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In this paper a third “intersection method” symbolized »L�a« is

theoretically grounded. The method applies to multielectrodes: in-

ert semiconductors/redox electrolyte, and is based on the simulta-

neously changing of both the intensity of illumination (L), and the

activity (activities) of one (or more) electrochemical active species

(a). A first result refers to the possibility of decomposing the »L�a«

method in the two intersection methods, »L�P« and »a�P«, that

have been grounded in the first two papers. This result has permit-

ted to use the equations deduced for the »L�P« and »a�P« methods

in the first two papers, in order to obtain the equations of poten-

tiostatic, respective galvanostatic »L�a« methods. Further, these

equations have been used to get the expression of the specific ad-

mittance of the multielectrode. On the basis of this expression, new

methods have been grounded for studying the kinetics of electrode

redox reactions occurring at inert semiconductor (inert metal)/re-

dox electrolyte electrodes, the semiconductor operating only by one

of its energetic bands. Finally, the decomposing law has been gen-

eralized to “intersection methods” in which operates an arbitrary

number of factors.

* Author to whom correspondence should be addressed.
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INTRODUCTION

As it has been shown in the first paper1, in the case of a multielectrode:

inert semiconductor/redox electrolyte, the current density depends on three

factors: the activities of the electrochemical active species, taking part in

the redox reactions:

Ak + nke �
�

A k

nk (1)

the illumination intensity and the polarization of the multielectrode, quan-

tities that have been symbolized by a,L and P. In the first paper, a new sta-

tionary method for studying such redox multielectrodes has been grounded,

based on the simultaneously changing of the illumination and polarization;

this method has been called an "intersection method", and it has been sym-

bolized by »L�P«. In the second paper2, an other stationary "intersection

method", namely »a�P«, in which the activities and the polarization are

simultaneously changed, has been grounded. It remains to develop a third

"intersection method", based on the simultaneously changing of L and a. Of

course, this »L�a« method may be made in potentiostatic, or galvanostatic

conditions, and equations for these two particular cases are deduced. Final-

ly, an equation expressing the relation between these three methods has

been also obtained; based on this equation one arrives to a better under-

standing of the meanings of these intersection methods.

THE EQUATIONS OF THE POTENTIOSTATIC, RESPECTIVE

GALVANOSTATIC »L�a« METHODS

Because in the first two papers we have deeply explained the meanings

of the »L�P«, respective »a�P« methods in the plane (U, j) we shall pass more

quickly now in giving the interpretation of the »L�a« method (see Figure 1).

In the figure is shown a magnified view of the vicinity of the point

M(U, j). The polarization curves in the interior of this vicinity are practically

linear and parallel. To make a choose, let's suppose that the polarization

curves (L + dL,a), (L + dL,a + da) are on the same side with respect to the

polarization curve (L,a). Consider first the potentiostatic »L�a« method. The

changing of L to L + dL implies a simultaneously changing of P to P + (dP)1

in order to maintain U unchanged. The effects of these two simultaneous

changes are represented by the segments MS and MQ, and the resultant of
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these effects moves the point M in M'. The length of the segment MM' gives

the variation of the current density j as a consequence of changing the illu-

mination intensity with dL, in potentiostatic conditions. Therefore, MM' =

(dL�P j)U. But there is also a simultaneous variation of a with da, which has

to be compensated by an other variation (dP)2 of the polarization. The seg-

ment M'S' illustrates the effect of da, and the segment M'Q' illustrates how

this effect is compensated by a simultaneous polarization effect in order to

maintain the value of U. The length of the segment M'N gives the variation

of j as a consequence of changing the activity with da, under an illumination

L + dL, and in potentiostatic conditions. Therefore M'N = (da�P j)U.

Of course, dL, da and dP act simultaneously, and not in consecutive steps

as it is shown in Figure 1. This decomposition in two consecutive steps, a

»L�P« step, followed by an »a�P« step, supposes that for dL, da, dP suffi-

ciently small (when MSM'Q and M'S'NQ' may be considered as parallelo-

grams), one may accept that these variations act independently, i.e., that they

have independent effects. Therefore, because MN = (dL�aj)U, one may write:
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Figure 1. The interpretation of the potentiostatic and galvanostatic »L�a« methods

in the plane (U, j), MN = (dL�aj)U, MN' = (dL�aU)j .



(dL�a j)U = (dL�P j)U + (da�P j)U . (2)

Similarly, for the galvanostatic »L�a« method, in the first step, the seg-

ments MS and MQ represent the effect of dL and of a first polarization

change (dP)1, and their simultaneous actions move the point M in M'': fur-

ther, in the second step, the simultaneous effects of da and of a second po-

larization change (dP)2 (represented by the segments M''S'' and M Q" ") move

the point M'' in N'. Therefore, one may write:

(dL�aU)j = (dL�PU)j + (da�PU)j . (3)

From the same figure results that MN may also be judged as the resul-

tant of MS* (illustrating the effects of both dL and da) and MQ* (illustrat-

ing the effect of the total polarization dP = (dP)1 + (dP)2). A similar interpre-

tation may be given to MN', he only difference consisting in the fact that the

total effect of the polarization action is now illustrated by the segment MQ*.

Further, we must observe that in the case of the »L�a« method we have

three polarization curves. Taking into account that the »L�a« method may

be decomposed in a »L�P« method, followed by an »a�P« method, one sees

that the first component implies the passage from the polarization curve

(L,a) to the polarization curve (L + dL,a), and consequently the equations

deduced in the first paper for the potentiostatic (galvanostatic) »L�P« meth-

ods remain valid. Indeed, in the »L�P« method the activity-vector a re-

maining constant it was not indicated, and therefore the passage (L) � (L +

dL) is in fact the passage (L,a) � (L + dL,a). As for the second component

»a�P«, it implies the passage from an other initial curve (i.e., (L + dL,a) in-

stead of (L,a)) to the polarization curve (L + dL,a + da), i.e., a change of the

activity-vector, but at an other constant value of the illumination (L + dL in-

stead of L). For this reason, the quantities appearing in the equations de-

duced in the second paper must be replaced by DF + dL(DF), DFH + dL(DFH), j

+ dL j, jn,k + dL jn,k, jp,k + dL jp,k etc. But in doing this, appear infinitesimal

quantities of superior orders which may be neglected, and consequently one

may use also the equations deduced in the second paper for the poten-

tiostatic and galvanostatic »a�P« methods.

Using the equations of (dL�Pj)DF (first paper) and (da�Pj)DF (second pa-

per), it results from Eq. (2):

( ) ( ) ( ), ,d dn p HL a k k k
k

k k k L Pj f n j n j� �� � � � ��� �F b b F{ }] [[ 1 d Ha P� �( )� �F F]

� � � �� � � �� { }( ) ( ), , , , , ,ln ln .j j a j j ak k k k k k
k

n p red n p oxd d (4)

Similarly, using the equations of (dL�P DF)j (first paper) and (da�P DF)j

(second paper), it results from Eq. (3):
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ADDITION LAWS RELATING THE »L�a« METHOD TO ITS

COMPONENTS: THE »L�P« and »a�P« METHODS

Eqs. (2) and (3) refer to a »L�a« method, and express the addition laws

for the variation of the current density j in potentiostatic conditions, respec-

tive for the variation of the total potential difference DF = DFsc + DFH in

galvanostatic conditions.

If one uses the expressions of dL j (obtained in the first paper) and da j

(obtained in the second paper) one may get the expressions of (dL�a j)DF (by

imposing the condition dL(DF) + da(DF) = 0), respective of � 	dL a j� ( )�F (by

imposing the condition dL j + da j = 0). Here, we only mention that the expres-

sions which result are identical to the expressions (4) and (5) if and only if:

� 	 � 	 � 	d d dL a L P a P� � �� �( ) ( ) ( )� � �
� � �

F F F
F F FH H H (6)

and

� 	 � 	 � 	d d dL a j L P j a P j� � �� �( ) ( ) ( )� � �F F FH H H . (7)

Let's observe that the addition law (6) applies also to the total potential

difference, but each term is equal to zero:

� 	 � 	 � 	d d dL a L P a P� � �� �( ) ( ) ( ) .� � �
� � �

F F F
F F F

(8)

By subtracting Eq. (6) from Eq. (8), one gets:

� 	 � 	 � 	d d dsc sc scL a L P a P� � �� �( ) ( ) ( )� � �
� � �

F F F
F F F

(9)

and by subtracting Eq. (7) from Eq. (3):

� 	 � 	 � 	d d dsc sc scL a j L P j a P j� � �� �( ) ( ) ( ) .� � �F F F (10)

Summarizing, from the addition laws (2) and (3) result the addition laws

(6) and (7), respective (9) and (10), for the two components DFH , DFsc of the

total electric tension DF = DFH + DFsc. One may conclude: the additon law

dL�a( ) = dL�P( ) + da�P( ), applies to the total electric tension DF, as well as
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to each of its two components DFsc , DFH, and this conclusion refers to both

potentiostatic and galvanostatic conditions. As for the addition laws refer-

ring to the current density, they are valid too. Indeed, Eq. (2) refers to the

potentiostatic conditions, and the addition law for the galvanostatic condi-

tions is also valid i.e.,

(dL�a j)j = (dL�P j)j + (da�P j)j (11)

because each term is equal to zero.

THE SPECIFIC ADMITTANCE OF THE REDOX MULTIELECTRODE:

INERT SEMICONDUCTOR / REDOX ELECTROLYTE

Coming back to Figure 1, and taking into account that the three polari-

zation curves are practically parallel (in a vicinity of M), one sees that the

admittance may be expressed either using the polarization curve (L + dL,a +

+ da), or the polarization curve (L + dL,a). Thus:

A
d j

d

d jL a

L a j

L P

sc

MN

N' M

MM'

M"M
� � � � � ��

�

�( )

( )

( )� �

�
F F

F[ [] dL P j� ( )�F ]
. (12)

Further, because of the relations (2) and (3) it results also:

A
d j

d

a P

a P j
sc � � �

�

( )

( )

�

�
F

F[ ]
. (12')

The last expression (12), and the expression (12') have been used in the

first two papers to express the specific admittance. It follows that the first

expression (12), in which the two terms of the ratio are given by Eqs. (4) and

(5), must lead to the expressions obtained in the first papers, for the specific

admittance. This time, these expressions must be really identically because

the »L�P« and »a�P« methods (in which the »L�a« method decomposes) re-

fer to the same initial polarization curve (L,a); the analysis of the »a�P«

method has been made in the second paper, but independent of the intensity

of the illumination, which may be even equal to zero. To verify this conclu-

sion, let's start with the metal/electrolyte case; then DFH = DF, j kn,
� + j kp,

� =

= jk
� , j kn,

� + j kn,
� = jk

� , jk
� – jk

� = jk , and performing the mathematical opera-

tions, it results:

A f n j jk k k
k

kmetal � � �� �[( ) .1 b ] (13)

As for the second particular case, i.e., when the polarization acts only on the

component DFsc, one must use the equations established in the first two papers,
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i.e., � 	 � 	d dL P L P j� ��( ) ( )� �
�

F F
FH H , respective � 	da P� �( )�

�
F

FH � 	da P j� ( )�FH .

By adding these equations, one gets � 	dL a� �( )�
�

F
FH � 	dL a j� ( )�FH , and after

some trivial operations it results:

A f n j jk
k

k ksc n p� �� � �( ), , . (14)

THE »L�a« METHOD IN THE CASE OF AN UNIELECTRODE:

INERT SEMICONDUCTOR / REDOX ELECTROLYTE

We shall consider only three particular cases.

The semiconductor operates only by its conduction band, and the

polarization acts only on DFsc .

In this case, jp = 0, and jn = j. From Eq. (14) one gets:

fnj– = Asc . (15)

The semiconductor operates only by its valence band, and the polarization

acts only on DFsc .

Now jn = 0, and jp = j. Consequently, Eq. (14) gives:

fnj+ = Asc . (16)

Inert metal/redox electrolyte unielectrode.

Eq. (13) leads to:

A fn j jmetal � � � �[( ) .1 b ] (17)

Further, let's show how Eqs. (15)–(17) may be used in kinetic studies.

Consider Eq. (15). The specific admittance may be obtained experimentally

for each value j, by differentiating the experimental curve j = j(U):

A
j

Usc

d

d
� (18)

and, because j = j+ – j–, it follows:

1 1

j

j

U
fn fnj

j

d

d
� � � � . (19)

A plot of (1/j) 
d j/dU
 vs. 1/j will determine the product fn from the inter-

cept, and, further, j+ from the slope. Once the partial curve j+(U) obtained,

the other partial curve results as j–(U) = j+(U) – j(U). If the linear regression
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analysis gives a significant correlation coefficient, one may conclude that,

indeed, the semiconductor operates only by its conduction band, and the po-

larization acts only on DFsc.

Similarly, in the case of Eq. (16) it results:

1 1

j

j

U
fn fnj

j

d

d
� � � (20)

and the linear regression analysis will decide if the semiconductor operates

by its valence band, and the polarization acts only on DFsc. If the answer is

affirmative, by performing the experimental data, one gets an estimate of

the product fn, and again a decomposition of j(U) in its components j+(U),

and j–(U).

In the case of Eq. (17), the equation of the regression line is:

1
1

1

j

j

U
fn fnj

j

d

d
� � � �( )b (21)

and the regression analysis will give the products fn( )1� b and fnj–. In the

cathodic Tafel domain j � –j– and (1/j) 
d j/dU
 tends to –fnb. In this way it is

possible to get fn, b and j–. Further, it results the two partial curves j+(U)

and j–(U).

The three above methods, developed on the basis of Eqs. (15)–(21) repre-

sent new stationary methods for determining the kinetic parameters too. In-

deed, suffice to observe that the exchange current density is given by j0 =

j+(Ueq) = j–(Ueq). However, it must be underlined that, like other methods

developed in our preceding papers,3–6 these methods are important because

they permit to get j+(U), j–(U), irrespective of the value U. Finally, let’s par-

ticularize the expressions (15)–(21) of the admittances in the three particular

cases analyzed for the equilibrium situation. Then, in equation (17), j = 0

and j– = j0. The expression of the exchange current density becomes: j0 =

(1/fn)Amet,eq = 1/(fnRct,eq), where Rct,eq represents the specific charge transfer

resistance at the equilibrium situation, expression that is identically with

those given in the literature.7,8 As for Eqs. (15) and (16), they lead to jn
0 =

1/(fnRct,eq), respective j p
0 = 1/(fnRct,eq), which again coincides to that given in

the literature.9,10

GENERALIZATION OF THE ADDITION LAW dL�a( ) = dL�P( ) + da�P( )

An »intersection method« supposes at least two electrochemical active

factors that influence simultaneously the electric characteristics of the elec-

trode (i.e., DF, DFH, DFsc and j). Let's denote these factors by Ci, because

492 L. ONICIU ET AL.



they act as electrochemical active causes that determine the values of the

electric characteristics of the electrode. What Eqs. (2), (3) and (6)–(11) show,

is the fact that the polarization P of the electrode is a special cause in devel-

oping »intersection methods«. Indeed, consider many electrochemical active

causes Ci � P, and the intersection method »C1�C2�� � �
i
Ci«. Then, this me-

thod satisfies the addition laws:

[ ] [ ] [ ] [d d d d� � � �� � � �
i

i iC C P C P C P( ) ( ) ( ) ... (x x xF F F� � �1 2
x F)]�

i

� (22)

respective:

[ ] [ ] [ ] [ ]d d d d� � � �� � � �
i

i iC j C P j C P j C P( ) ( ) ( ) ... ( )x x x x
1 2 j

i

� (22')

where:

x � �DFsc, DFH, DF, j� . (22")

Therefore, an intersection method »�
i
Ci« decomposes in the same num-

ber of intersection methods as the number of causes Ci, in each intersection

method appearing two causes: the polarization P, coupled successively with

one of the causes Ci.

CONCLUSIONS

By using the plane (U, j) to explain the meaning of the stationary »L�a«

method, it has been shown that there is an addition law which permits to

decompose the »L�a« method in two intersection methods, namely »L�P«

and »a�P«.

This conclusion has permitted to use the equations deduced in the first

two papers for the »L�P«, respective »a�P« methods, and thus to obtain the

equations of potentiostatic, respective galvanostatic »L�a« methods.

Further, these equations have served to obtain the expression of the spe-

cific admittance of the electrode, and by particularizing this expression for

the cases of semiconductors operating only by one of the two energetic

bands, respective for the case of metal/electrolyte electrodes, it was possible

to develop new methods for studying the kinetics of electrode redox reac-

tions. These methods permit not only to determine the kinetics parameters,

but also to decompose the experimental curve j(U) in its two components

j+(U), respective j–(U), and just because of this possibility they are superior

to the standard stationary methods.

Finally, a very important conclusion has been obtained by generalizing

the addition law to »intersection methods« in which operates an arbitrary

number of factors.
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SA@ETAK

Nove stacionarne metode istra`ivanja kinetike redoks-reakcija na
inertnim poluvodi~kim elektrodama. III. Metoda »L�a«

Liviu Oniciu, Iuliu Ovidiu Marian, Nicolae Bonciocat i Sergiu Borca

Opisuje se teorija metode presjeka nazvane »L�a« jer se sastoji od istovremene

promjene intenziteta osvjetljenja povr{ine inertne poluvodi~ke multielektrode (L) i

aktiviteta jedne ili vi{e elektroaktivnih otopljenih ionskih ili molekulskih vrsta (a).

Najprije je pokazano da se metoda »L�a« mo`e smatrati jednostavnom sumom me-

toda »L�P« i »a�P« koje su opisane u prethodnim ~lancima. To omogu}uje primjenu

ranije izvedenih jednad`bi na opis potenciostatske i galvanostatske ina~ice metode

»L�a« i specifi~ne admitancije multielektrode. Na osnovi ovih razmatranja predlo`eni

su novi postupci istra`ivanja kinetike redoks-reakcija na inertnoj metalnoj elektrodi

i inertnoj poluvodi~koj elektrodi s jednim djelatnim energijskim pojasom. Kona~no,

razvijena je op}a teorija metode vi{estrukog presjeka s istovremenom promjenom po

volji velikog broja varijabli.
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