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Planar molecules A and B, which are identical except for isotopic
substitutions at various atomic sites 7, are considered. Out-of-
plane frequencies @, and normal modes ¥; of the perturbed iso-
topic molecule B are expressed in terms of out-of-plane frequencies
v; and out-of-plane normal modes ®; of unperturbed molecule A.
Complete specification of unperturbed normal modes ®; is not re-
quired. All that is needed are amplitudes (z|®;) of normal modes ®;
at sites 7 of isotopic substitution. The interlacing rule that inter-
laces frequencies wy with frequencies v, is derived. The method is
applied to all deuterated ethylenes. Out-of-plane frequencies of
deuterated ethylenes are in excellent agreement with the interlac-
ing rule. There is only one serious discrepancy, which might be due
to an experimental error. In the ethylene case, out-of-plane ampli-
tudes (z|®;) are determined by symmetry alone. Hence, out-of-plane
frequencies and normal modes of all deuterated ethylenes depend
only on the three experimental out-of-plane frequencies of ethyl-
ene. Standard error of the calculated out-of-plane frequencies (ex-
pressed in cm™) is only 2.92 cm™1.

Key words: vibrational isotope effect, low rank perturbation, deu-
terated ethylenes, out-of-plane vibrations

INTRODUCTION

To study molecular vibrations, one can use the classical model of the
molecule where the nuclei are represented by mathematical points with

*  Author to whom correspondence should be addressed. (E-mail: zivkovic@rudjer.irb.hr)
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masses. Displacements of the nuclei from equilibrium positions can be de-
scribed by Cartesian co-ordinates. If the molecule contains n nuclei, there
are 3n such generic coordinates:

51’ 52:' ] éSn'

Potential energy V can be expressed as a function of these coordinates:
V =V(,&,,5&;,) - It is convenient to expand this expression in Taylor se-
ries. The first term of this expansion is a constant term, which can be
equated to zero. The second term contains first derivatives of the potential
energy V, and in the equilibrium position these derivatives must be zero. In
the so called harmonic approximation, one neglects cubic and higher-order
terms, retaining only quadratic terms.2 In this approximation the poten-
tial energy is

V:Zfijéiéj

i<j
where f; =(*V/ 05,0¢;), are force constants expressed in Cartesian coord-
inates.

Kinetic energy can be also expressed in terms of Cartesian displace-

ments from equilibrium
1 3o de. 2
T==> m.|—=]|.
2 2 [ dt J

i=1

In order to obtain more compact expressions, one usually replaces coor-
dinates & with mass-weighted coordinates g, =m}*&,.1-3 However, since we
are interested in the effects of isotope substitutions, it is more convenient to
retain explicit dependence on atomic masses.*® The solution of the above
system, consisting of n masses connected by harmonic forces, leads to the

following generalized eigenvalue equation
F|®,)=2M|D,). (1)

In this equation, F and M are 3n order hermitian matrices. Matrix F is a
force field matrix with matrix elements f;;, while matrix M is a diagonal
matrix containing masses of the nuclei. The first three diagonal elements
correspond to the mass of the first nucleus, next three to the mass of the
second nucleus, etc. Eigenvectors ‘CDi> represent normal vibrations, while the
corresponding eigenvalues A, are related to vibrational frequencies v; by the
relation

A =4n*v? . (1)
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Due to translational and rotational symmetry, in the case of nonlinear
molecules there are six nonproper vibrations ‘CDi> with zero frequency v, =0.
Three nonproper vibrations correspond to the translations in the dirrection
of coordinate axes, while another three nonproper vibrations correspond to
the rotations around coordinate axes. In the case of a linear molecule, there
are only two rotations. We will assume that the molecule is rigid, and that
there are no additional zero frequency vibrations.

Consider now molecule B, which is identical to the initial molecule A,
except for the substitution of p atoms by isotope atoms. To a very good ap-
proximation this substitution will not affect the potential energy.!3 Hence,
the force field matrix F remains the same, and only matrix M containing
atomic masses will change. Thus, the perturbed isotope equation is

F|¥,)=c, (M +AM)|¥,). ()

where matrix AM describes the change in the masses of isotopically sub-
stituted atoms.

Eigenvectors \‘Pk> are perturbed vibrations, while the corresponding ei-
genvalues ¢, are related to perturbed frequencies w, by the relation

g, =4n’o; (2)

in analogy to (1).

Perturbed equation (2) can be efficiently treated by the Low Rank Per-
turbation (LRP) method.* In the LRP approach, it is convenient to distin-
guish cardinal and singular eigenvalues of the perturbed equation. By defi-
nition, an eigenvalue ¢, of Eq. (2) is »cardinal« if it differs from all the
unperturbed eigenvalues, i.e. if ¢, ¢ {4, }. Otherwise, it is singular.* In view of
relations (1’) and (2°), perturbed frequency w,, is cardinal if it differs from all
the unperturbed frequencies, i.e. if o, ¢ {v,}. Otherwise, it is singular.

In general, we will interchangeably talk about »unperturbed eigenval-
ues A;«, and about »unperturbed frequencies v;«. Similarly, we will talk
about »perturbed eigenvalues ¢,« or equivalently about »perturbed frequen-
cies w,«. In view of relation (1’), one can easily replace unperturbed eigen-
values A; with unperturbed frequencies v;, and vice versa. Similarly, one can
replace perturbed eigenvalues ¢, with perturbed frequencies w,, and vice
versa.

OUT-OF-PLANE VIBRATIONS OF PLANAR MOLECULES

In the case of planar molecules, LRP relations substantially simplify.®
In-plane and out-of-plane vibrations are separate, and the treatment of
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out-of-plane vibrations is particularly simple. If the molecule contains n at-
oms, there are n degrees of freedom perpendicular to molecular plane.
Hence, there are n out-of-plane vibrations. Three out-of-plane vibrations are
nonproper. One corresponds to the translation in the direction perpendicu-
lar to molecular plane, while the other two correspond to the rotations
around two in-plane axes. Hence, there are n — 3 proper out-of-plane vibra-
tions. Similarly, one finds that there are 2n — 3 proper in-plane vibrations.

Let ‘Cbi> denote proper out-of-plane vibrations of this unperturbed mole-
cule, and let v; be the corresponding frequencies. We label different atoms in
a generic way with Greek letters a and 3, and we label atoms that are ex-
changed by an isotope with Greek letters u and 7. We assume that in a per-
turbed molecule there are p such atoms. Further, we denote a unit displace-
ment in the out-of-plane direction at atom a as ket\a). According to this
notation, (| ®,) is the amplitude of the out-of-plane vibration |®,) at atom a.

Matrices M and AM can be now written as

n P
M =3 |a)m, (] AM =3 | u)Am, (u|
a u
where m, is the mass of atom «, while Am, is the change of the mass of
atom u by isotope substitution.
Vibrations ‘CDL.> can be always orthonormalized according to

<Cbi ‘M‘(Dj>:5i,j 3)

or explicitly i (@,

a>ma<a‘®j>=5-

.;- If the unit displacements |a) are

replaced by the mass-weighted unit displacements
av><a|

we are interested in the isotopic effect, we will retain explicit dependence on
masses in all formulas.

o) =m;*| o), relation (3)

n
can be written in a more familiar form Z (@, D; > =0, ;. However, since
o

Nonproper vibrations |®,), |®p, ) and ‘(D Ry >, corresponding to the trans-
lation perpendicular to the molecular plane and to rotations around two in-
plane axes are®

1 & 1 & 1 &
D )— ) |a Dy ) — .la Dy ) — ) x, |a). 4)
\HmzalH \R>\/Z§a:y\> Ry>\/ﬁ§>
In order for these nonproper vibrations to satisfy orthonormality rela-
tion (3), the origin of the coordinate system should be situated in the mo-
lecular center of mass, and coordinate axes should coincide with the princi-
pal axes.® By convention, z-axis is perpendicular to the molecular plane,
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while x- and y-axes are in the molecular plane. M is molecular mass, I, and
I, are moments of inertia with respect to x- and y-axes, while x, and y, are
x- and y-coordinates of the a-th atom.

Using the LRP method one can prove the following theorem:®

Theorem:

Let A, be the unperturbed out-of-plane eigenvalues. Let further the un-
perturbed out-of-plane vibrations be orthonormalized according to Eq. (3).
Then:

a) g, ¢{A, }is the perturbed out-of-plane eigenvalue if and only if it is a root
of the equation

-1

rer=0e+ M|~ 5)

where Q2 is a p x p Hermitian matrix with matrix elements:

n= O ND.
o ()1{1”}z<ﬂ><> pr=l..p (6a)

e M I I = -

& y x

while AM ' is a p x p diagonal matrix with matrix elements

-1 6;11
AME = (6b)

b) Let ¢, ¢ {1, } be the perturbed out-of-plane eigenvalue. Each vibration ¥

corresponding to this eigenvalue is of the form
P

L 2 (®:[7)C

)= L10n) R on) ¢ R |0y, )]+ 5
0

(OB 7
i g9 =4 ‘ l> 72

where quantities 7, R, and R, are

1 ¢ 1 & 1 &
T=——=—>C, R, =—-YyC, R =—">xC, (7b)
«MJZ ' QUny -y,uygx

and where coefficients C, are components of a column vector C, which is the
(nontrivial) solution of the matrix equation

AM ™

€o

Q)+ C =o0. (8)

In addition, coefficients C, satisfy

C. =—Am (t|¥), 7=1..p. 9)
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Conversely, if ¢, is the perturbed eigenvalue, each state ¥ of the form Eq.
(7), where coefficients C, are the (nontrivial) solution of the linear set (8), is
the corresponding vibration. Moreover, coefficients C, satisfy (9).

There are similar relations for in-plane vibrations. The proof of these re-
lations will be given elsewhere.?

In the above relations, (I)i> are unperturbed out-of-plane vibrations that
are orthonormalized according to Eq. (3). Scalar product (u|®, ) is a displace-
ment of vibration |®,) at the isotope atom u in the z-direction.

According to relations (7) and (8), each column vector C which is a non-
trivial solution of matrix equation (8) produces a normal mode (7) that cor-
responds to the perturbed eigenvalue ¢,. If there are a few of such linearly
independent vectors, eigenvalue ¢, is degenerate. One can prove the follow-
ing lemma:®

Lemma: Let ¢, ¢ {1, } be the perturbed out-of-plane eigenvalue. The de-
generacy of this eigenvalue equals the number of linearly independent solu-
tions C to relation (8).

In particular, each perturbed eigenvalue ¢, ¢ {1} is at most p-degene-
rate.

The above theorem gives a complete solution concerning the cardinal
o, ¢{v,}out-of-plane frequencies and the corresponding normal modes of the
perturbed molecule. In order to apply this theorem, one has to know the un-
perturbed frequencies v, and unperturbed amplitudes <T‘(Di>. However, not
all amplitudes («|®,) are required. One has to know only amplitudes (z|®,)
at the atoms that are substituted by an isotope. First, one solves equation
(5), f(e)=0. Each root ¢, of this equation determines the perturbed frequency
o, =J§ /2m. Once a particular root ¢, is found, one solves matrix equation
(8) in order to obtain the (nontrivial) vector or vectors C. This matrix equa-
tion is a set of p homogenous linear equations in p unknowns C,, and it is
very easy to solve. Each nontrivial solution C of this equation defines one
normal mode according to relations (7).

The above theorem does not provide a solution for singular (o, €{v,}) fre-
quencies and vibrations. These singular solutions can be obtained in a simi-
lar way to cardinal solutions.*® For the sake of simplicity, we will not give
these solutions here. In any case, singular solutions are much less impor-
tant than cardinal solutions. Each singular perturbed frequency ®, coin-
cides with some unperturbed frequency v,;, which makes it quite special. In
most cases, a perturbed system contains only cardinal and no singular solu-
tions.

By analogy with Eq. (3), perturbed normal modes (7a) can be orthonor-
malized according to
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(%, | M +AM|¥,) =5, (3)

Due to the hermiticity of the eigenvalue equation (2), perturbed vibrations
¥, and ¥, corresponding to mutually distinct eigenvalues ¢, and ¢, are
automatically orthogonal to each other according to Eq. (3’). However, per-
turbed vibrations (7a) are not properly normalized. If required, normaliza-
tion can be easily performed. According to Eq. (7a), each perturbed vibration
¥ is a linear combination of unperturbed vibrations ®,: ¥ =3¢, ®,. In order
to normalize this vibration, one has to find

(WM +AM|W)=3 c/c;+ Y c/c (D, AM|D, ). (10)
i i,j

This requires evaluation of matrix elements (®, LAM‘G) i > These matrix
elements can be obtained using the expression for the perturbed matrix AM.
One thus obtains

(@,

o
AM|® ;)= (O, |u)Am, (u|®; ). (10”)
u

It is important to note that by the LRP method one obtains perturbed
frequencies and vibrations without any reference to force constants. Force
constants are completely bypassed in this approach. This is highly conven-
ient since different approaches lead to generally different sets of force con-
stants. In addition, the LRP approach uses substantially less parameters
than the direct application of relation (2) or its variant, e.g. the GF method,
or alike. In order to find n — 3 out-of-plane perturbed frequencies and vibra-
tions by the LRP method, one has to know n — 3 unperturbed frequencies
v, =44, / 2n, p(n — 3) unperturbed amplitudes (u|®@,) at the positions of iso-
tope substitution, 2p coordinates (x,,y,) of atoms that are substituted by an
isotope, p isotope mass increments Am, of these atoms, molecular mass M,
and moments of inertia I, and I,. These essentially (p + Dn quantities are
sufficient to determine all perturbed vibrations and frequencies. If the
number of isotope substitutions is relatively small, this is substantially less
than in general O(n?) force constants f,;» which is usually required to solve
equation (2) in a standard way. In addition, quantities related to atomic
masses and to molecular geometry are usually much more reliable than
force constants f;. Further, unperturbed frequencies can be treated as ex-
perimental quantities. Thus, it remains only to determine unperturbed am-
plitudes (u|®;). Only amplitudes (u|®,) of unperturbed vibrations at sites u
of isotopic substitution are required. No knowledge of amplitudes (a|®,) at
sites «, not affected by isotopic substitution, is needed. According to rela-
tions (10), this applies also to the normalization of perturbed vibrations.

In many cases, amplitudes <,u‘(Di> are partly or completely determined
by the molecular symmetry. Also, these amplitudes can be determined from
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the out-of-plane frequencies of singly substituted molecules. Both ap-
proaches can be combined. We will demonstrate how this can be done by the
example of deuterated ethylenes.

SINGLE ISOTOPE SUBSTITUTION

The above LRP method is particularly simple in the case of a single iso-
tope substitution. Consider two planar molecules A and B,, which are iden-
tical except for one isotopic substitution at site 7. We consider A an unper-
turbed molecule and B, a perturbed molecule. Relations (5) and (6) now
simplify to

<\<D><<D\> 1 22y 1
}: SRS | 1
/@)= . el 1,1 " am, 0 (11)

X

while relations (7) s1mphfy to

(D T
\P>:;(;|:\/1M(DT2> ‘(DRx \/7©Ry>:| O _l?q)l> (12)

where ¢, is a root of f(¢)=0. Each root ¢, of f(¢) determines an out-of-plane
frequency o, = \/a / 2m of the isotopic molecule B,. Once the root ¢, of f(e)=0
is found, the corresponding normal mode is given by Eq. (12). Thus, using
relations (11) and (12), one finds all cardinal frequencies and vibrations of
the perturbed molecule B,. According to Eq. (12), each root ¢, of f(e)=0
produces exactly one normal mode. Each cardinal frequency (o, ¢{v;} is
hence nondegenerate. Only singular frequencies (if any) may be degenerate.

In order to analyze the general distribution of cardinal and singular per-
turbed frequencies, it is convenient to distinguish active and passive unper-
turbed frequencies v,. Let frequency v, be n-degenerate and let ®,,®,,...,®,,
be the corresponding unperturbed vibrations. Frequency v, is »passive« if
the amplitudes of all these vibrations at the site of the isotope substitution
are zero. Otherwise, this frequency is active.* In other words, frequency v; is
passive if (r|®, ) =0 (s=1...,n). Since atom 7 at the isotope substitution posi-
tion is not displaced during vibrations ®,,®,,...,®, , which correspond to
passive frequency v,, it does not matter which atom is situated at this posi-
tion. In other words, if frequency v, is passive, unperturbed vibrations
®,,D,,..., 0, are not affected by isotope substitution. Hence, the frequency
o, =v;, is also a degenerate frequency of the perturbed system, and
®,,®,...,0,, are the corresponding perturbed vibrations. Further, if v, is
passive, function f(¢) is not singular in the point ¢ =¢, =4n*v?. Hence, it may
happen that ¢=¢, is a root of f(¢)=0. If this is the case, than V¥ as given by
relation (12) is yet another vibration that corresponds to frequency o, =v,.>
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Thus, each root of f()=0, not only the roots that satisfy ¢, ¢{4,}, is a per-
turbed eigenvalue. On the other hand, if frequency v, is active and n-degen-
erate, one finds that, provided n > 1, o, =v, is a (n —1-degenerate perturbed
frequency.® Otherwise, (n = 1), w, =v, is not a perturbed frequency.

In conclusion, if v, is n-degenerate and passive, w, =v; is either a n- or
(n+1)-degenerate frequency of the perturbed system. First n perturbed vi-
brations are the same as unperturbed vibrations ®,,,®,,...,®, . An extra vi-
bration exists if and only if ¢, =4n*v? is a root of f(¢)=0. This extra vibra-
tion is of type (12). If however v, is n-degenerate and active and if n > 1,
o, =v, is a (n-1) degenerate frequency of the perturbed system. These (-1)
perturbed vibrations are linear combinations of unperturbed vibrations
Dy, D ..., D,

From equation (11), one can derive two important relations. The first is
the interlacing relation, which interlaces perturbed and unperturbed fre-
quencies. The second is the inversion relation that enables calculation of
unperturbed amplitudes at the site of isotopic substitution from known un-
perturbed and perturbed frequencies.

In general, if in a mechanical system that exhibits harmonic oscillations
one increases the mass of one or few particles without changing the poten-
tial energy, the frequencies of normal vibrations do not increase.l® These
frequencies either decrease or remain the same. In particular, if frequencies
v, of the initial molecule are arranged in the increasing order, and if fre-
quencies w, of the heavier isotopic molecule are also arranged in the in-
creasing order, then?®

0 SV, Oy Vg, oy O3, <Vg,. (13)

The above order rule applies to all molecular frequencies. However,
since in the case of a planar molecule in-plane and out-of-plane vibrations
are separate, this rule applies separately to in-plane and separately to out-
of-plane frequencies.

We will now derive the so called interlacing rule. This rule applies to
out-of-plane vibrations of planar isotopic molecules A and B, where mole-
cule B, is identical to molecule A, except for a single isotope substitution at
site 7. The interlacing rule implies the order rule, but it imposes a much
stronger restriction to the range of possible values of frequencies v, and o, .

Assume that Am_>0. Since (7|®,)(®,|7) >0 function f(¢) has a negative
derivative for each ¢ ¢ {4, }. In the point ¢ =1, this function is singular unless
the unperturbed eigenvalue 4, is passive. This function is also singular in
the point ¢ = 0. There is hence exactly one root of f(¢) in each interval (4, 1;)
where 1, <1, are two consecutive active eigenvalues. This applies also to in-
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terval (0, A,) where A, is the smallest active eigenvalue. Hence, if all unper-
turbed proper eigenvalues A, are nondegenerate and active, one finds

O<g; <Ay <&y <Ay <...<E, 53 <A, 5.

Thus, the (n — 3) eigenvalues ¢; of the perturbed equation are interlaced
with the (n — 3) eigenvalues A, of the unperturbed equation. Due to relations
(1’) and (2’), the same is true of the corresponding frequencies.

The above interlacing relation is valid provided all unperturbed frequen-
cies are active and mutually distinct. Using the properties of singular and
passive frequencies, this condition can be relaxed. One thus obtains®

Interlacing rule:

Consider two n-atom planar molecules A and B, which differ by a single
isotope substitution. Let molecule B be heavier than molecule A, and let v,
and o, be proper out-of-plane frequencies of molecules A and B, respec-
tively. Arrange these frequencies in the nondecreasing order. Then, these
frequencies are interlaced according to

0<w, <v, <, Sv, <., 3 <V, .. (14)

One easily finds the condition for a strict inequality to apply. If the two
successive unperturbed frequencies are degenerate, one has v, =w,, =v,,. If
the two successive unperturbed frequencies v, and v,, are distinct and ac-

tive, one has strict inequality v, <w,, <v,,, etc.

Interlacing relation (14) implies the order rule (13). However, the inter-
lacing relation is more powerful. If w, is the k-th perturbed frequency, the
order rule restricts this frequency only from one side (w, <v, ), while the in-
terlacing rule restricts it from both sides (v, ; <, <v,). Thus, the interlac-
ing rule quite substantially restricts the range of possible values for per-
turbed and nonperturbed frequencies, and hence it can be used to facilitate
frequency assignment. Also, the rule can be applied to the pair of isotopic
molecules that differ in more than one isotope. For example, if A and B are
two planar isotopic molecules that differ by two isotopic substitutions, one
can consider the transition from molecule A to molecule B in two steps: from
molecule A to intermediate molecule C, and from molecule C to molecule B.
In each step only a single isotopic substitution is performed. Assume, for ex-
ample, that both isotopes are heavier in molecule B. In that case, molecule
C is heavier than molecule A, and molecule B is heavier than molecule C.
Hence, if v;' are nondecreasing out-of-plane frequencies of molecule C, the
interlacing rule implies v, <v,'<v, (transition from A to C) and
V,, <o, <v,' (transition from C to B). Combining these two results, one
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finds the interlacing condition v, , <w, <v,. Similarly, if one of these two
isotopes is heavier in molecule A, while another is heavier in molecule B,
one finds the interlacing condition v, ; <w, <v,,, etc. In this way, one can
generalize the interlacing rule to all multiple isotopic substitutions. Each
such multiple isotopic substitution can be considered as a sequence of single
isotopic substitutions. The introduction of each new isotope can shift (or-
dered) perturbed frequencies w, relative to (ordered) unperturbed frequen-
cies v; only by one place. The direction in which this shift is performed (low-
ering or increasing these frequencies) depends on whether the isotope mass
change is positive or negative.

We now turn to yet another consequence of the relation (11). This is the
inversion relation by which one can deduce the unperturbed amplitudes
(r|®;) from unperturbed and perturbed out-of-plane frequencies v, and w,.

Assume first that all unperturbed out-of-plane eigenvalues A, are nonde-
generate and active. According to the interlacing rule, all perturbed eigen-
values ¢, are in this case cardinal. In particular, there are exactly (n — 3)
mutually distinct unperturbed eigenvalues 4, and also exactly (n — 3) mutu-
ally distinct perturbed eigenvalues ¢,. In addition, all perturbed eigenval-
ues differ from all the unperturbed eigenvalues 4;.

We now define matrix A and column vectors C and X

e, e M I, I, Am

T

2 2
A=t x,- 1{1+"1+yf +1H C, =(z|®,)(@,|7). (15)

Matrix A is a square matrix of order (n — 3), and vectors C and X are
column vectors with (n — 3) components each. Since each eigenvalue ¢,
satisfies relation (11), matrix A and vectors X and C satisfy AC = X, and
hence

C=A1.X (16)

This is an inversion relation. Using this relation and the given out-of-
plane unperturbed frequencies v, and out-of-plane isotope frequencies ,,
one obtains squares of the unperturbed out-of-plane amplitudes at the iso-
tope site.

Inversion relation (16) is derived under the assumption that all unper-
turbed frequencies are nondegenerate and active. These conditions can be
relaxed. For example, if the unperturbed frequency v, is n-degenerate and if
®,,D,...,0,, are the corresponding normal modes, one has to replace the

coefficient C; in relation (15) with the more general expression

C, =3 (e[, )@, |). (152)
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If there are r < (n — 3) mutually distinct eigenvalues A, there are also r
mutually distinct cardinal eigenvalues ¢,, which are all roots of f(e). Matrix
A is hence a square matrix of order r < (n — 3), and relation (16) again ap-
plies. Finally, if a particular frequency v, is passive, one has C; = 0, and this
frequency should be omitted from the construction of matrix A.

In conclusion, in choosing the set {1, } of unperturbed eigenvalues 1, and
the set {, } of perturbed eigenvalues ¢,, which are required for the construc-
tion of matrix A and vector X, the following rule applies: The set {4, } should
contain all mutually distinct active unperturbed out-of-plane eigenvalues.
The set {, } should contain all mutually distinct perturbed eigenvalues that,
in addition, differ from all the unperturbed eigenvalues A, € {4, }. According to
the above analysis, both sets contain the same number of elements, and A is
a square matrix. The inversion relation now produces coefficients C; (rela-
tion (15a)). Each coefficient C; is a squared amplitude (or sum of such
squared amplitudes) of the unperturbed normal mode (or modes) at the site
of isotope substitution.

The inversion relation suggests a systematic method for obtaining out-
of-plane frequencies and normal modes of all isotopomers of a given planar
molecules. All one needs are experimental out-of-plane frequencies v; of un-
perturbed molecule, and various sets {w,} of out-of-plane frequencies of
monosubstituted molecules.

Consider a planar molecule A and a set of monosubstituted planar mole-
cules B.. Each molecule B, is identical to molecule A, except for a single iso-
topic substitution at site 7. Let {v;} be the set of all mutually distinct and
(relative to the substitution site 1) active out-of-plane frequencies of molecule
A. Let further {w, }, be the set of all mutually distinct out-of-plane frequencies
of molecule B, such that each w, €{w,}, differs from all unperturbed fre-
quencies v,e{v, }. Each set {, }, contains the same number of elements as the
corresponding unperturbed set {v;}. Using relation (16) where matrix A and
vector X are defined in terms of frequencies {v,} and {®, },, one obtains vector
C, which determines amplitude squares <r\<bi>2 (or in case of degeneracy,
the sum of such amplitudes) of unperturbed out-of-plane normal modes at
the substitution site 7. In this way, by using only experimental frequencies
of monosubstituted molecules B,, one can obtain amplitude squares of out-
of-plane vibrations at all molecular sites of interest. According to relations
(5)—(8), in order to obtain out-of-plane frequencies and normal modes of a
polysubstituted molecule with isotopic substitutions at sites y and 7, one has
to know a relative sign of amplitudes (z|®;) and (u|®,) at these sites, in ad-
dition to absolute values of these amplitudes. In many cases, these relative
signs are determined by the symmetry. Also, orthonormality relation (3) sub-
stantially restricts possible variations in these relative signs. Finally, one
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can use a simple model, which need not be very sophisticated. This model
should be good enough to obtain the relative signs of amplitudes (z|®,) and
(u|®,) at different sites, but not necessarily good enough to obtain their ab-
solute values. After this is done, one can obtain all out-of-plane frequencies
and vibrations for any isotopomer. Thus, monosubstituted frequencies, in
conjuction with molecular geometry and atomic masses, completely deter-
mine all polysubstituted frequencies and vibrations.

For example, there are nine out-of-plane normal modes in the case of
benzene molecule. Due to symmetry all hydrogen positions are equivalent,
and there is only one type of monodeuterated benzene. Hence, set of only 18
frequencies, nine benzene out-of-plane frequencies and nine monodeuter-
ated benzene out-of-plane frequencies, is sufficient to obtain out-of-plane
frequencies and normal modes for all bideuterated, trideuterated, etc. ben-
zene molecules. In fact, due to the high symmetry of benzene molecule, even
that much information is not needed, and it suffices to know only three out
of nine monodeuterated frequencies.?

OUT-OF-PLANE VIBRATIONS OF DEUTERATED ETHYLENES

As an example, we apply the LRP approach to ethylene and deuterated
ethylenes. Ethylene molecule is shown in Figure la. This molecule has
three out-of-plane vibrations. We use frequency labels v,(4,,), v,(B,,) and
vg(B,,), as this is done in Ref. 3. The corresponding out-of-plane normal
modes are shown in Figure 1b), ¢) and d).

We first verify how well the experimental frequencies satisfy the
interlacing rule. This is done in Table I. Experimental frequencies were

N N
/ \ / \

N/ N_
/“\ /+\

40

Figure 1. Ethylene molecule and ethylene out- of plane vibrations. a) Ethylene mole-
cule b) v4(A1,) = 1024 em™, v1brat10n type % M2 ) vi(Biy) = 949.3 em™L, vibration
type pey,d) ve(Bag) = 943 cm™ L vibration type pCHZ.
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TABLE I

Demonstration of the interlacing rule. Isotopic molecule B is identical to the
isotopic molecule A, except for one hydrogen atom in molecule A which is
replaced by deuterium in molecule B. Out-of-plane frequencies (in cm™) are
taken from ref. [3]. All frequencies satisfy the interlacing rule, except for the two
cases denoted with a question mark.

A B B A B A B A
do dl 807 < 943 7 943 < 9493 < 1001 < 1024
810 945 1008
dl ad2 751 < 807 < 892 < 943 ? 943 < 1001
752 810 945  7? 1008
dl cisd2 763 < 807 < 842 < 943 < 978 < 1001
810 945 1008
dl transd2 725 < 807 < 863 < 943 < 987 < 1001
1008
ad2 d3 724 < 751 < 765 < 892 < 919 < 943
752
cisd2 d3 724 < 763 < 7656 < 842 < 919 < 978
transd2 d3 724 < 725 < 7656 < 863 < 919 < 987
d3 d4 720 < 724 < 729 < 765 < 780 < 919

taken from Ref. 3. In some cases, two distinct experimental frequencies were
reported. A and B form a pair of isotopic molecules that differ in only one
isotopic substitution. Molecule B has been chosen to be heavier than mole-
cule A. For example, ethylene (d0) and monodeuterated ethylene (d1) form
such a pair. Hence, the corresponding out-of-plane frequencies should satisfy
the interlacing relation. Moreover, all out-of-plane ethylene frequencies are
nondegenerate and active. Thus a strict inequality should apply everywhere
in the interlacing relation (14).

Experimental frequencies are in very good agreement with the interlac-
ing rule. There are only two exceptions. The first exception is a pair of fre-
quencies v, = 943 cm™! and vy = 943 cm™! in comparison of ethylene (d0) and
monodeuterated ethylene (d1) frequencies. According to the interlacing rule
a strict inequality should apply in this case. Since an infinitesimal change
in either experimental frequency can restore the validity of the interlacing
rule, this is a very mild violation of the rule. Moreover, another reported ex-
perimental frequency — vy = 945 cm™ is in accord with this rule.
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Another exception is the pair of frequencies v, = 945 cm™ and vy =
943 cm™! in comparison to monodeuterated (d1) and a-bideuterated (ad2)
ethylenes. Here interlacing rule predicts v, < vg, and data v, = 945 cm™
and vy = 943 cm™! are in clear violation of this prediction. However, another
experimental frequency v, = 943 cm™! fits the interlacing rule much better.
It should be noted that the frequency v, = 945 cm™ is obtained in a liquid
phase, while the frequency v, = 943 cm™ is obtained in a gas phase. In gen-
eral, frequencies obtained in a gas are more reliable. Looking at this viola-
tion of the interlacing rule from another point of view, one can say that this
rule dismisses the frequency v, = 945 cm™ as incorrect.

In general, if the interlacing rule predicts strict inequality in a particu-
lar case, while experimental data produce equality, this is not a serious vio-
lation of this rule. In such cases, an infinitesimal change in the experimen-
tal values can restore the validity of the interlacing rule. More serious is the
case when experimental data produce strict inequality which violates the
interlacing rule. In this case, it is likely that experimental data are either
wrong, or that the assignement of frequencies is wrong. Of course, the inter-
lacing rule may also be wrong, since this rule strictly applies only in har-
monic approximation. The effects of anharmonicity may violate this rule.
Nevertheless, the fact that experimental data violate the interlacing rule is
a sign for caution and for a detailed analysis of the frequencies in question.

Let us now consider the LRP derivation of deuterated frequencies and
normal modes. In the LRP calculation following ethylene parameters were
used:?

rem = 1.086 A°,  roo = 1.338 A°,  «(HCH) = 117° 30.

In conjunction with atomic masses as expressed in atomic units my =
1.0087, mp = 2.0140 and m = 12.011, these parameters determine the mo-
lecular mass, molecular geometry and moments of inertia. In particular, re-
lations (4) give the amplitudes of the three nonproper vibrations at the sub-
stitution site.

Ethylene out-of-plane modes are shown in Figure 1. Their symmetry
types, as well as the corresponding frequencies, are given in Table II.

All three ethylene out-of-plane normal modes are determined by the eth-
ylene geometry and atomic masses of C and H atoms. Hence, there is no
need to obtain amplitudes (z|®,) via inversion relation (16). From symmetry
alone, one obtains amplitudes (z|®,) at the hydrogen atom: (z|®,) = 0.4981,
(r|®;) = 0.4609 and (r|®y) = 0.3976. In addition, one obtains amplitudes at
the carbon atom: (C, |®,) = 0.0000, (C,|®,) = 0.0773 and (C, |®,) = 0.1229.
These carbon amplitudes are not needed in the calculation of deuterium iso-
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TABLE II

Experimental out-of-plane frequencies (in em™) for the ethylene molecule. Data
and frequency enumeration (v4, v; and vg) are from Ref. 3.

Symmetry Vibration type v(cm™)
4 Ay x> (1024) (inactive)
By, Pox, 949.3 (IR, gas)
8 Byg Pon, 943 (Raman, liquid)

tope effects, but they are required for the calculation of carbon isotope ef-
fects. Using the three unperturbed hydrogen amplitudes and experimental
unperturbed frequencies, one can obtain perturbed out-of-plane frequencies
and vibrations for all deuterated ethylenes. In applying relations (5) and
(6), one has to observe the relative sign of amplitudes (z|®,) on different
deuterated sites. These relative signes are determined by symmetry alone
and they are obvious from Figure 1. Tables III and IV give deuterated fre-
quencies that were calculated in this way. The agreement between theoreti-
cal (LRP) and experimental frequencies is very good. In the case of
monodeuterated ethylene, there are two experimental values for each out-
of-plane frequency, one obtained in a liquid phase and another in a gas
phase. The largest error is in frequency v, = 1008 cm™! which was obtained
in a liquid phase. If in the case of monodeuterated ethylene one takes into
account gas frequencies as more reliable, one obtains a standard error for
all calculated frequencies in Tables III and IV to be only A = 2.92 ecm™L.

TABLE III

Comparison of theoretical (LRP) and experimental® out-of-plane frequencies
(em™) for deuterated ethylenes CoHsD, cis-CoHsDy and trans-CoHoDgy. LRP
frequencies were calculated using experimental ethylene frequencies from Ref. 3
(Table II). *) liquid.

CoH3D cis-CoHyDg trans-CoHgDg
Vibr. Exp. Calc. Diff. Exp. Calc. Diff. Exp. Calc. Diff.
Type

4 x 1001 999.4 -1.6 978 980.2 2.1 987 987.7 0.7
1008* -8.6

7 ) 943 9457 2.7 842 841.7 -0.3 725 720.7 -4.3
945% 0.7

8 P 807 804.8 -2.1 763 7574 -5.6 863* 864.7 1.7
810% -5.2
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TABLE IV

Comparison of theoretical (LRP) and experimental® out-of-plane frequencies
(em™) for deuterated ethylenes a-CoHyDy, CoHD3 and CoDy. LRP frequencies
were calculated using experimental ethylene frequencies from Ref. 3 (Table II).

Ot-CzHQDQ CzHDg CQD4
Vibr. Exp. Cale. Diff. Exp. Cale. Diff. Exp. Cale. Diff.
Type

4 X 892 886.9 -5.1 724 720.6 -3.4 (729) 7244 -4.6

7 P 751 7495 -1.5 765 7622 -2.8 720 7181 -19
752 -2.5

8 p 943 945.7 2.7 919 9189 0.1 780 778.6 -1.4

In conclusion, one can say that the calculated frequencies are in excel-
lent agreement with experimental frequencies. The agreement between cal-
culated and experimental frequencies seems to be better than expected from
harmonic approximation. Thus, it is likely that unharmonicity effects par-
tially cancel in the LRP approach.

The above LRP method can be used in yet another way. Experimental
deuterated ethylene frequencies can be used in order to improve ethylene
out-of-plane frequencies. In particular, ethylene out-of-plane frequency v, =
1024 cm™ is relatively unreliable. This vibration is of symmetry type A,
and it is inactive both in Raman and in IR. Hence one has to obtain this fre-
quency indirectly, which makes it very prone to errors. One can consider
ethylene out-of-plane frequencies as adjustable parameters, and try to ad-
just these frequencies in such a way as to minimize the standard error of
calculated deuterated frequencies. If this is done, one obtains v, = 1028.2
em™, v, = 950.1 cm™ and v; = 942.2 cm™! as optimal ethylene out-of-plane
frequencies. If the LRP calculation is done with these optimal ethylene fre-
quencies, standard error for calculated deuterated frequencies decreases
from A = 2.92 ecm™! to A = 2.35 cm™!. These optimal ethylene frequencies
minimizing standard error differ from experimental values given in Table II
by Av, =4.2 cm™, Av, = 0.8 cm™! and Av, = —0.8 cm™!. There is a negligible
change of frequencies v, and v,. This is in accord with the fact that these
frequencies are experimentally quite reliable. However, frequency v, which
is inactive changes much more. This indicates that ethylene frequency v, is
probably underestimated, and that the true value of this frequency should
be closer to v, = 1028 cm™! than to the reported value of v, = 1024 cm™.

Once a particular perturbed frequency is obtained, one finds the corre-
sponding normal modes using relations (7) and (8). We will illustrate this
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with the example of monodeuterated ethylene. In the case of a single isotope
substitution, relations (7) and (8) simplify to relation (12). By using calcu-
lated perturbed frequencies v, = 999.4 cm™, v, = 945.7 cm™! and v, = 804.8
cm™! one finds the corresponding normal modes ¥,, ¥, and ¥,. These nor-
mal modes can be normalized using relation (10). In the case of monodeuter-
ated ethylenes, this relation reduces to

(Y|M +AM|W) = c/c, +Am, Y ¢ c; (D, ‘T><T‘(Df >
i 0

where ¥ = Zi c;®,. With the convention that x-axis points in the direction of
the CC bond, normalized vibrations ¥,, ¥, and ¥, thus obtained are:

¥, =0016150,, +0042590, + 0025660, —085524D, + 0403130, + 0309910,
W, =000204®,, + 0005390 ,, + 0003250, 0031250, + 0651850, +075760D
W, =0088620, +0233770,, +0140810, —037774D, —055284®, + 0500420,

(17)

One can now verify that these vibrations satisfy the orthonormality re-
lation (3’). This is an independent proof that the above LRP method is con-
sistent and valid.

In the above example, we have considered six deuterated ethylenes.
However, each ethylene hydrogen atom can be substituted either with a
deuterium or with a tritium, in all possible combinations. There are 26 such
isotopomers. To obtain out-of-plane frequencies and normal modes of all
these isotopomers by the LRP method, no additional information (except for
the mass of tritium atom) is required. To this list one can add various possi-
ble combinations with 12C and 3C isotopes. This increases the number of all
possible isotopomers to 98. Out-of-plane frequencies and the corresponding
normal modes of all these isotopomers can be obtained using only three eth-
ylene out-of-plane frequencies. This relates a huge amount of experimental
data to only three experimental quantities, ethylene out-of-plane frequen-
cies v4, vy and vg.

It should be noted that another type of connections between vibrational
frequencies of isotopic molecules can be obtained by various isotopic rules.
Such rules are the product rule® the sum rule” and the complete isotopic
rule8. For example, the complete isotopic rule concerns three isotopic mole-
cules (A, B and C). These molecules must be in special relations: molecule A
is a plane molecule in which two definite atoms form a symmetrically
equivalent set. B is identical to A except that one of these two atoms is ex-
changed for an isotope, and C is identical to A and B except that both of
these two atoms are exchanged for this isotope.® An example is the set of
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three molecules: ethylene, ethylene-d1l and ¢rans-ethylene-d2. From the
known frequencies of compounds A and C, one can now calculate frequen-
cies of compound B.

There are important differences between isotopic rules and the LRP
method. All isotopic rules provide only information about frequencies, while
the LRP approach determines also the corresponding normal modes. Fur-
ther, as illustrated in the above ethylene case, the LRP method produces in
a systematic way out-of-plane frequencies of all ethylene isotopomers using
only ethylene out-of-plane frequencies. In order to apply the complete iso-
tope rule, one has to know frequencies of the two isotope molecules A and C.
These molecules differ in a very special way. Only in this way can one ob-
tain frequencies of the third molecule B, which is intermediate between
molecules A and C. Similar restrictions apply to other isotopic rules.

CONCLUSION

The LRP method was applied to the vibrational isotope effect. The out-of-
plane vibrations of planar molecules were considered. Relations for these fre-
quencies and the corresponding normal modes of the perturbed molecule are
given. This LRP method is demonstrated on the example of deuterated ethyl-
enes. All six deuterated ethylenes were considered. In order to obtain out-of-
plane frequencies and the corresponding normal modes of these isotopomers,
only three out-of-plane frequencies of the ethylene molecule are required.

Theoretical (LRP) out-of-plane frequencies are in excellent agreement
with experimental out-of-plane frequencies for all deuterated ethylenes (Ta-
bles III and IV). The standard error for all frequencies is 2.92 cm™.

Due to the high symmetry of ethylene molecule, ethylene out-of-plane
frequency v, is inactive and hence its experimental value v, = 1024 cm™! is
not very reliable. One can use out-of-plane frequencies of deuterated ethyl-
ene in order to improve out-of-plane frequencies of unsubstituted ethylene.
One obtains that the choice v, = 1028.2 cm™, v; = 950.1 cm™, and vg = 942.2
cm~! minimizes standard error for out-of-plane frequencies of deuterated
ethylenes (standard error decreases from A = 2.92 em™! to A = 2.35 cm™).
These optimum values only negligibly correct experimental frequencies v,
and vg. However, frequency v,, whose experimental value is relatively unre-
liable, changes much more substantially. This suggests that ethylene fre-
quency v, should be closer to the value of v, = 1028.2 cm™!, which minimizes
standard error, than to the value of v, = 1024 cm™.

Besides out-of-plane frequencies of polysubstituted isotopomers, the LRP
approach provides also the corresponding normal modes. This is demon-
strated by the derivation of the out-of-plane normal modes for molecule
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C,H;3D. Calculated normal modes are orthogonal to each other, as required by
the hermiticity of the perturbed eigenvalue equation. Mutual orthogonality of
perturbed normal modes demonstrates the consistency of the LRP approach.

The LRP approach is not restricted to the ethylene molecule, but it can
be equally applied to all planar molecules and also to in-plane vibrations of
planar molecules.?
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SAZETAK

Vibracijski izotopni efekt planarnih molekula pomoc¢u metode
perturbacije niskog ranga: deuterirani etileni

Tomislav P. Zivkovié

Razmatrane su planarne molekule A i B koje se razlikuju u izotopnim supstituci-
jama na atomima 7. Izvanravninske frekvencije w;, i normalni modovi ¥, perturbirane
izotopne molekule B izraZzene su kao funkcije izvanravninskih frekvencija v; i normal-
nih modova ®, neperturbirane molekule A. Potpuna specifikacija neperturbiranih nor-
malnih modova @, nije potrebna. Potrebne su samo amplitude <r \ (Di> normalnih modo-
va @, na mjestima 7 izotopne supstitucije. Izvedeno je pravilo ceslja koje ucesljuje
frekvencije o, s frekvencijama v;. Metoda je primijenjena na deuterirane etilene. Iz-
vanravninske frekvencije deuteriranih etilena zadovoljavaju pravilo ¢eslja. Postoji sa-
mo jedno ozbiljno neslaganje, koje vjerojatno ukazuje na eksperimentalnu pogresku.
U slu¢aju etilena izvanravninske amplitude (r |®,) odredene su simetrijom molekule.
Stoga izvanravninske frekvencije i normalni modovi deuteriranih etilena ovise samo o
eksperimentalnim izvanravninskim frekvencijama etilena. Standardna pogreska izracu-
nanih izvanravninskih frekvencija deuteriranih etilena iznosi samo 2.92 cm™1.



