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It is shown quite generally that the ground state energy of two at-
oms in infinite space, interacting via a spherical potential that de-
pends only on the distance between particles, is the lowest in two
dimensions. Using variational procedure, binding energies of he-
lium diatomic molecules, in infinite and restricted spaces, are ob-
tained as well. The results derived for helium atoms are in accord
with the lemma.
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INTRODUCTION

Many physical phenomena in nature are related to the behaviour of
small systems of particles. Among them, in low temperature physics, are su-
perconductivity, superfluidity and Bose-Einstein condensation. Specially in-
teresting and important cases are systems in which particles are helium at-
oms: helium liquids, helium films, liquid drops, atoms in cavities in solid
matrices and in nanotubes.

Consideration of small systems begins with the study of two atoms.
They can be located both in restricted and unrestricted spaces: in 3 dimen-
sions (3 D), 2 dimensions (2 D) and 1 dimension (1 D). Of course, the real
physical world has been occurring in the finite 3 dimensional space. In mak-
ing models of different physical situations we are led to consider 2 D and 1
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D space. In such circumstances, many physical effects are dominant in the
relevant dimension.

In this paper, we prove a general lemma. It relates ground state ener-
gies of two particles in 1, 2 and 3 dimensions in infinite space. It is assumed
that particles interact via spherical potential, depending only on the dis-
tance between them. Using variational procedure and employing the newest
potential of the interaction between helium atoms,1 the ground state ener-
gies of helium molecules are obtained. The consistency with the lemma is
demonstrated.

RELATIONS BETWEEN GROUND STATE ENERGIES
IN DIFFERENT DIMENSIONS

We consider the ground state of two particles that interact via a spheri-
cally symmetrical potential �V( ),

� �
r r1 2 , in one, two and three dimensional spa-

ce. The Hamiltonian of the system in relative coordinates reads
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1 2� is the reduced mass of the particles, m1 and m2 are masses

of the particles. In the ground state, only the »radial« part of the Hamiltonian
is important and the operator �, in this case, has the form
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Inequalities between energies in different dimensions may be obtained
by variational ansatz
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where n = 1, 2, 3 denotes the dimension of physical space and dW1 = 1, dW2 =
= 2� and dW3 = 4�.

Since we are studying the ground state and having in mind the symmetry
of the system, it is useful to write the trial wave functions in the form
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�1(r) = Y10(r)
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1
r
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Introducing trial wave functions in the variational ansatz (5), one finds
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where the normalization integrals read In = dr n0 0
2�

� Y , n = 1, 2, 3.

Relations (7), (8) and (9) are general. Assuming that �1 is the eigenfunc-
tion in one dimensional case and taking �20 = �1, from Eqs. (7) and (8), it
follows
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which means E2 < E1.

If it is supposed that �30 = �20, where �2 is the eigenfunction in 2D,
then from Eqs. (8) and (9) one finds
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On the other hand, if �3 is the eigenfunction in 3D and �20 = �30, then
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The last two inequalities may be joined
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From the above relation it follows that E2 < E3. In a similar considera-
tion, E3 = E1 follows from Eqs. (7) and (9). In this way, it is proved that the
binding energy of two interacting particles is the lowest in 2D. The result is
independent of the statistics of the particles.

GROUND STATE ENERGY OF DIATOMIC HELIUM MOLECULES

To describe physical systems that contain helium, many potentials be-
tween atoms have been obtained. One of the best is the ab initio SAPT po-
tential by Korona et al.;1 its enlarged forms by Janzen and Aziz2 are SAPT1
and SAPT2, which comprise retardation effects. Since the SAPT potential is
so precise, it is expected that the effect of retardation forces can be examined
experimentally. It reads

V(r) = �V*(r) (14)
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and
� = 108 mK c6 = 0.03207856 Å6

A = 20.7436426 c8 = 0.08680214 Å8

B = 3.157765 c10 = 0.31625734 Å10

� = 3.56498393 Å–1 c12 = 1.57407624 Å12

� = – 0.22141687 Å–2 c14 = 10.31938196 Å14

b = 3.68239497 Å–1 c16 = 86.00126516 Å16.

Let us first calculate the binding energy of two helium atoms in infinite
space. For the ground state, we found that a good analytic form of Eq. (6) in
all dimensions is
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where i = 1, 2, 3; a, � and s are variational parameters and, of course, have
different minimization values in 3D (1D) and 2D. The same form of pair cor-
relations in 3 D has recently been used by Bruch3 to examine the properties
of boson trimers. In 2D, we use the form employed in Ref. 4 which provides
a slight improvement over the variational wave function introduced in Ref.
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5. The binding energy and parameters are obtained by a minimization pro-
cedure. The results are shown in Table I. To evaluate our variational cal-
culation, and compare the results, the corresponding numerical solutions of
Schroedinger equation are presented for HFD-B3-FCI1 (Ref. 6), and SAPT
potentials as well.

Second, we concentrate on two helium atoms confined by a hard-walled
spherical potential in 3D and circular in 2D. As it was demonstrated in Ref.
4 good variational wave functions of the ground state are

�03(r;d) = �03(r)j0(�r/d) (18)

in 3D, and

�02(r;d) = �02(r) J0(2.404826r/d) (19)

in 2D. d is the diameter of the sphere and of the circle. j0 is the spherical Bes-
sel function and J0 is the zeroth-order Bessel function. Like in infinite space,
the ground state energy of the non-interacting system must be subtracted.

The energy of two free particles is
C

d
i
2 , i = 2, 3, where C2 = �

2(2.404826)2/2�

in 2D and C3 = �
2�2/2� in 3D. The results for d = 50 Å and d = 100 Å are

presented in Table II.

DISCUSSION

Let us mention that only the helium 4 dimer in 3 D has been observed
experimentally7–9 to date.
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TABLE I

Binding energies in infinite space (in mK) of helium molecules in 2 D and for dimer
(4He)2 in 3 D (second line), derived by numerical solving of the Schrödinger Eq. and
in variational procedure; variational values are in round brackets; parameters: a (in
Å), � (dimensionless) and s (in Å–1) are shown for the SAPT potential only. Note that
our variational wave function is not flexible enough to predict the bound state of the
(3He)2 dimer in 2 D and that molecules (3He)2 and 3He – 4He are not bound in 3 D.

Molecule HFD-B3-FCI1a SAPTb a � s

(4He)2 –39.4 (–37.7) –40.7 (–39.93) 2.758 4.408 0.047

–1.559 (–1.480) –1.871 (–1.762) 2.737 4.49 0.012

(3He)2
3He – 4He

–0.016 –0.02
–4.0 (–3.21) –4.3 (–3.51) 2.761 4.173 0.011

aRef. 6
bRef. 1



As it is seen from Table I, the binding energies for all helium molecules
are consistent with the lemma. Moreover, neither of the lighter molecules
are bound in 3 D. Two particles may be kept in 2 D space by an external po-
tential. This can be realized, for example, in a space between two close, paral-
lel big plates. Similarly, the interior of a long and thin cylinder may represent
1D space. Of course, these »confining« external potentials are not included
in the binding energies cited in Table I.

Since in a restricted geometry (in our case, sphere and cylinder) the ex-
ternal potentials are partly included, the lemma cannot be valid. Of course,
it is correct in this case as well if parameters of the geometry (for instance
in our case, the sphere or cylinder diameter) are much bigger than the effec-
tive range of the interaction potential. Such behaviour can be recognized in
Table II. From the »exact« numerical solution of the Schrödinger equation,4

we know that all combinations of two helium atoms are bound in finite
space (in the above sense); the same is true of infinite space, except for two
atoms of 3He and one atom 3He and one atom 4He, which are not bound in
3D. Let us note that our trial function in the case of (3He)2 is not good
enough to reproduce binding in 2D in either infinite or finite space. As the
comparision with numerical solution shows, it is quite good for other cases.

The zero point energy of the relative motion may be obtained by calcu-
lating the root-mean-square deviation �r (rms). For the helium 4 dimer in
3D, it was found numerically4 that the expectation value of the coordinate
<r> = 47.8 Å and �r = 44.3 Å, which leads to uncertainty in energy 2.05 mK.
Thus, we may conclude that the zero-point energy of relative motion is of
the order of binding energy of the helium 4 dimer. The corresponding de
Broglie wavelength and the mean speed are then 556.7 Å and 4.75 m/s, re-
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TABLE II

Binding energies (in mK) of helium molecules in a sphere (3 D, first line) and in a
circle (2 D, second line) derived in variational procedure for the SAPT potential; the
diameters of both confinements are d = 50 Å and d = 100 Å; parameters: a (in Å), �

(dimensionless) and s (in Å–1) are shown for d = 50 Å.

Molecule 50 100 a � s

(4He)2 –138.713 –40.650 2.753 4.41 –0.013
–61.660 –52.133 2.767 4.36 0.02

(3He)2 –67.086 –10.191 2.782 3.91 –0.058
73.159 14.827 2.798 3.87 –0.029

3He – 4He –94.354 –19.936 2.774 4.10 –0.042
16.718 –7.264 2.794 4.04 –0.011



spectively. It is shown that in confined space the root-mean-square devia-
tion �r depends almost linearly on the diameter of the »box«. This depend-
ence disappears for the helium 4 dimer for diameters greater than about 28
Å in 2D and 100 Å in 3D. Thus, the de Broglie wavelength of the zero-point
relative motion dependens on the diameter of the »box« and increases with
it up to the value that it has in infinite space. Let us mention that the above
consideration does not include the centre of mass motion.

It seems that the interior of a cylinder is the form that could be the easi-
est to realize in an experiment. Although we have not solved this problem
theoretically, the main energetic characteristics are given by our spherical-
models in 3D and 2D.

Finally, we mention that our calculation in finite space is an approxima-
tive one. Namely, we assumed that the centre of the mass of two particles
was located in the centre of space symmetry. It was shown in Ref. 4 that
this approximation gives the general features of the systems considered.

A further approximation has been performed in using the same form of
the potential in all dimensions. Potential (Eq. (14)) has been obtained for a
pure physical situation in 3D. We expect that our approximation is valid for
physical situations in which two- or one- dimensional motions are domi-
nant, like in films and nanotubes.
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SA@ETAK

Neke relacije za energiju osnovnog stanja i
helijeve dvoatomne molekule

Sre}ko Kili} i Leandra Vranje{

Sasvim op}enito je dokazana lema po kojoj je energija osnovnog stanja dvaju ato-
ma u beskona~nom prostoru najni`a u dvije dimenzije. Pri tome se pretpostavlja da
atomi me|udjeluju sferno simetri~nim potencijalom koji zavisi samo o udaljenosti iz-
me|u ~estica. Nadalje, koriste}i se varijacijskim postupkom odre|ena je energija
vezanja helijevih dvoatomnih molekula u beskona~nom i ograni~enom prostoru. Do-
biveni rezultati u skladu su s izvedenom lemom.
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