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Universal metric properties of the genetic code (i.e. RNA, DNA and
protein coding) are defined by means of the nucleotide base repre-
sentation on the square with vertices U or T = 00, C = 01, G = 10
and A = 11. It is shown that this notation defines the Cantor set
and Smale horseshoe map representation of the genetic code, the
classic table arrangement and Siemion one-step mutation ring of
the code. Gray code solutions to the problem of defining codon posi-
tions on the �0, 1� interval, and an extension to the octal coding sys-
tem, based on the linear block triple check code, are given. This re-
sult enables short block (word) decoding of the genetic code patterns.
The block code is related to the minimization of errors during tran-
scription and translation processes, which implies that the genetic
code is error-correcting and not degenerate. Two algorithms for the
representation of codons on the �0, 1� interval and the related bi-
nary trees are discussed. It is concluded that the ternary Cantor
set algorithm is the method of choice for this type of analysis and
coding. This procedure enables the analysis of the six dimensional
hypercube codon positions by means of a simple time series and/or
'logistic' difference equation. Finally, a unified concept of the gene-
tic code linked to the Cantor set and horseshoe map is introduced
in the form of a classic combinatorial 4 colour necklace model with
three horizontal frames consisting of 64 coloured pearls (bases) and
vertically hanging decorations of triplets (codons). Three horizontal
necklace frames define Crick’s code without comma, and vertical
necklace decorations define the evolutional code. Thus, the type of
the code depends on the level or direction of observation. The exact
location of the mRNA and complementary DNA coding groups of tri-
plets within a frame is determined. The latter enables decoding of
long code block (language) patterns within the genetic code. This
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method of genetic code analysis is named Symbolic Cantor Algo-
rithm (SCA). The validity of the method was confirmed by 94% ac-
curate classification of 50 proteins of known secondary structure
(25 �-helices and 25 �-sheets) with the C5.0 machine learning sys-
tem. Nucleotide strings of proteins transcribed by SCA were used
for the analysis. Spectral Fourier analysis of Pro-opiomelanocortin
and Bone Morphogenetic Protein 6 confirmed that the method might
be also applied to the analysis of bioactive hormone and cytokine
sequences.

Key words: Cantor set, symbolic dynamics, SCA, Gray code, genetic
code, necklace, protein, secondary structure, C5.0, machine learn-
ing, spectral analysis.

INTRODUCTION

The protein coding and synthesis in biological systems is, along with all
other information of the genome, found in DNA and RNA strings consisting
of 4 nucleotide base combinations (U or T, C, A and G).1–3 Four bases define
64 codon triplets that specify 20 amino acids and 3 stop codons for the pro-
tein synthesis.1–3 The aim of this paper is to define the universal metric pro-
perties of the codon and nucleotide base recombination. This will be done by
addressing three dimensions of the problem, as follows.

First, we show that the quadratic binary representation of the 4 bases
on the unit square maps all codons and amino acids to the Cantor set binary
addresses on the unit interval. It is proved that, for the one-dimensional
projection, symbolic binary coordinates provide a reflected Gray code solu-
tion to the problem of Hamming distance minimization of the clear binary
text addresses (representing nucleotide base and amino acid positions on
the tree algorithm). The underlying coding system is shown to be based on a
linear block triple check code. It is speculated that this ensures accurate
transcription and translation of the strings.

Second, we show that the Smale horseshoe map representation of binary
blocks with fixed Cantor set codon or amino acid positions defines the clas-
sic table of the genetic code. This result indicates that the syntax of nucleo-
tide and protein strings is based on the rich dynamical linguistic structures
generated by means of the map that has an invariant set. Orbits of the map
are represented by the space of symbols, i.e. symbolic dynamics, and are used
for the analysis of the system.

Third, we show that a classic combinatorial 4 colour necklace problem,4

with each colour representing a nucleotide base projection on the unit squa-
re, defines the unified concept of the genetic code. Reflected Gray code was
used to define proper arrangement of codons within the frames of automa-
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ton. Three horizontal frames of the necklace, consisting of 64 coloured pearls
(bases), make Crick’s comma-less code and vertically hanging decoration
triplets (codons) define the evolutional code. Thus, the necklace model de-
fines both concepts, depending on the level of the observation and/or posi-
tion of the observer.

This method of coding notation and analysis is named Symbolic Cantor
Algorithm (SCA). Machine learning classifier C5.0 and Fourier spectral anal-
ysis of nucleotide strings transformed by SCA define accurately the protein
secondary structure folding types and functional properties of one hormone
and growth factor.

RESULTS AND DISCUSSION

Metric of the Unit Interval – First Dimension

The Notation

We introduce the binary representation of 4 nucleotide bases on the
square with vertices 00, 01, 10, 11 in the manner defined for the Cantor set
by H. Steinhaus in 1917 (when discussing interesting properties of the set
noticed by S. Banach).3,7 The notation U or T = 00, C = 01, G = 10 and A = 11
is presented in Figure 1. It has the following properties:

The combination of 2 digits (0 or 1), denoting primary and secondary
characteristics of the nucleotide bases, describes each of the letters accord-
ing to the group subdivision/discrimination principles. The first digit defines
the primary chemical caracteristic as a type of the base ring, i.e. pyrimidine
is coded by 0 and purine by 1 (Figure 1). The second digit defines the sec-
ondary chemical characteristic of the ring according to the keto group (0) or
amino group (1) coding. Keto group possessing pyrimidine base U or T = 00
is discriminated from the amino group bearing pyrimidine base C = 01 by
the second digit notation. Full complementarity in obtaining amino group
purines (A) and keto group purines (G) is achieved by symmetrical 0 � 1
ring and group changes (to A = 11, G = 10), or vice versa. The patterns of
Figure 1 define the Siemion mutation ring and physical-chemical character-
istics of the amino acids3 in a manner analogous to the particular type of de-
terministic finite automaton (DFN).

Codon Positions on the Binary Tree

Table I shows the binary notation for all 64 codons and 20 amino acids.
To define more precisely the positions of particular codon intervals of the bi-
nary tree with respect to the quadratic base mapping we examine the in-
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variant Cantor set C with the method of symbolic dynamics in a standard
manner.3,8,9 This was performed because the Cantor set possesses two prop-
erties related to the binary coding of the Figure 1 notation:3,8,9

1. Binary decomposition of the initial segment into 2n segments is pro-
jected on the (n–1)th binary tree level;

2. Partitioning of the observed set C, by excluding 1/3 length of its map-
ping interval at each tree level, may be defined by (0, 1) coin tossing, and set
C splitting into two halves. Half of the set C codons are coded by the left 1/3
of the interval as 0 and the other half by the right 1/3 as 1, provided that
the bifurcation of the set takes place at tossing outcome 1 with 1/2 probabil-
ity. When the outcome is 0, the splitting does not take place.

This process of bifurcation is determined by two universal parameters of
fixed numerical value, discovered by M. Feigenbaum (� = 2.5029... and � =
4.6692....). � is linked to the clustering of the elements (codons/amino acids)
on the binary tree with respect to the bifurcation cycles that partition the
total set. � is the universal measure that defines how these elements (co-
dons/amino acids) of the stable cycles periodically bifurcate from the origin
to obtain the partition pattern.5,6,9,10
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Figure 1. Binary notation of the 4 nucleotide bases based on the purine-pyrimidine
ring and amino-keto group coding principles.
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TABLE I

Binary and symbolic notation with the Cantor set ternary addresses of RNA,
DNA and amino acids

aa codon Cantor binary symbolic notation aa codon Cantor binary symbolic notation

� � address notation (reflected Gray code) � � address notation (reflected Gray code)

F UUU 0.0000 00 00 00 F UUU 00 00 00* K AAA 0.9986 11 11 11 V GUU 10 00 00

F UUC 0.0027 00 00 01 F UUC 00 00 01* K AAG 0.9959 11 11 10 V GUC 10 00 01

L UUG 0.0082 00 00 10 L UUA 00 00 11 N AAC 0.9904 11 11 01 V GUA 10 00 11

L UUA 0.0110 00 00 11 L UUG 00 00 10 N AAU 0.9877 11 11 00 V GUG 10 00 10

S UCU 0.0247 00 01 00 S UCG 00 01 10 R AGA 0.9739 11 10 11 A GCG 10 01 10

S UCC 0.0274 00 01 01 S UCA 00 01 11* R AGG 0.9711 11 10 10 A GCA 10 01 11

S UCG 0.0329 00 01 10 S UCC 00 01 01* S AGC 0.9657 11 10 01 A GCC 10 01 01

S UCA 0.0357 00 01 11 S UCU 00 01 00 S AGU 0.9630 11 10 00 A GCU 10 01 00

C UGU 0.0741 00 10 00 Y UAU 00 11 00* T ACA 0.9246 11 01 11 D GAU 10 11 00

C UGC 0.0768 00 10 01 Y UAC 00 11 01* T ACG 0.9218 11 01 10 D GAC 10 11 01

W UGG 0.0823 00 10 10 ochre UAA 00 11 11 T ACC 0.9163 11 01 01 E GAA 10 11 11

opal UGA 0.0850 00 10 11 amber UAG 00 11 10 T ACU 0.9136 11 01 00 E GAG 10 11 10

Y UAU 0.0988 00 11 00 W UGG 00 10 10 I AUA 0.8999 11 00 11 G GGG 10 10 10

Y UAC 0.1015 00 11 01 opal UGA 00 10 11* M AUG 0.8971 11 00 10 G GGA 10 10 11

amber UAG 0.1070 00 11 10 C UGC 00 10 01* I AUC 0.8916 11 00 01 G GGC 10 10 01

ochre UAA 0.1097 00 11 11 C UGU 00 10 00 I AUU 0.8888 11 00 00 G GGU 10 10 00

L CUU 0.2222 01 00 00 R CGU 01 10 00* E GAA 0.7764 10 11 11 S AGU 11 10 00

L CUC 0.2250 01 00 01 R CGC 01 10 01* E GAG 0.7737 10 11 10 S AGC 11 10 01

L CUG 0.2305 01 00 10 R CGA 01 10 11 D GAC 0.7682 10 11 01 R AGA 11 10 11

L CUA 0.2332 01 00 11 R CGG 01 10 10 D GAU 0.7654 10 11 00 R AGG 11 10 10

P CCU 0.2469 01 01 00 Q CAG 01 11 10 G GGA 0.7517 10 10 11 K AAG 11 11 10

P CCC 0.2497 01 01 01 Q CAA 01 11 11* G GGG 0.7490 10 10 10 K AAA 11 11 11

P CCG 0.2551 01 01 10 H CAC 01 11 01* G GGC 0.7435 10 10 01 N AAC 11 11 01*

P CCA 0.2579 01 01 11 H CAU 01 11 00 G GGU 0.7407 10 10 00 N AAU 11 11 00*

R CGU 0.2963 01 10 00 P CCU 01 01 00* A GCA 0.7023 10 01 11 T ACU 11 01 00

R CGC 0.2990 01 10 01 P CCC 01 01 01* A GCG 0.6996 10 01 10 T ACC 11 01 01*

R CGG 0.3045 01 10 10 P CCA 01 01 11 A GCC 0.6941 10 01 01 T ACA 11 01 11*

R CGA 0.3073 01 10 11 P CCG 01 01 10 A GCU 0.6914 10 01 00 T ACG 11 01 10

H CAU 0.3210 01 11 00 L CUG 01 00 10 V GUA 0.6776 10 00 11 M AUG 11 00 10

H CAC 0.3237 01 11 01 L CUA 01 00 11* V GUG 0.6749 10 00 10 I AUA 11 00 11

Q CAG 0.3292 01 11 10 L CUC 01 00 01* V GUC 0.6694 10 00 01 I AUC 11 00 01*

Q CAA 0.3320 01 11 11 L CUU 01 00 00 V GUU 0.6666 10 00 00 I AUU 11 00 00*

aa = amino acids; U = T
Bold italics denote the Gray code solution, asterisk (*) for 2 digit moves.



The relative location of different coding intervals and their orientation
are additionally specified in Table I by the nodes of alternating binary tree
and their symbolic coordinates (names).3,8–10 Briefly, the left half of the unit
interval is labelled 0 and the right one 1. For x < 1/2 and its derivative
f '

�
(x) > 0, with quadratic map f

�
(x) = �x(1–x), � > 4, the pairs of the initial

binary tree preserve orientation and for x > 1/2, f '
�
(x) < 0 they reverse ori-

entation in the alternating binary tree.3,8–10

Algorithms and Metric

The metric of the symbol space on the unit interval defines each number
c � C in the ternary expansion10,11 c = 	 jn /3n, with jn = 0 for coin tossing
outcome 0 and jn = 2 for outcome 1, n = 1, 2, 3…
. The number c of each bi-
nary address is defined on the middle-third Cantor set of the �0, 1� interval
for points rn and sn, as discussed by Milnor and Robinson.10–12 The total
length of the interval Pc = 	 pc � 1 for n = 1, 2, 3…
 and pc = 	 | sn – tn |/3n

with jn = | sn – tn | defines the maximum precision of the algorithm at each of
n tree levels.10,12 This algorithm is based on the 3–n metric that makes the
so called cylinder sets into balls.10 The metric distance10,11 is d (r,s) = 	 | rn –
sn |/3n, n = 0, 1, 2…
. We denote this algorithm as a Symbolic Cantor Algo-
rithm (SCA).3,9,13

As shown in Table II, the binary algorithm based on the 2–n metric (c =
	 jn / 2 n, j n = 0 or 1) converges more slowly to the maximum probability
Pc = 	 pc � 1, sufficient to describe the system of 2n hypercube vertices with
acceptable accuracy.9 The latter algorithm is more often applied in the algo-
rithmic information theory.14 It is related to baker map15 and the 7 digit
Hamming’s code,16 since at digit n = 6 it does not satisfy the informational
coverage of >99% of the �0, 1� interval needed for the accurate (hypercube)
system description (Table II). Contrary to the binary, the Cantor set based
algorithm covers, by means of the 6 digit words, a sufficient proportion of
the interval to obtain >99% accuracy (Table II). Therefore, this metric en-
ables data analysis by means of linear block triple-check code.16 Six digits
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TABLE II

Efficacy of two algorithms that definine the information of hypercube address
mapping on the �0, 1� interval

Algorithmic defining of
�0, 1� interval

digit
no. 1

digit
no. 2

digit
no. 3

digit
no. 4

digit
no. 5

digit
no. 6

Cantor (SCA) address 0.666 0.888 0.963 0.988 0.996 0.999

Binary address 0.500 0.750 0.875 0.938 0.969 0.984



are also more appropriate for describing economically the two digit specified
base triplets that code for the amino acids and stop codons (Figure 1, Table
I).

SCA Defines the Triple Check Code

RNA and DNA strings represent the message divided into code words of
fixed digit length n = 6 due to the fact that two binary digits define each
base of the codon word or block of fixed length m = 3. As shown in Table II,
the previously discussed Cantor set based algorithm (SCA) ensures >95%
accuracy in the informational coverage of the message for the first three
bits, which indicates that the three remaining bits may be applied for error
correction. The code that corresponds to this condition is a triple check lin-
ear block code. It has a the block length 6 (n), rank 3 (m) and rate 1/2
(m/n).16

The code is constructed as follows. The message is divided into blocks of
3, say 'abc', where each of a, b and c is 0 or 1. Three check bits 'xyz', also 0
or 1, are added. Three conditions are satisfied for the word 'abcxyz':

1. The number of 1s in abx is even,

2. The number of 1s in acy is even,

3. The number of 1s in bcz is even.

So, if abc = 110, then x = 0, y = 1, z = 1 and the code word is 110011.

The standard array of the code is given in Table III. The top row of the 8
� 8 table is constructed from 8 possible 'abc' combinations,16 and weights
are sorted according to the SCA.3,9,13 Row or coset leaders are chosen to be
of the smallest possible letter weight changes according to the SCA.3,9,13
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TABLE III

Standard array for the triple check code reconstructs the genetic code table
and Siemion mutation ring of the code3,31 by means of the algorithm presented in
Figure 1. Detailed analysis of the Siemion mutation ring transformations is found

in [tambuk.3

000000 001011 010101 011110 100110 101101 110011 111000

000001 001010 010100 011111 100111 101100 110010 111001

000011 001000 010110 011101 100101 101110 110000 111011

000010 001001 010111 011100 100100 101111 110001 111010

000100 001111 010001 011010 100010 101001 110111 111100

000101 001110 010000 011011 100011 101000 110110 111101

000111 001100 010010 011001 100001 101010 110100 111111

000110 001101 010011 011000 100000 101011 110101 111110



Once the heads of each column and row leaders have been chosen, the rest
of the words is determined by adding the code word at the head of each col-
umn to the row leader. The adding for each digit is performed as follows:
1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0 and 1 + 1 = 0. The error correction within the
standard array of the code is achieved by replacing any received word by the
code word at the head of each column. The linear triple check code has 8
code words and it is quite a good error correcting code.16 It has minimum
distance d = 3, the Hamming bound gives the maximal possible size for such
a code as 26 / |D1| = 26/7 and the Gilbert-Varshamov bound says that a code of
size 26 / |D2| = 26/22 exists.

The genetic code table is reconstructed by the standard array of the tri-
ple check code, which confirms that this type of code is the most appropriate
one for the analysis of DNA and RNA strings. Octal, i.e. 8 � 8 codon structur-
ing within the code table is also confirmed by the horseshoe mapping in Ta-
ble IV and the necklace model of the genetic code.9,13
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TABLE IV

Horseshoe map representations of 6 digit Cantor set addresses by means of 2
binary triplets, or 2 octal numbers. Classic genetic code patterns3 are extracted

and the related codon mapppings are defined by means of the unit square trans-
formations (Figure 1).

Base
position

1st/
2nd

1st/
2nd

1st/
2nd

1st/
2nd

1st/
2nd

1st/
2nd

1st/
2nd

1st/
2nd

Base
position

3rd/2nd†

� �

000.
U�

100.
G�

110.
A�

010.
C�

011.

C
111.

A
101.

G
001.

U

†2nd/3rd

� �

U C .100

C C .101

A C .111

G C .110

S

S

S

S

A
A
A
A

T

T

T

T

P

P

P

P

H

H

Q

Q

N

N

K
K

D
D
E
E

Y

Y

ochre*

amber*

A U

A C

A A

A G

G U .010

A U .011

C U .001

U U .000

L

L

F

F

V

V
V
V

M**

I

I

I

L

L

L

L

R

R

R

R

R

R
S
S

G

G
G
G

W

opal*

C

C

G G

G A

G C

G U

* Stop codons, **start.
† Follows 1st/2nd base to obtain codon addresses of Table I (Gray code solution is bold).



Gray Code Solution to the Metric Problem

Symbolic coordinates of codon and amino acid locations on the Cantor
set in Table I represent the reflected Gray code solution to the n = 6 digit bi-
nary notation for 2n = 64 codons. This result was published in 1972 by M.
Gardner for the Chinese ring puzzle solution,17 but the solution to our prob-
lem of coding is identical.9,13 Each one of the n = 6 rings that have to be
freed from the double bar in a minimal number of moves represents a di-
git.17 Gardner’s Gray numbers that solve the puzzle in 42 moves for n = 6
digits/rings are symbolic addresses of different codons in Table I (bold italic
letters). If we assume that for each move two rings or digits are moved si-
multaneously at both ends of the bar, the puzzle is solved in 31 moves ( de-
noted by asterisks in Table I). The Cantor set solution to this problem repre-
sents codon projection to the [0, 1] interval according to their addresses on
an invariant set C.9,13

The addresses of the closest c � C are obtained by means of the Ham-
ming distance minimization of the hypercube Hamiltonian paths,17 mapped
by means of the SCA to the �0, 1� interval.3,9,13 The unit interval Cantor
mapping in Table I solves the complementary coding problem via binary
tree codon projection, and the Gray code solution requires at least 32 binary
numbers from the first part of Table I. Complementary addresses for the
second half of the table are symmetrically arranged at opposite binary Can-
tor positions and obtained by 0 � 1 digit switch.

Our result represents the optimization of R. Swanson’s Gray code nota-
tion.3,9,13,18 According to Swanson,18 coding addresses are obtained by sim-
ple summation of the square Gray code positions: U or T = 00, C = 01, A = 10,
G = 11. For the reflected Gray code, which is the most economic one, the ad-
dresses are obtained from the binary notation U or T = 00, C = 01, G = 10,
A = 11 by the following transformation. Start with the digit at the right and
consider each digit in turn. If the next digit to the left is even (0), let the for-
mer digit stand, and if it is odd (1), change the former digit.9,13,17,19 It is as-
sumed that the digit at the extreme left has 0 at its left and therefore re-
mains unchanged (Table I).

We investigated the secondary protein structure by means of the Quin-
lain C5.0 classifier, which is the outgrowth of the classic C4.5 machine
learning system.20,21 The nucleotide sequences of 25 a-helix and 25 �-sheet
proteins were retrieved from Barton’s JPred database22 according to their
alphabetical appearance. The Cantor set symbolic addresses listed in Table
I were assigned to each protein. Table V shows that SCA enables the deci-
sion rules based prediction of protein secondary structure with 94% accu-
racy, from the descriptive statistics codon parameters. The accuracy of the
procedure rises to 100% with the 10 boosting trial option. An almost identi-
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cal result is obtained if the triple check code octal notation from Table III is
applied. This precision of SCA is due to the fact that stretching and folding
of the quadratic map with symbolic dynamics on the unit interval3,8–13

keeps track and information of the hypercube codon (amino acid) represen-
tations of the string by means of the reflected Gray code.9,13,17,19 Two dimen-
sional representation is defined via the horseshoe map.9–13
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TABLE V

Decision tree and rules for defining � and � protein folding types by means
of Quinlan’s C5.0 machine learning classifier

Read 50 cases A = �-helix, B = �-sheet

Decision tree:

Skewness > -0.2087285: A (8)
Skewness <= -0.2087285:
:...Notriplets > 50: B (9)

Notriplets <= 50:
:...Range <= 0.9877: B (2)

Range > 0.9877:
:...Minimum > 0:

:...StdErr <= 0.03485898: B (6/1)
: StdErr > 0.03485898: A (4)
Minimum <= 0:
:...Notriplets > 45: A (5)

Notriplets <= 45:
:...Notriplets > 38: B (8/1)

Notriplets <= 38:
:...Range <= 0.9959: B (3/1)

Range > 0.9959: A (5)

Evaluation on training data (50 cases):

Decision Tree Rules
—————————————— ——————————————
Size Errors No Errors
9 3(6.0%) 9 3(6.0%) <<

(a) (b) <-classified as
—— ——
22 3 (a): class A

25 (b): class B

Rule utility summary:

Rules Errors
————— —————————
1-2 16(32.0%)
1-4 10(20.0%)
1-5 10(20.0%)
1-7 6(12.0%)

Time: 0.1 secs



Horseshoe Map – Second Dimension

Smale Horseshoe Map

The Smale horseshoe map is an example of diffeomorphism f : S2 � S2,
or from R2 to itself, that has an invariant set which is a Cantor set.8–13 The
map is closely related to the map f

�
(x) = �x(1–x) on R for � � 4.8–13 It is one

of the important examples with complicated and chaotic behaviour. The
horseshoe map often behaves like a skeleton on which chaotic and periodic
orbits of the system are organized.8,9 The horseshoe is the mapping of the
unit square in Figure 1, which contracts the horizontal directions, expands
in the vertical direction, and then folds.8–11 The mapping is only defined on
the unit square while points that leave the square are ignored.8,10 Forward
and backward iterations of the horseshoe map generate the locations of the
periodic points.8–13,15

Amino Acid and Codon Horseshoe Mapping

By iterating the map, we specifiy the locations of periodic orbits of the
codons and amino acids within the homoclinic tangle of the horseshoe. Table
IV gives the labelling scheme for horizontal and vertical branches from a
pair of alternating binary trees. The projections of 2 binary triplets (or 2 oc-
tal numbers) according to the horseshoe pattern extract the standard table
of the genetic code, which proves that this map defines the patterns of the
codon recombination buried in the code. Patterns of the first, second and
third base changes also satisfy and confirm the standard square notation
with 4 binary addresses presented in Figure 1, typical of the horseshoe map.
The algorithm in Figure 1 is therefore confirmed for the genetic code, and
the horseshoe map in Table IV represents its proper labelling scheme for the
codon and amino acid positions. The octal horseshoe map in Table IV is con-
firmed by the column leader positions of the triple check code in Table III.

Since the invariant horseshoe set is a product of two Cantor sets inter-
sections in horizontal and in vertical directions,8–12 the Cantor set projec-
tion of the genetic code is also proved for a two-dimensional case.

Map orbits in a space of symbols may be analyzed with respect to bifur-
cation, stability and resonance.23 Table VI shows the results of the molecu-
lar resonant analysis of the string spectra by means of Discrete Fourier
Transformation (DFT).24 Human Pro-opiomelanocortin (POMOC) and Bone
Morphogenetic Protein6 precursor (BMP-6) sequences were retrieved from
the NR and SWISS-PROT databases. Their Gray code spectra obtained by
SCA were analyzed with the software STATISTICA® (version 5.0). The reso-
nant peaks of the spectral analysis of POMOC in Table VI predicted all
bioactive peptides and hormones that are cleaved from the precursor mole-
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cule. The resonant analysis of BMP-6 precursor extracted the bioactive
parts of this molecule that correspond to the consensus BPC-157 gut pep-
tide.25 This confirms the previously reported data regarding the structure of
both peptides and explains the similarity in their protective effects on dif-
ferent tissues.25–27 Resonant peaks obtained by means of the 8 column lead-
ers of the triple check code (Table III) do not differ from the resonant analy-
sis performed with all 64 codons (Table I), which confirms the octal nature
of the code. Resonant Recognition Method and Molecular Recognition The-
ory might enable, with respect to our notation, extraction of bioactive pro-
tein parts and their complementary receptors from DNA and RNA sequen-
ces.3,9,27

Necklace Model – Third Dimension

Circular Code Arithmetic and Necklace Coding

We defined the genetic and protein circular code by means of a combina-
torial necklace model.13 This structure consists of 64 beads of 4 different
colours representing 4 nucleotide bases (U or T, C, A, G). The coloured beads
make decorations that consist of vertically hanging chains of x = 3 beads,
which represent each of the codons. Consequently, there are y = 43 distinct
vertical chains that can be made (i.e. the number of words of length x = 3

1134 N. [TAMBUK

TABLE VI

Bioactive sequences of human Pro-opiomelanocortin and Bone morphogenetic
protein 6 precursor (BMP-6) determined experimentally and by a spectral (single

series) Fourier analysis

BIOACTIVE REGIONS (amino acids no.)

Pro-opiomelanocortin (POMC) BMP-6 (BPC consensus)

Experimental
Periodogram

values*
Experimental

Periodogram
values*

�-MSH
ACTH

�-MSH
Lipotropin-�
�-endorphin
Met-enkephalin

77–87
138–176

138–150
179–234
237–261
237–241

86
138, 154, 156,

170, 174
138
182
240
240

16–18
24–29

86–88
122–128
141–146
339–348

14
22

82
128
142
348

* Same for the triple check code (Table III).



with the alphabet of size y = 4). The total number of possible vertical decora-
tions containing at least two colours each is yx – y = 60, and y = 4 decora-
tions contain beads of the same colour. The arrangement of the codons in
three frames according to their projection on the Cantor set transforms each
frame in such way that if one letter shift is performed, the next frame is au-
tomatically retrieved.13 This result was obtained for DNA and tRNA.13 Gray
code arrangement of the complementary frames that code for mRNA and
complementary DNA, beginning from the start AUG, i.e. Methionine, codon
is presented in Table VII. 0 � 1 digit switches, and vice versa, define the
arrangements of the complementary DNA and RNA sequences.13

Necklace model of the genetic code extracts three frames of the automa-
ton that prints the protein according to the Gray code based error minimi-
zation procedure. It remains an open question whether or not the decoding
procedure of protein coding, i.e. Gray code protein printing, regions might
enable the location of the corresponding DNA and RNA programming lan-
guage structures within non-coding genome regions.9,13

CONCLUDING REMARKS

Presented results indicate that the concepts of the code without comma
and of the evolutionary code, based on different premises, strongly depend
on the level of the observation (analysis). In the necklace model, Crick’s code
without comma1,2,13,28 represents three horizontal frames that define neck-
lace chains, while Dounce’s evolutionary code1,2,13,29 makes vertically hang-
ing beds (codon triplets). Therefore, the circular coding necklace algorithm
represents a unifying concept for the genetic code.13 Its structure has a
striking resemblance to the Enigma coding device.30 Knowledge of the bi-
nary-Gray code relations and codon positions within three automaton fra-
mes opens new possibilities for the genome software analysis.

Symbolic Cantor Algorithm enables the genetic code and protein analy-
sis via the number theory arithmetic for codes in several dimensions, de-
pending on the code type. Two dimensional Cantor set projection of the bi-
nary (square) notation of the Smale horseshoe map reconstructs the classic
table of the genetic code, which proves our result and opens the possibility
of the gene and protein analyses as chaotic dynamical systems. The genetic
code table is also contained in the one dimensional Cantor set projection of
the six dimensional hypercube vertices.3,9,13 It is worth mentioning that the
one-dimensional SCA based mapping enables the analysis of any six-dimen-
sional hypercube system as a time series, providing that the proper coding
of elements is performed.
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SA@ETAK

Univerzalna metri~ka svojstva geneti~kog koda

Nikola [tambuk

Istra`ene su op}e metri~ke osobine geneti~kog koda te RNA, DNA i proteinskog
kodiranja. Pokazano je da binarna notacija nukleotidnih baza zasnovana na Canto-
rovu skupu, Gray-ovu kodu, simboli~koj dinamici i Smale-ovoj potkovastoj mapi de-
finira standardnu tablicu geneti~kog koda. Definirani su i algoritmi koji opisuju spo-
menuti odnos kodona i aminokiselina na binarnom drvetu. Pokazano je da ternarni
Cantorov algoritam predstavlja najpovoljniji na~in za kodiranje aminokiselina i ko-
dona na osnovi njihovih purinskih i pirimidinskih prstena te amino- i keto-skupina.
Metoda je nazvana Simboli~ki Cantorov Algoritam (SCA). Istaknuto je da spomenuti
na~in kodiranja gena i proteina odgovara linearnom blok-kodu s trostrukom provje-
rom, {to upu}uje na to da se ne radi o »degeneriranom kodu« ve} o kodu koji popra-
vlja pogre{ke. Dana je i tablica koda. Spomenuti tip koda definira rije~i (kodone,
aminokiseline) i njihovu transkripciju i translaciju, dok du`e leksi~ke strukture ko-
dira cirkularni kod na principu ogrlice s tri niza. Odre|eni su nizovi cirkularnog ko-
da koji definiraju mRNA i komplementarne DNA. Strojnim klasifikatorom C5.0 te
algoritmom SCA definirana je, iz nukleotidne sekvencije, sekundarna struktura 50
proteina sa 94% to~nosti. Spektralna (Fourier-ova) analiza hormona i citokina meto-
dom SCA odredila je bioaktivne dijelove molekula, te ukazala na mogu}u primjenu
metode u praksi.
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