that C(X) is
metrizable. Hence, X is metrizable.

Theorem 4.10. A 
-r.l.c. continuum X admits a Whitney map for C(X) if and only if X
is metrizable.

Proof. If X is metrizable, then X admits a Whitney map for C(X). Suppose that X
admits a Whitney map for C(X) and that X is non-metrizable. By Theorem 1.5 there
exists a 
-directed system X�{ }X p Aa ab

, , of metric continua Xa such that X is
homeomorphic to lim X. It follows that C(X) is a limit of C C X C p Aa ab

( ) ( ), ( ),X �{ }.
From Theorem 3.1 it follows that there exists a cofinal subsetB A� such that for ev-
ery b B� the projection C p C C X

b b
( ): (lim ) ( )X � is light. Moreover, because of Theo-

rem 4.1 C(X) is 
-locally connected continuum. From Corollary 4.5 it follows that
C(X) is metrizable since C p C C X

b b
( )( (lim )) ( )X � is metrizable. Hence, X is

metrizable since X is homeomorphic to X(1) and X C X( ) ( )1 � .

At the end of this section we shall use the following Smirnov’s theorem from �4,
Exercise 5.4A, p. 415�.

Theorem 4.11. If a paracompact X space is locally metrizable (i.e., every point x X� has
a metrizable neighbourhood), then X is metrizable.

We say that a space X is locally 
-locally connected provided each point x X� has
a neighbourhood U such that Cl(U) is 
-locally connected and compact.

Theorem 4.12. A paracompact locally 
-locally connected space X admits a Whitney
map for C(X) if and only if X is metrizable.

Proof. Let { }U x Xx : � be a family of the neighbourhoods of points x X� such
that Cl Ux( )is 
-locally connected and compact. If � �� : ( ) ,C X � �0 is a Whitney map
for C(X), then the restriction � C Cl Ux( ( )) is a Whitney map for C Cl Ux( ( )). By Theo-
rem 4.8 we infer that Cl Ux( ) is metrizable. Theorem 4.11 completes the proof.

5. 
-rim-merizable continua

We say that a space X is 
-rim-merizable provided X is the countable union of its
rim-metrizable subcontinua.

203

Rad Hrvat. akad. znan. umjet. 491. Matemati~ke znanosti 15 (2005), str 195-206.
I. Lon~ar A note on the spaces which admit a Whitney map



Lemma 5.1. Let f X Y: � be a light surjection of compact 
-rim-merizable space X onto
a space Y. Then w X w Y( ) ( )� .

Proof. It is clear that w X w Y( ) ( )	 �4, Theorem 3.1.22, p. 171�. Let us prove that
w X w Y( ) ( )	 . Let w Y m( )� . There exists a family �X i

i
: � �� of rim-metrizable

subcontinua of X such that X � ��X i
i
: ���. Each restriction f f X

i i
� is light. This

means that w X w f X m i
i i i

( ) ( ( )) ,� 	 ��, because of Theorem 1.2 of �16�. By virtue of
Theorem 3.1.20 of �4, p. 171� if w X w f X m

i i i
( ) ( ( ))� 	 , then w X m( )	 . Hence,

w X w Y( ) ( )	 . Finally, we have w X w Y( ) ( )� .

Corollary 5.2. Let f X Y: � be a light surjection of compact 
-rim-merizable space X
onto a metric space Y. Then X is metrizable.

Theorem 5.3. A compact 
-rim-merizable space X admits a Whitney map for C(X) if
and only if X is metrizable.

Proof. By Theorem 1.5 there exists a 
-directed inverse system X�{ }X p Aa ab
, , of

metric compacta Xa such that X is homeomorphic to limX. There exists a cofinal
subsetB A� such that for every b B� the projection p X

b b
: lim X � is hereditarily ir-

reducible (theorem 3.1). Because of Lemma 2.1 each pb is light. Corollary 5.2 com-
pletes the proof.

6. 
-fans

An arboroid is an hereditarily unicoherent continuum which is arcwise con-
nected by generalized arcs. A metrizable arboroid is a dendroid. If X is an arboroid
and x y X, � , then there exists a unique arc �x,y� in X with endpoints x and y. If �x,y�
is an arc, then �x,y���x,y� is denoted by (x,y).

A point t of an arboroid X is said to be a ramification point of X if t is the only com-
mon point of some three arcs such that it is the only common point of any two, and
an end point of each of them.

A point e of an arboroid X is said to be end point of X if there exists no arc �a,b� in X
such that x ��a,b���a,b�.

If an arboroid X has only one ramification point t, it is called a generalized fan
with the top t. A metrizable generalized fan is called a fan.

Theorem 6.1. �8, Theorem 4.20�. A generalized fan X admits a Whitney map for C(X)
if and only if it is metrizable.

In connection of Theorem 6.1 the following question is natural.
Question 3. Is it true that an arboroid X admits a Whitney map for C(X) if and

only if it is metrizable?
We say that a space X is a 
-fan provided X is the countable union of its

subcontinua which are the generalized fans.
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Theorem 6.2. If a space X is a 
-fan, then X admits a Whitney map for C(X) if and only
if it is metrizable.

Proof. By the definition of 
-fans X � ��X nn : ���, where each Xn is a general-
ized fan. If � : ( )C X � � is a Whitney map for C(X), then the restriction � X n is a
Whitney map for C(Xn), for every n� �. By Theorem 6.1 each Xn is metrizable.
Hence, X is metrizable because �4, Theorem 3.1.20, p. 171�.

7. Concluding remark

There are many metrizabtion theorems in the literature with different hypothe-
ses to ensure metrizability. From this point of view some theorems of the present
paper may be regarded and reformulated as the metrization theorems. The typical
examples are the following theorems.

Theorem 7.1. Locally connected compact space X is metrizable if and only if it admits a
Whitney map for C(X).

Proof. See Corollary 3.3.

Theorem 7.2. A rim-metrizable continuum X is metrizable if and only if it admits a
Whitney map for C(X).

Proof. See Corollary 3.4.

Similarly, from Theorem 6.1 it follows the following theorem.

Theorem 7.3. A generalized fan X is metrizable if and only if it admits a Whitney map
for C(X).
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Bilje{ka o prostorima koji dozvoljavaju Whitney-ovo preslikavanje

Ivan Lon~ar

SA@ETAK

Neka je X nemetri~ki kontinuum, a C(X) hiperprostor podkontinuuma od
X. Poznato je da ne postoji Whitney-ovo preslikavanje na hiperprostoru 2X na
nemetri~ke kompaktne Hausdorf-ove prostore X. S druge strane, postoje
nemetri~ki kontinuumi koji dozvoljavaju i oni koji ne dozvoljavaju Whit-
ney-ovo preslikaanje za C(X). U radu se izu~avaju svojstva nemetri~kih
prostora X koji dozvoljavaju Whitney-ovo preslikavanje za C(X).

Klju~ne rije~i i fraze: Hiperprostor, Whitney-ovo preslikavanje.
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