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Resistance distances in the regular dodecahedron are computed.

This report together with our previous paper (see Ref. 2) completes

the study of resistance distances in Platonic solids (the tetrahe-

dron, the cube, the octahedron, the icosahedron and the dodecahe-

dron). The sum over the resistance distances between all pairs of

vertices in a graph is a graph invariant. It is used to order Platonic

solids according to the complexity of their Schlegel graphs.

Key words: dodecahedron, Platonic solids, resistance distance, Schle-

gel graph.

INTRODUCTION

Recently, we computed resistance distances1 in regular graphs.2 Two

classes of regular graphs have been considered: cycles and complete graphs.

We considered Schlegel diagrams3 of four Platonic solids: the tetrahedron,

the cube, the octahedron and the icosahedron. These solids are often used to

model the shapes of molecules. While our paper was reviewed, one of the re-

viewers asked why we did not also discuss the resistance distances in the

fifth Platonic solid, that is, the dodecahedron? Several colleagues also asked
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a similar question after our paper was published. The reason was that the

complexity involved in the computation of the resistance distances in do-

decahedron is quite high. However, finally we succeeded to compute the re-

sistance distances in the dodecahedron. This is reported here. It should be

noted that in the present report we would use the same notation and defini-

tions as in our previous paper.2

The regular dodecahedron is a convex polyhedron with 12 faces that are

all regular pentagons.4 It has 20 vertices and 30 edges. It is depicted in Fig-

ure 1.

The dodecahedron can be used, for example, to model the carbon skele-

ton of dodecahedrane, C20H20 and the smallest-fullerene (C20). Both these

molecules are shown in Figure 2.

Dodecahedrane was prepared years ago.5 This molecule has many inter-

esting properties reflecting its high symmetry and spheroidicity. For exam-
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Figure 1. The dodecahedron.

Figure 2. (a) The structure of dodecahedrane and (b) One Kekulé structure of C20-fu-

llerene.



ple, dodecahedrane with one amino group attached to one carbon atom pas-

ses readily through membrane of a cell and tends to destroy a virus inside

it. C20-fullerene has not yet been prepared. Theoretical studies indicate that

this smallest member the fullerene family would undergo Jahn-Teller dis-

tortion to a symmetry group somewhat lower than Ih.6

RESISTANCE DISTANCES IN DODECAHEDRON

The labeled Schlegel diagram (Schlegel graph) of the dodecahedron is

shown in Figure 3.

The number of graph distances equal to one is equal to the number of

edges (30), the number of distances equal to two is sixty, the number of dis-

tances equal to three is also sixty, while the number of distances equal to

four is thirty, and finally the number of distances equal to five is ten. The

total number of distances is 190. The usual graph distance matrix for the

Schlegel diagram of the dodecahedron is given in Figure 4.

Making use of Kirchoff ’s rules we derived the algebraic equations for re-

sistance distances: Equations containing three terms were obtained by us-

ing Kirchoff ’s first rule, while equations containing five terms were obtai-

ned by using Kirchoff ’s second rule.

The resistance distance was obtained by using the following approach: It

was assumed as before2 that the total current entering and leaving the set

at specified points is equal to one (see Figures 5–9).
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Figure 3. The Schlegel diagram of the dodecahedron.



Since V = IR (I = current, R = resistance, V = potential), the potential

between the two vertices under consideration (say vertices 1 and 2) is equal

to the sum of potential differences � �1 � ik) at edges k, lying on the path

connecting these two vertices:

V =
k

� �1 � ik) =
k

� ik (1)
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Figure 5. Black dots indicate the adjacent pair of vertices between which the resis-

tance distance has to be determined.

Figure 4. The distance matrix of the Schlegel diagram of the dodecahedron.



where ik denotes the 'current' flowing through edge k. The summation in

equation (1) goes over all edges lying on path connecting vertices 1 and 2.

Consideration of different paths must yield an identical result, but the short-

est path was always considered. Using this equation and taking into account
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Figure 7. Black dots indicate non-adjacent vertices, separated by three edges, between

which the resistance distance has to be determined.

Figure 6. Black dots indicate non-adjacent vertices, separated by two edges, between

which the resistance distance has to be determined. The decomposed network (b)

was obtained from (a) by removing one edge through which no 'current' is flowing.



that the total current is equal to one (I = 1), we obtain the resistance be-

tween points 1 and 2, R1,2 :

R1,2 =
k

� ik . (2)
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Figure 9. Black dots indicate non-adjacent vertices, separated by five edges, between

which the resistance distance has to be determined.

Figure 8. Black dots indicate non-adjacent vertices, separated by four edges, between

which the resistance distance has to be determined.



Table I contains the equations and results derived for cases d1,2 = 1 and

d1,2 = 2, where d1,2 is the distance between vertices 1 and 2. Symmetries

were used to reduce the number of unknown »currents«; these being shown

explicitly only for the cases d1,2 = 1 and d1,2 = 2. In order to consider case
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TABLE I

Computation of resistance distances between vertices 1 and 2

Distance d and

resistance distance R

Equations and

symmetry equations

Solutions

d1,2 = 1 (Figure 5)

R1 = 1 � i1/1 = 19/30

1 = i1 + 2i2

i2 = i4 + i6

i6 = i5 + i7

i3 = i5 + i15

i14 = i7 + i9

i13 = i12 + i14

i8 = i9 + i10

i1 = i2 + i3 + i5 + i6

i4 + i8 + i9 = i6 + i7

i5 = i7 + i13 + i14 + i15

i10 + i11 + i12 = i9 + i14

i3 = i2

i8 = i4

i15 = i13

i12 = i10

i1 = 38/60

i2 = 11/60

i3 = 11/60

i4 = 3/60

i5 = 8/60

i6 = 8/60

i7 = 0

i8 = 3/60

i9 = 2/60

i10 = 1/60

i11 = 2/60

i12 = 1/60

i13 = 3/60

i14 = 2/60

i15 = 3/60

d1,2 = 2 (Figures 6a and 6b)

R'2 = 1 � (2i2 + i4)/1 = 54/33

R"2 = 2

1/R2 = (1/R'2) + (1/R"2) = 60/54

R2 = 54/60 = 9/10

1 = i1 + i2

i1 = i3 + i12

i2 = i4 + i5

i3 = i7 + i9

i6 = i5 + i7

i9 = i10 + i11

i14 = i10 + i13

i12 = i8 + i13

i2 + i5 = i1 + i3 + i7

i4 = 2i5 + 2i6

2i6 + 2i7 = 2i9 + 2i11

i12 + i13 = i3 + i9 + i10

2i11 = 2i10 + i14

2i8 = 2i13 + i14

i1 = 14/33

i2 = 19/33

i3 = 6/33

i4 = 16/33

i5 = 3/33

i6 = 5/33

i7 = 2/33

i8 = 5/33

i9 = 4/33

i10 = 1/33

i11 = 3/33

i12 = 8/33

i13 = 3/33

i14 = 4/33



d1,2 = 2, the symmetries were used to show which currents are zero, and ba-

sed on this result, Figure 6a could be simplified (see Figure 6b). Note that

R2 was obtained by combining the two subresistances R'2 and R"2.

TABLE II

Computing the resistance distances for distances 3, 4 and 5 between

vertices 1 and 2

Distance d and resistance distance R Solutions

d1,2 = 3 (Figure 7)

R3 = 1 � (i1 + i4 + i5)/1 = 16/15

i1 = 24/60

i2 = 29/60

i3 = 17/60

i4 = 16/60

i5 = 24/60

i6 = 8/60

i7 = 13/60

i8 = 19/60

i9 = 13/60

i10 = 8/60

i11 = 5/60

i12 = 10/60

i13 = 17/60

i14 = 6/60

i15 = 7/60

i16 = 5/60

i17 = 2/60

i18 = 6/60

i19 = 7/60

i20 = –4/60

i21 = 2/60

i22 = –1/60

i23 = 6/60

i24 = 7/60

i25 = 6/60

i26 = –5/60

i27 = 5/60

i28 = –7/60

i29 = 10/60

i30 = –1/60
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Distance d and resistance distance R Solutions

d1,2 = 4 (Figure 8)

R4 = 1 � (i1 + 2i3 + i13)/1 = 17/15

i1 = 21/60

i2 = 18/60

i3 = 13/60

i4 = 8/60

i5 = 9/60

i6 = 2/60

i7 = 7/60

i8 = 10/60

i9 = 8/60

i10 = 2/60

i11 = 9/60

i12 = 18/60

i13 = 21/60

d1,2 = 5 (Figure 9)

R5 = 1 � (i1 + 2i3 + i7 + i8)/1 = 7/6

i1 = 2/6

i2 = 2/6

i3 = 1/6

i4 = 1/6

i5 = 1/6

i6 = 0

i7 = 1/6

i8 = 2/6

i9 = 1/6

i10 = 2/6

i11 = 1/6

i12 = 0

i13 = 1/6

For the rest of cases, given in Table II, the equations are not written out

in detail in order to save space, but the results can be checked by using Fig-

ures 7–9. A minus sign for a solution indicates that the direction of the par-

tial current is opposite to what was assumed. The number of unknowns was

the greatest (30) in the case d1,2 = 3.

The total resistance (RT) of the dodecahedron is equal to:

RT = 30 R1 + 60 R2 + 60 R3 + 30 R4 + 10 R5 (3)

or

RT = 30 (19/30) + 60 (9/10) + 60 (16/15) + 30 (17/15) + 10 (7/6) = 182.67. (4)
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TABLE II (continued)



CONCLUSIONS

If we now compare the resistances in all five Platonic solids – tetrahe-

dron (T), cube (C), octahedron (O), icosahedron (I) and dodecahedron (D):

R(T) = 3, R(C) = 19.3, R(O) = 6.5, R(I) = 32.3 and R(D) = 182.7, they order

these solids according to complexity of their Schlegel graphs as T < O < C <

I < D. Some other structural characteristics order the Platonic solids in the

following ways: (i) The number of vertices gives T < O < C < I < D; (ii) The

number of edges T < O = C < I = D; (iii) The number of faces T < C < O < D < I;

(iv) The number of spanning trees7 T < O = C < I = D; (v) The Bertz com-

plexity index8 T < C < O < D < I; (vi) The Randi} vertex-connectivity index9

T < O < C < I < D; (vii) The Estrada first-order edge-connectivity index10 T <

O = C < I = D; (viii) The Estrada second-order edge-connectivity index10 T <

O < C < D < I and (ix) The Hosoya Z-index11 T < O < C < I < D. All ten crite-

ria listed here predict the tetrahedron to be the least complex structure.

However, in the case of pairs: the cube and the octahedron, and the icosa-

hedron and the dodecahedron, which are dual to each other, different crite-

ria give different ordering. But, judging by the difficulty we had in comput-

ing the resistance distances, the order T < O < C < I < D (supported by four

criteria) seems to reflect best their complexity.
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SA@ETAK

Bilje{ka o otpornim udaljenostima u dodekaedru

István Lukovits, Sonja Nikoli} i Nenad Trinajsti}

Izra~unane su otporne udaljenosti u dodekaedru. Ova bilje{ka s prethodnim ~lan-

kom (vidi Ref. 2) zaokru`uje prou~avanje otpornih udaljenosti kod Platonskih krutina

(tetraedar, kocka, oktaedar, ikozaedar i dodekaedar). Zbroj otpornih udaljenosti iz-

me|u svih parova vrhova u grafu jest invarijanta grafa. Upotrebljena je za redanje

Platonskih krutina prema kompleksnosti pripadnih Schlegelovih grafova.
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