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The Wiener index (W) is a graph invariant. Because of its impor-

tance, various methods – numerical approaches and analytical for-

mulas – have been proposed to compute W. Earlier formulas of W

were derived for homeomorphic structures, polymers, and stars.

The formulas are polynomials. In this paper, a method is proposed

that allows calculating the coefficients of the polynomials in sets of

non-homeomorphic structures.

INTRODUCTION

The Wiener-number or Wiener-index (W) is a graph-invariant.1 W is

equal to the sum of distances (i.e. the number of bonds on the shortest path)

di,j between all pairs of vertices i and j:

W = di j

i j

,

�

� . (1)

As an example, consider the computation of the Wiener-index of iso-

butane (Figure 1, hydrogens will not be considered throughout this pa-

per). W (isobutane) = d1,2 + d1,3 + d1,4 + d2,3 + d2,4 + d3,4 = 1 + 1 + 1 + 2 + 2 + 2 = 9.
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Figure 1. Hydrogen suppressed graph of isobutane. The numbers indicate vertices.



W is one of the most freqnently applied graph theoretical invariants. W

has been used to explain the variation in boiling points, molar volumes, re-

fractive indices, heats of isomerization and heats of vaporization of alkanes.1

Later heats of formation, atomization, isomerization, and vaporization as

well as density, critical pressure, surface tension, viscosity, melting points,

partition coefficients, chromotographic retention indices, and stability of

crystal lattices of various kinds of molecules were related2,3 to W. Besides

chemistry, the concept of the Wiener number has been used in electrical

engineering4 and mathematics.5 Quite a few graph invariants related to W

have been proposed, too.6

In addition to Eq. (1), analytical formulas have been proposed for W.

Wiener derived a formula for chains1 (i.e. for acyclic structures having two

endpoints), Entringer et al.7 and Bonchev et al.8 proposed formulas for sim-

ple cycles, Trinajsti} et al. obtained formulas for polymers9 and Gutman de-

rived formulas for various types of acyclic graphs.10 A formula was also de-

rived for fused bicyclic structures.11 Canfield et al. proposed a recursion

method to obtain appropriate formulas for any acyclic structure.12 Each of

these formulas is valid for a given set of homeomorphic structures, polymers

or stars. Two graphs are homeomorphic if both can be obtained from the

same graph by a sequence of subdivisions of lines. For example any two cy-

cles are homeomorphic, any two chains are homeomorphic and the star de-

picted in Figure 1 is homeomorphic with the structure depicted in Figure 2.

In this paper, a method will be proposed that allows to obtain formulas for a

broader set of structures.

DERIVATION OF FORMULAS

Expressions »vertex« and »atom«, »chemical structure« and »graph«,

»bond« and »edge«, »valence« and »degree« are synonymous words used in

chemistry and graph theory, respectively, and will be used interchangeably

hereafter.

Consider a »starlike« graph (Figure 2) that has a single branching ver-

tex, and three side-chains k, m, and n, where k, m and n denote both the

number of vertices of the side chain and the side-chains themselves. A star-

like graph (Figure 2) is homeomorphic with a star which has a branching
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Figure 2. Example of a »starlike« graph containing three chains. k = 2, m = 3, and n

= 4. The branching vertex belongs to all three chains.



vertex of the same degree (Figure 1). The branching atom belongs to all

side-chains. Example: isobutane (Figure 1) consists of three side chains, and

each side chain contains two vertices. Instead of »side-chain«, we shall use

the expression »string« to denote a chainlike subgraph starting with an end-

point or a branching vertex and ending with and endpoint or a branching

vertex. An atom between these two vertices (if any) is bivalent.

The Wiener index of a starlike graph containing strings k, m and n (Fig-

ure 2) may be calculated by using the following formula:2,3

W = �(k3 + m3 + n3) + 3(k2m + k2n + m2n + km2 + kn2 + mn2) –

– 6(k2 + m2 + n2) – 6(km + kn + mn) + 5 (k + m + n)�/6. (2)

For isobutane with k = m = n = 2, we obtain:

W = �(23 + 23 + 23) + 3(22�2 + 22�2 + 22�2 + 2�22 + 2�22 + 2�22) – 6(22 + 22 +

22) – 6(2�2 + 2�2 + 2�2) + 5(2 + 2 + 2)�/6 = (24 + 144 – 72 – 72 + 30)/6 = 9, the

same value that was obtained by using Eq. (1). Eq. (2) remains valid if any

of the side chains disappears, i. e. the size of the corresponding string – e.g.

n – is equal to 1. Let us use Eq. (2) to obtain W for propane, then k = 3,

m = n = 1, and W = �(33 + 13 + 13) + 3(32�1 + 32�1 + 12�1 + 3�12 + 3�12 +

1�12) – 6(32 + 12 + 12) – 6(3�1 + 3�1 +

1�1) + 5(3 + 1 + 1)�/6 = (29 + 78 – 66 – 42 + 25)/6 = 4, in accordance with the

value that could be obtained for the (hydrogen suppressed) graph of propane.

We want to derive a similar formula for a starlike graph containing four

strings k, m, n and o (Figure 3) and the formula should have the following

form:

W = �A4(k3 + m3 + n3 + o3) + B4(k2m + k2n + k2o + m2n + m2o + n2o +

+ km2 + kn2 + ko2 + mn2 + mo2 + no2) + D4(k2 + m2 +n2+ o2) +

+ E4(km + kn + ko + mn + mo+ no) + F4(k + m + n + o)�/6 (3)
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Figure 3. Example of a »starlike« graph containing four chains. The branching ver-

tex belongs to all four chains, k = 2, m = 3, n = 4, and o = 5.



where coefficients A4, B4, D4, E4 and F4, have to be determined. The sub-

scripts indicate that the starlike graph contains four side-chains (strings).

For similar reasons, the corresponding coefficients in Eq. (2) will be denoted

by A3, B3, D3, E3 and F3, where A3 = 1, B3 = 3, D3 = –6, E3 = –6 and F3 = 5.

Note that Eq. (3) cannot contain other third order terms, like kmn, a

constant, fourth or higher order terms.11

Let as suppose that coefficients A4, B4, D4, E4 and F4 are already known,

and we want to use Eq. (3) to derive Eq. (2). Assume that o = 1, and substi-

tuting o = 1 into Eq. (3), we obtain for the constant value in Eq. (2) which

equals zero:

A4 + D4 + F4 = 0. (4)

Similarly, the sum of the coefficients of the k2 term in Eq. (3) is equal to –6,

the coefficient of the k2 term in Eq. (2):

B4 + D4 = D3 = –6. (5)

By comparing the coefficients of k in Eqs. (2) and (3), we obtain:

B4 + E4 + F4 = F3 = 5. (6)

The present procedure cannot generate an equation for A3 or B3, since the

coefficients of the third order terms k3 and k2m, A4 and B4, respectively, are

not affected by setting o = 1. Therefore A4 = A3 = 1 and B4 = B3 = 3, and the

set of equations (4)–(6) can be solved to obtain D4 = –9, E4 = –6 and F4 = 8.

From this, we can write down the equation for starlike structures with four

sidechains:

W = �(k3 + m3 + n3 + o3) + 3(k2m + k2n + k2o + m2n + m2o + n2o +

+ km2 + kn2 + ko2 + mn2 + mo2 + no2) – 9(k2 + m2 + n2 + o2) –

– 6(km + kn + ko + mn + mo + no) + 8 (k + m + n + o)�/6. (7)

Example: consider structure of 3,3-dimethylpentane (Figure 4), With k =

m = 2, n = o = 3 and W = �(8 + 8 + 27 + 27) + 3(8 + 12 + 12 + 12 + 12 + 27 + 8

+ 18 + 18 + 18 + 18 + 27) – 9(4 + 4 + 9 + 9) – 6(4 + 6 + 6 + 6 + 6 + 9) + 8(2 + 2 +

3 + 3)�/6 = (70 + 570 – 234 – 222 + 80)/6 = 44.

The procedure can be extended for starlike structures eith n sidechains.

Again An = 1 and Bn = 3. In full analogy with equations (4)–(6), we may

write:

An + Dn + Fn = 0 (8)

Bn + Dn = Dn–1 (9)
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Bn + En + Fn = Fn–1. (10)

From Eq. (9) we obtain:

Dn = Dn–1 – 3. (11)

By expressing Fn from Eq. (8) and using Eq. (11), we obtain:

Fn = –Dn – 1 = 2 – Dn–1. (12)

Finally, by expressing En from Eq. (10) and from Eqs. (11) and (12), we

obtain:

En = Fn–1 – Fn – 3 = Fn–1 + Dn–1 – 2 – 3 = Dn–1 – Dn–2 – 3 =

= Dn–2 – Dn–2 – 6 = –6. (13)

meaning that En = –6, irrespective of the value of n. Finally, by taking into

account the numerical values of coefficients A3, B3, D3, E3 and F3 in Eq. (2),

we obtain:

An = 1 (14)

Bn = 3 (15)

Dn = –3(n –1) (16)

En = –6 (17)

Fn = 3n – 4. (18)

Coefficients An, Bn, Dn, En and Fn may be used to obtain W for any starlike

graph in terms of the sizes of strings. The coefficients are still valid if n = 2

(see Appendix).

The present procedure can be applied to obtain the coefficients of any

graph consisting of two »starlike« subgraphs. The simplest case is depicted

in Figure 5. The polynomial we want to derive for this class of homeomor-

phic graphs should have the following form:
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Figure 4. Hydrogen suppressed graph of 3,3-dimethylpentane.



W = �(A22(k3 + o3 + m3 + n3) + A'22x3 + B22(k2o + ko2 + m2n + mn2) +

+ B'22(k2m + k2n + o2m + o2n + km2 + kn2 + om2 + on2) + B"22(k2x +

+ o2x + m2x + n2x) + B+
22(kx2 + ox2 + mx2 + nx2) + C22(kxm + kxn +

+ oxm + oxn) + D22(k2 + o2 + m2 + n2) + D'22x2 + E22(ko + mn) +

+ E'22(km + om + kn + on) + E"22(kx + ox + mx + nx) +

+ F22(k + o + m + n) + F'22x + G22�/6 (19)

where A22, A'22, B22, B'22, B"22, B+
22, C22, D22, D'22, E22, E'22, E"22, F22, F'22

and G22 are the coefficients to be determined. The subscripts indicate that

two side-chains emerge from both ends of the central chain x.

Observe that for x = 1 the resulting graph is a starlike graph having

four strings (Figure 3). Comparison with coefficients of terms k2, k, km and

the constant in Eq. (7) yields:

B"22 + D22 = D4 = – 9 (20)

B+
22 + E"22 + F22 = F4 = 8 (21)

C22 + E'22 = E4 = –6 (22)

A'22 + D'22 + F'22 + G22 = 0. (23)

By choosing m = n = 1, a starlike graph with three side-chains (Figure 3)

results. Comparison with coefficients of terms k2, k, x2, x, k2x, kx, kx2 and

the constant in Eq. (7) yields:

2B'22 + D22 = D3 = –6 (24)

2B'22 + 2E'22 + F22 = F3 = 5 (25)

2B+
22 + D'22 = D3 = –6 (26)
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Figure 5. Example of a graph containing two starlike subgraphs. The branching

vertices belong to three incident chains. k = 2, j = 4, m = 3, n = 5, and (the string

linking the two branching vertices) x = 5.



2B"22 + 2E"22 + F' = F3 = 5 (27)

B"22 = B3 = 3

2C22 + E"22 = E3 = –6 (28)

B+
22 = B3 = 3 (29)

2A22 + 2B22 + 2D22 + E22 + 2F22 + G22 = 0. (30)

By choosing k = o = m = n = 1, a simple chain results, and the chain formula

does not contain second and zero order (constant) terms (see Appendix, Eq.

(A1)), whereas the coefficient of x (the first order term) is equal to –1.

4B+
22 + D' = 0 (31)

4B"22 + 4C22 + 4E"22 + F' = –1 (32)

4A22 + 4B22 + 8B'22 + 4D22 + 2E22 + 4F22 + G22 = 0 (33)

Finally, by choosing o = n = 1 again a simple chain results, consisting of

three parts (see Appendix, Eq. (A4)). Comparison of coefficients k2, k, kx and

the constant yields the following equations, respectively:

B22 + B'22 + D22 = –6 (34)

B22 + B'22 + E22 + E'22 + F22 = 11 (35)

C22 + E"22 = – 12 (36)

2A22 + 2B'22 + 2D22 + E'22 + 2F22 + G22 = –6 . (37)

Solution of the system of linear equations (20)–(37) yields the coefficients

of Eq. (19). Numerical values of the coefficients are listed in Table I.

A similar procedure can be used to calculate the coefficients for a graph

containing two branching atoms of degree four (Figure 6), and in general for

any graph containing two branching atoms with a degree of k + 1 (Table I).

DISCUSSION

The formulas presented in this paper may be used to solve the problem

of »inverse quantitative structure – activity relationship«,13,14 at least for

starlike graphs or graphs consisting of two starlike subgraphs. Quantitative

structure-activity relationships (QSAR) denote statistical investigations in

which the numerical values of some activity (or property) of the molecules

are related to a number (or numbers) depending on the structure of the

molecule. The independent variables appearing in QSARs are quite often
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graph invariants, particularly W is an important variable.1–3 As a result of

QSAR investigations, the activity of a molecule is expressed as a function of

graph invariants characterizing its structure. The aim of the inverse QSAR

problem is to find out which molecules have the desired property. In order to

solve this problem, we have to generate all graphs possessing a definite

value of W (or any other graph invariant).

In such a procedure, the minimal and maximal7,15 values of vertices for

which graphs with a definite W may exist have to be determined first. Then,

formulas derived in this work can be used to generate all starlike graphs or

graphs consisting of two starlike subgraphs containing an allowed number

of vertices and to select all those structures which correspond to the fixed

value of W. The time needed to perform this task depends on the number of

strings to be considered. The number of strings will necessarily be limited.

As a result of this procedure, the same graph might be considered several

times, and a method to avoid this difficulty has to be found.
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TABLE I

Coefficients of polynomials related to graphs containing two

starlike subgraphs (Figure 5)

Coefficient n = 2 n = 3 n = k

Ann = A'nn

Bnn = B'nn = B"nn = B+
nn

Cnn

Dnn = D'nn

Enn

E'nn

E"nn

Fnn

F'nn

Gnn

1

3

6

–12

–6

–12

–18

23

35

–24

1

3

6

–18

–6

–12

–24

35

71

–54

1

3

6

–6k

–6

–12

–6(k + 1)

12k – 1

6k2 + 6k – 1

–6k2

Figure 6. Scheme of a graph containing two starlike subgraphs. The branching verti-

ces belong to four incident chains.



The generation procedure described above is restricted to starlike

graphs or structures for which formulas have already been dervied.11 The

solution of the inverse QSAR problem applicable to any three has still to be

solved.

APPENDIX

Calculate coefficients A2, B2, D2, E2 and F2. A »starlike« graph consisting

of two side-chains – or stings – is in fact a chain consisting of two »sub-

chains« a and b. The Wiener formula of W derived for N-chains is:1

W = (N3 – N)/6 (A1)

and

N = a + b – 1 (A2)

(a + b – 1)3 – (a + b – 1) = a3 + b3 + 3a2b + 3ab2 – 3a2 – 3b2 – 6ab + 2a + 2b. (A3)

Therefore, A2 = 1, B2 = 3, D2 = 3, E2 = –6 and F2 = 2, in accordance with

formulas (13) – (17). Similarly,

(a + b + c – 2)3 – (a + b + c – 2) = (a3 + b3 + c3) + 3(a2b + ab2 + a2c + ac2 +

+ b2c + bc2) + 6abc – 6(a2 + b2 + c2) – 12(ab + ac + bc) + 11(a + b + c) – 6. (A4)
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SA@ETAK

Wienerov indeks: formule za nehomeomorfne grafove

István Lukovits

Wienerov indeks (W) invarijanta je grafa. Zbog njegove va`nosti, predlo`eni su

razli~iti postupci za njegovo izra~unavanje, uklju~uju}i numeri~ke pristupe i anali-

ti~ke formule. Ve} izvedene formule za W prikazane su specijalno za homeomorfne

strukture, polimere i zvijezde, u polinomnom obliku. U ovom radu predlo`en je po-

stupak za izra~unavanje koeficijenata polinoma za skupove nehomeomorfnih struk-

tura.
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