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Adjacency matrix (AM) eigenfunctions of isospectral chemical

graphs of alkanes (CnH2n+2), in terms of atoms (GCh

a ) and bonds

(GCh

b ), have been studied. The two eigenfunctions Fi and Yi of the

AMs A(GCh

a ) and A(GCh

b ) referring to the same eigenvalue ei have

been expressed in terms of a common set of n principal coefficients,

each associated with a definite carbon atom. As a result, functions

Fi and Yi proved to be of common global constitution. Interrela-

tions between the local structures of functions Fi and Yi have been

also established. These results have been used to substantiate a

hypothesis concerning the spectral meaning of coefficients within

eigenfuctions Fi of matrices A(GCh

a ). These coefficients are assumed

to determine the extents of participation of individual atoms in the

ionization of a molecule from the energy level ei, although no direct

link seems to be present between the AMs A(GCh

a ) and the respec-

tive hamiltonian matrices.

INTRODUCTION

Spectral characteristics of molecules are commonly expected to be deter-

mined by the electronic structure of the given system defined in terms of or-

bitals and their interactions. In this connection, quantum-mechanical meth-

ods are usually used for interpretation of molecular spectra.1

In the case of photoelectron spectra it is the canonical MO method and

the Koopmans theorem that form the basis of most theoretical investiga-

tions.1–3 According to this theorem, the ionization potentials of molecules

are related to eigenvalues of the respective one-electron Hamiltonian

(Fockian) matrices. Then, the coefficients of the eigenfunctions of these ma-
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trices determine the relative extents of participation of separate basis orbi-

tals in ionization of the molecule from the respective energy level ei.

An alternative definition of molecular structure is used in classical

chemistry, which is based on both types of atoms involved within the given

compound and the way the atoms are bound together.4 It is just these as-

pects of the structure that are represented in chemical formulas. It is note-

worthy that no internal structure of atoms is considered explicitly in classi-

cal chemistry.

Chemical formulas form the basis of clasification for the immense

amount of information both on the observed properties of isolated mole-

cules5,6 and on chemical reactions.7 In this context, studies of relations be-

tween spectral characteristics of molecules and peculiarities of their chemi-

cal formulas are of interest.

The p-electron subspectra of conjugated hydrocarbons seem to be the

only example when the relation to chemical structure of the respective C-

skeleton proves to be rather simple.8 Indeed, one-to-one correspondence be-

tween 2pz AOs and carbon atoms takes place in this case and the relevant

Hueckel Hamiltonian matrices H linearly depend on the adjacency matrices

(AMs) A(G) of graphs G, the latter describing the respective C-skeletons, i.e.

H = aI + bA(G) (1)

where I is the unit matrix and a and b are energy constants equal to the

average Coulomb and resonance integrals, respectively. As a result,

coefficients of eigenfunctions of the AMs A(G) describe the relative extents

of participation both of individual 2pz AOs and of separate carbon atoms in

ionization of the molecule.

The problem, however, becomes more involved when turning to other

types of molecules. This may be illustrated by the results of Ref. 9, where

the high-energy bands (HEB) in the photoelectron spectra of alkanes10 lo-

cated in the range 17–26 eV have been related to centain subspectra of

chemical graphs. Indeed, the graphs of alkanes determining the Hamilto-

nian matrices used in Ref. 9 do not coincide with the usual chemical graphs

in terms of atoms. Let us discuss this point in more detail.

The simplest one-parameter Hueckel type Hamiltonian matrix H in the

basis of bonding bond orbitals (BOs) has been used to describe the HEBs of

alkanes.9,11,12 The mean value of interactions (resonanace integrals) be-

tween BOs of the nearest (geminal) bonds plays the role of the only parame-

ter b in this case, and the average value of the BO energy stands for pa-

rameter a. As a result, a linear dependence, like that shown in Eq. (1),

takes place between matrices H and the respective AMs A(GH). Graphs GH

(Figure 1) have been named Hamiltonian matrix graphs.9
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Since one-to-one correspondence between BOs and chemical bonds takes

place in alkanes, matrix A(GH) represents the adjacencies of both BOs and

bonds. To distinguish these alternatives, chemical graphs in terms of bonds

(G Ch

b ) formally coinciding with respective graphs GH have been introduced.9

Then, coefficients Cki of eigenfunctions Yi of the AMs A(GH) � A(G Ch

b ) deter-

mine the extents of participation of separate BOs(bonds) in ionization of the

molecule.

The relation of graphs G Ch

b to the usual graphs of alkanes in terms of at-

oms (G Ch

a ) (Figure 1) has been established9 by invoking the so-called line

graphs.13 It has been also shown that the two graphs G Ch

a and G Ch

b are iso-

spectral (except for an additional system-structure-independent eigenvalue

of the AMs A(G Ch

a ) vs. A(G Ch

b )) if the appropriate diagonal elements of the

AM A(G Ch

a ) are used. These elements proved to be equal to 0 and 3 for mono-

and four-valent vertices of graphs G Ch

a associated with hydrogen and carbon

atoms, respectively.

However, no direct link seems to be present between the AMs A(G Ch

a )

and the respective matrices H largely because of their different dimensions.

In this connection, establishing the relation between atoms underlying the

AMs A(G Ch

a ) and AOs also is faced with difficulties.

Nevertheless, coincidence of the system-structure-dependent subspectra

of graphs GH � G Ch

b and G Ch

a allowed us to relate the HEBs of alkanes to the
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graphs in terms of atoms (GCh

a ) and bonds (GCh

b ), as well as their common reduced

form denoted by an asterisk. The simple chain (G0) is also shown.



respective subspectra of AMs A(G Ch

a ). Moreover, peculiarities of the HEBs

have been successfully interpreted in terms of those of graphs G Ch

a .9 In this

context, the question arises about the meaning of coefficients Dmi of eigen-

functions Yi of the AMs A(G Ch

a ).

It is quite natural to assume that these coefficients determine the ex-

tents of participation of separate atoms in ionization of the molecule. For

the above-discussed reasons, however, such an assumption is not trivial and

it should be subtantiated. An indirect way of doing this seems to be the

most promising one.

Thus, let us suppose that the suggested interpretation is adequate.

Then, certain interrelations between the sets of coefficients �Cki� and �Dmi�

and thereby between the eigenfunctions �i and �i are feasible. Further-

more, relations of both local and global nature may be expected here.

Indeed, participation of certain chemical bond in ionization of the mole-

cule is likely to be directly related to those of the two involved atoms and

vice versa. This implies interdependences between local structures of eigen-

functions �i and �i.

Furthermore, the extents of participation of separate CH2(CH3)-groups

in ionization of the molecule may be expected to be proportional to those of

respective full subgraphs (tetrahedrons) of graphs G Ch

b , and this is due to

the one-to-one correspondence between these elementary units. Accordingly,

some common global structure might be inherent in eigenfunctions �i and

�i of the AMs A(GH) � A(G Ch

b ) and A(G Ch

a ).

Therefore, revealing of the above-anticipated interrelations between the

eigenfunction of the AMs A(G Ch

a ) and A(G Ch

b ) of chemical graphs of alkanes

is the main aim of this paper.

To compare the global structures of eigenfunctions, reduction of secular

equations for the AMs A(G Ch

a ) and A(G Ch

b ) of alkanes (CnH2n+2) into n-dime-

nsional effective problems9,14–16 will be used. The most general way of the

procedure analogous to that suggested in Ref. 15 is described in Section 2.

Section 3 is devoted to interrelations between the eigenfunctions being

sought. Particular graphs are studied in Section 4.

THE GENERAL WAY OF REDUCING THE SECULAR PROBLEMS

FOR THE AMs OF CHEMICAL GRAPHS OF ALKANES (CnH2n+2)

INTO n-DIMENSIONAL PROBLEMS

Let us consider the eigenvalue equations

A(GH)C = eC, A(G Ch

b )C= eC (2)

A(G Ch

a )D = eD (3)
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where the two relations of Eq. (2) are identical. Moreover, the same desi-

gnation e is used in Eqs. (2) and (3) in connection with isospectrality of

graphs G Ch

a and G Ch

b Ref. 9 (Section 1).

Let us start with reduction of the eigenvalue problem of Eq. (2). The

most general procedure essentially consists in forming the variable

Z = 21/2(Ca+Cb+Cc+Cd)/e for each subgraph of graphs GH � G Ch

b (tetrahedron)

containing vertices a, b, c and d and in formulating the system of effective

equations for n variables �Zk� k = 1, 2... n. In contrast to the procedure of

Ref. 9, turning to variables �Zk� may be carried out for any type of graphs

GH � G Ch

b .

To demonstrate this, let us start with a branched fragment of our graphs

shown in Figure 2. Let C1j (j = 1, 2, 3, 4) stand for C1, C1', C1'' and C1''', whe-

reas C2j will designate C2, C2', C2'' and C2''', etc. The equality Cpja = Cpjb � Cpj

for any even p and thereby for all pairs of three-valent vertices of graphs

GH � G Ch

b will be accepted. This requirement is equivalent to elimination of

the subspace which is antisymmetric with respect to transposition a � b.9

Like in previous contributions,9,14–16 the diagonal elements of the initial

AMs A(G Ch

b ) and A(GH) will be taken equal to 1. Let us define variables �Zk�

as follows

Z1 = (21/2/e)
j �

�
1

4

C1j; Z2j = (21/2/e) �C1j + 2C2j + C3j�;

Z4j = (21/2/e)�C3j + 2C4j + C5j�, etc. (4)
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Taking the four secular equations for vertices 1j (j = 1, 2, 3, 4), and summ-

ing them up over j, we obtain

j �

�
1

4

C3j + 2
j �

�
1

4

C2j + 4
j �

�
1

4

C1j = �
j �

�
1

4

C1j . (5)

After employment of Eq. (4), the effective equation for variable Z1 results

from Eq. (5), i.e.

j �

�
1

4

Z2j + 3Z1 = eZ1 . (6)

The case of branching at the tertiary carbon atom follows from the

above-outlined procedure if we assume that

C2''' = C3''' = ... = 0 . (7)

Indeed, the initial secular equation for the three-valent vertex 1''' yields the

equality

C1''' = 2–1/2 Z1 (8)

which, in turn, may be substituted into the relevant form of Eq. (6), viz.

j �

�
1

3

Z2j + (21/2/e)C1''' + 3Z1 = eZ1 . (9)

As a result, the respective effective secular equation follows, i.e.

j �

�
1

3

Z2j + (3 + 1/e)Z1 = eZ1 . (10)

If the requirement that

C2'' = C3'' = ... = 0 (11)

is added to Eq. (7), we analogously obtain

j �

�
1

2

Z2j + (3 + 2/e)Z1 = eZ1 (12)

and this effective equation evidently corresponds to an internal full

subgraph within graphs GH � G Ch

b of normal alkanes. It may be easily proven

that similar equations refer to full subgraphs within any non-branched

fragment of graphs G Ch

b � GH. For a terminal subgraph, it follows that

Z2 + (3 + 3/e)Z1 = eZ1 (13)

whilst for methane, we obtain
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(3 + 4/e)Z1 = eZ1 . (14)

The n equations like those shown in Eqs. (6), (10), (12)–(14) for each par-

ticular graph GH � G Ch

b may be collected into an effective secular problem for

the respective n-dimensional reduced AM A(G H

* ) � A(G Ch

b* ). The reformulated

secular problems of Eq. (2) become

A(G*
H)Z = eZ, A(G Ch

b* )Z = eZ (15)

where Z is an n-dimensional column-matrix consisting of coefficients �Zk�,

and G H

* � G Ch

b* are the respective reduced graphs containing n vertices (Fi-

gure 1).

From the structure of the new equations in terms of n variables �Zk�, it

follows that the reduced matrices A(G H

* ) � A(G Ch

b* ) contain non-zero off-

diagonal elements equal to 1 in positions (k, k+1) corresponding to the

next-nearest pairs of vertices. As a result, the arrangement of edges within

the reduced graphs G H

* � G Ch

b* coincides with that of the simple chain G0

(Figure 1).

Again, the diagonal elements wv(e) of the AMs A(G H

* ) � A(G Ch

b* ) depend on

both the energy variable e and valency v of the respective vertex of the re-

duced graph

wv(e) = 3 + (4 – v)/e . (16)

Equation (4) contains expressions for �Zk� in terms of �Ck�. On the other

hand, the initial set of coefficients �Ck� may be expressed in terms of new

variables �Zk�. To this end, let us start with the initial secular equation for

vertex 1j (Figure 2)

C3j + 2C2j +
m �

�
1

4

C1m = eC1j (17)

and invoke the definitions of Z1 and Z2j of Eq. (4). After substituting the

latter into Eq. (17), we obtain

C1j = 2–1/2 e(Z1 + Z2j)/(e + 1) . (18)

Analogously, from the initial secular equation for C2j, the expression for the

latter is

C2j = 2–1/2 Z2j . (19)

It may be easily proven that

C3j = 2–1/2 e(Z2j + Z4j)/(e + 1); C4j=2–1/2Z4j, etc. (20)
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for the remaining part of graph GH � CCh

b shown in Figure 2. Moreover,

similar relations may be obtained for any three- (see Eq. (8)) and for any

four-valent vertex of graphs G Ch

b , i.e.

C(3)k = 2–1/2Zk, C(6)k,k+1 = 2–1/2 e(Zk + Zk+1)/(e + 1) (21)

where (3)k stands for a three-valent vertex belonging to the k-th tetra-

hedron and (6)k, k+1 describes a six-valent vertex belonging to both the k-th

and (k+1)-th tetrahedrons.

Given that the k-th tetrahedron contains two three-valent vertices, the

equality C(3)ka = C(3)kb may be used and we then obtain

Z(3)k = 21/2C(3)k = 2–1/2 (C(3)ka+C(3)kb) . (22)

Therefore, the above-outlined reduction may be considered as a gener-

alization of that developed in Ref. 9 for normal alkanes where turning to

normalized sums of coefficients referring to BOs of geminal pairs of C–H

bonds was used.

Let us discuss now the secular problem of Eq. (3). This problem may be

easily reduced into an n-dimensional one.9 To do this, it is no more required

to eliminate coefficients �D(1)k� at the mono-valent vertices of graphs G Ch

a

(hydrogen atoms) from the initial secular problem of Eq. (3). Because of zero

values of the diagonal elements of matrix A(G Ch

a ) corresponding to hydrogen

atoms, expressions of the form

D(1)k = D(4)k/e (23)

are to be substituted into equations for the four-valent vertices and an n-di-

mensional problem

A(G Ch

a* )D(4) = eD(4) (24)

results, where D(4) is an n-dimensional column-matrix containing the n coef-

ficients of Eq. (3) referring to four-valent vertices (carbon atoms). Moreover,

the elements of the new matrix A(G Ch

a* ) coincide with those of A(G Ch

b* ) of Eq.

(16). This conclusion, in turn, allows us to accept the equalities

D(4)i = Zi and D(4)ki = Zki (25)

for any eigenvalue ei. The principal result of Eq. (25) forms the basis of

comparative analysis of eigenfunctions Fi and Yi.
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INTERRELATIONS BETWEEN EIGENFUNCTIONS Fi AND Yi,

AND INTERPRETATION OF THEIR COEFFICIENTS

Let us start with eigenfunctions of the AMs of graphs GH � G Ch

b . In the

general case shown in Figure 2, an eigenfunction Y may be written in the

form

Y =
j �

�
1

4

�C1jcj1 + C2j(�j2a+�j2b) + C3j�j3 + C4j(�j4a + �j4b) + ...� (26)

where � stand for bond orbitals. If we substitute the expressions of Eq. (21)

and collect terms containing particular variables Zk, the eigenfunction �i

corresponding to the eigenvalue �i may be represented as a linear combi-

nation of n �i-dependent local-structure-determined basis orbitals �k(�i) with

coefficients Zki resulting from Eq. (15), i.e.

�i =
k

n

�

�
1

�k(�i) Zki . (27)

For the branched graph of Figure 2, the following expressions for orbitals

�k(�) result

h(4)1(e) = �2–1/2 e/(e + 1)� �
j

j
1

1

4

�

� (28)

and

h(2)2j(e) = 2–1/2 �(cj2a + cj2b) + �e/(e + 1)�(cj1 + cj3)� . (29)

The orbitals of Eqs. (28) and (29) refer to variables Z1 and Z2j and thereby to

the four-and two-valent vertices of the reduced graphs. A function like that

of Eq. (29) has been obtained in Ref. 9 for normal alkanes. Analogously, the

orbitals

h(3)1(e) = 2–1/2 ��e/(e + 1)�
j �

�
1

3

cj1 + c1'''� (30)

h(1)1(e) = 2–1/2 ��e/(e + 1)� c1 + c1' + c1'' + c1'''� (31)

result instead of Eq. (28) for tertiary and terminal carbon atoms, respecti-

vely, and thereby for three- and mono-valent vertices of reduced graphs. It

is seen that the orbitals defined by Eqs. (28)–(31) are localized on the four

BOs of the respective full subgraph (tetrahedron) only.

The procedure of reducing graph G Ch

a into G Ch

a* shows that the eigenfunc-

tion Fi of the AM A(G Ch

a ) may be represented in the form

Fi =
k

n

�

�
1

mk(ei) D(4)ki (32)
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where

mk(e) = l(4)k + (1/e)
m

r

�

�
1

l(1)km (33)

are e-dependent basis orbitals, each of them pertinent to a definite CHr-

group. Unspecified basis functions corresponding to carbon and hydrogen

atoms (l(4)k and l(1)km) are introduced in Eq. (33). The sum of Eq. (33) em-

braces the hydrogen atoms adjacent to the k-th carbon atom.

Comparing Eqs. (27) and (32) and taking into account the equality of Eq.

(25) shows that eigenfunctions Yi and Fi referring to eigenvalue ei contain

the same n coefficients Zki � D(4)ki. This set of n principal coefficients, in

turn, may be regarded as describing the global structure of an eigenfunc-

tion. Hence, functions Yi and Fi may be taken to be of the common global

structure.

Let us turn now to the local structures of eigenfunctions Yi and Fi.

Equations (21) and (23) along with Eq. (25) allow us to conclude that the

coefficients of both matrices C and D of the initial secular problems of Eqs.

(2) and (3) have been actually expressed in terms of the same n principal co-

efficients �D(4)k�, k = 1, 2...n at the carbon atoms within the usual chemical

graphs G Ch

a . Moreover, these expressions contain relations of local nature.

Thus, the coefficient D(1)k referring to a mono-valent vertex of a graph G Ch

a

(a hydrogen atom) attached to the k-th four-valent vertex (k-th carbon atom)

is proportional to the only coefficient D(4)k as shown in Eq. (23). On the

other hand, it follows from Eq. (21) and the equality of Eq. (25) that any co-

efficient C(3)k corresponding to a three-valent vertex of graphs G Ch

b � GH (to

a C–H bond) is proportional to the respective coefficient D(4)k at the carbon

atom of this bond, whereas the coefficient C(6)k,k+1 referring to a six-valent

vertex of graphs G Ch

b � GH (to a C–C bond) is proportional to the sum of coef-

ficients D(4)k and D(4)k+1 at the two carbon atoms making up this bond. The

above-discussed proportionalities are displayed in Figure 3.

Therefore, the local structures of eigenfunctions Yi and Fi referring to

the same eigenvalue ei are interrelated.

Let us suppose now that coefficients D(1)ki and D(4)ki of Eq. (3) determine

the relative extents of participation of hydrogen and carbon atoms, respec-

tively, in ionization of the molecule from the energy level ei. Then, the above

results imply that the extent of participation of any bond in ionization of the

molecule is directly related to those of two involved atoms. Alternatively,

the extent of participation of an atom appears to be determined by those of

bonds attached to this atom.

Indeed, it follows from the definition of coefficients �Zk� given by Eq. (4)

and coincidence between Zk and D(4)k that the extent of participation of a

carbon atom in ionization of the molecule is proportional to the sum of am-

plitudes determining the extents of participation of the four attached bonds
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(Contributions of atoms and bonds should be defined as squares of the rele-

vant coefficients. In this context, interrelations between amplitudes associ-

ated with the extents of participation and not between the extents them-

selves are noteworthy). Again, the extent of participation of a hydrogen

atom is proportional to that of the respective H–C bond in accordance with

the expectation.

Furthermore, the above-mentioned proportionalities contain the same

factors for both carbon and hydrogen atoms. Thus, let R(4)ki stand for the

sum of amplitudes referring to the four bonds attached to the k-th carbon

atom. Then, from Eqs. (4) and (25) it follows that

R(4)ki = 2–1/2 eiD(4)ki (34)

whilst for a hydrogen atom from Eqs. (19) and (23), we obtain

R(1)ki = 2–1/2 eiD(1)ki (35)

where R(1)ki = C(3)ki is the amplitude describing the extent of participation of

a C–H bond.

Therefore, interpretation of coefficients D(4)ki and D(1)k as describing the

extents of participation of separate atoms in ionization of the molecule leads

to consequences expected in the Introduction.

STUDIES OF PARTICULAR EXAMPLES

Let us consider the structures of eigenfunctions Yi and Fi of the AMs of

graphs GH � G Ch

b of particular alkanes in this Section. The most illustrative

examples of these graphs will be studied here, and these have been chosen

so as to be able to represent the principal coefficients Zki � D(4)ki in a simple
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algebraic form. As a result, the structures of eigenfunctions Yi and Fi may

be easily predicted on the basis of Eqs. (27) and (32).

A general remark should be made here:

Coefficients Zki � D(4)ki standing within Eqs. (27) and (32) correspond to

the n-dimensional secular problem shown in Eqs. (15) and (24) and are as-

sumed to be normalized accordingly. After returning to the initial (3n+1)-

and (3n+2)-dimensional bases �c� and �l� within the expressions for eigen-

functions �i and Fi, respectively, the sets of n principal coefficients become

renormalized within each of these functions separately. As a result, the final

eigenfunctions meet the relations

D(4)ki/R(4)ki = D(1)ki/R(1)ki (36)

instead of those of Eqs. (34) and (35).

Let us start with the first representative of the series CnH2n+2, i.e. with

the methane molecule. The respective reduced graphs G H

* � G Ch

b* � G Ch

a* con-

tain a single vertex described by the diagonal element of the AM equal to

w0 = 3 + 4/e. Since only the eigenvalue e = 4 corresponds to the HEB of me-

thane,9 the equality w0 = 4 results in this case.

The only eigenfunction F of the AM A(G Ch

a ) of methane associated with

the HEB involves a single orbital m(e) defined by Eq. (33)

m(e) = N(e) �l(4) + (1/e)
m �

�
1

4

l(1)m� (37)

where N(e) is an e-dependent normalization constant. For e = 4, N(e) = 2/

(5)1/2 and the eigenfunction F becomes

F = �(1/2) (5)–1/2� �	l(4) +
m �

�
1

4

l(1)m� . (38)

The respective totally-symmetric eigenfunction Y � hs of the AM A(GH) �

A(G Ch

b ) consists of the normalized sum of four BOs cj

Y = hs = (1/2)
j �

�
1

4

cj . (39)

From Eq. (39) it follows that each C–H bond takes an equal part in the

ionization of methane from the energy level e related to the HEB. Alterna-

tively, Eq. (38) indicates that the amplitude associated with participation of

the four-valent carbon atom is four times larger than that referring to a

mono-valent hydrogen atom. These results are entirely consistent with each

other. The equality of Eq. (36) may be easily proven for methane molecule.

Let us turn now to ethane. Since the reduced graphs G H

* � G Ch

b* � G Ch

a* of

this molecule contain two mono-valent vertices, both described by the AM
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element w1(e) of Eq. (16), the reduced secular problem resembles a two-level

problem involving similar Coulomb integrals.

In this connection, the two eigenfunctions F(+) and F(–) of the AM A(G Ch

a )

of ethane resemble the normalized sum and difference, respectively, of two

basis functions m1(e) and m2(e) defined by Eq. (33). The relevant eigenvalues

are e(+) = 4.65 and e(–) = 3 (Note that the resonance parameter b describing

the interaction between pairs of geminal bonds in alkanes is negative,11,12

and e(+) > e(–) > 0 in b units).

After substituting these eigenvalues for e of Eq. (33) and normalization,

eigenfunctions F(+) and F(–) take the form

F(+) = (2.28)–1/2 �� �'(4) + (1/4.65) �
m '�

�
1

3

(1)m' � + ��''(4) + (1/4.65) ���( ) ''

''

1

1

3

m

m �

�

F(–) = (3/8)1/2 �� �'(4) + (1/3) �
m '�

�
1

3

(1)m' � – ��''(4) + (1/3) ���( ) ''

''

1

1

3

m

m �

� (40)

where the basis functions l, referring to the first and second CH3-group, are

denoted by ' and '', respectively. It is seen that an increased contribution of

hydrogen atoms relative to those of carbon atoms proves to be peculiar to

function F(–), as compared to F(+).

The respective eigenfunctions �(+) and �(–) of the AM A(GH) � A(G Ch

b ) of

ethane may be approximately expressed as the normalized sum and differ-

ence, respectively, of two hs-like basis functions shown in Eq. (39) relative to

the two carbon atoms.9 Let us denote the BOs pertinent to the C–C and

C–H bonds by c(C–H) and c(C–H)' respectively. Then, eigenfunctions �(+) and

�(–) may be approximately expressed in terms of these BOs in the form

�(+) 
 (10–1/2 �
i '�

�
1

3

c(C–H)i' + 2c(C–C) +
i ''�

�
1

3

c(C–H)i''�

�(–) 
 ��
–1/2 �
i '�

�
1

3

c(C–H)i' –
i ''�

�
1

3

c(C–H)i''� (41)

where the subscripts i' and i'' refer to BO of the firs and second CH3-groups,

respectively.

It is seen that the contribution of the basis function c(C–C) referring to

the C–C bond is relatively increased within function �(+) and it turns to zero

within function �(–). This, in turn, implies an increased contribution of orbi-

tals c(C–H) pertinent to C–H bonds within eigenfunction �(–), as compared to

�(+). Hence, interpretations of coefficients of the eigenfunctions of the AMs

A(G Ch

a ) and A(G Ch

b ) are in line with each other for the ethane molecule as

well.
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Let us discuss now the general case of normal alkanes. The n energy lev-

els of these molecules associated with the HEB have been established to be

situated inside the band limits De = (2; 5.37), and no local (out-of-band)

states emerge in this case.9,14 Then, the principal coefficients Zki � D(4)ki

may be approximately described9,14 by those of the sin-like eigenfunctions of

the AMs A(G0) of the simple chain G0.
17

Let us confine ourselves to the lowest and highest MOs of the HEB of

normal alkanes. In accordance with the above-mentioned sin-like global

structure of the eigenfunctions, the lowest MO is characterized by uniform

(positive) signs of the principal coefficients Zk � D(4)k along the chain (k =

1, 2...n), and the relevant eigenfunctions of the AMs A(GH) � A(G Ch

b ) and A(

G Ch

a ) may be referred to as �(++) and �(++), respectively. Again, the highest

MO of the HEB contains alternating signs of coefficients Zk � D(4)k and the

relevant eigenfunctions may be conveniently designated by �(+–) and �(+–).

Analogously to functions �(+) and �(–) of the ethane molecule, the eigen-

values corresponding to the above-discussed eigenfunctions �(++) and �(+–)

meet the inequality �(++) � �(+–) > 0. Hence, functions �(+–) contain relatively

increased contributions of hydrogen atoms relative to those of carbon atoms

in accordance with the 1/�-like form of the dependence of the coefficients at

the basis functions �(1)km, as shown in Eq. (33). On the other hand, it is the

eigenfunction �(+–) that is characterized by a larger contribution of BOs

�(C–H), as compared to the eigenfunction �(++), in connection with the cancel-

lation of the relevant contributions of the BOs �(C–C) within function �(+–)

due to opposite signs of the neighboring pairs of coefficients Zk and Zk+1.

Therefore, the analysis of particular examples shows that interpreta-

tions of coefficients of the adjacency matrix eigenfunctions �i and �i as de-

termining the relative extents of participation of individual atoms and

bonds, respectively, in ionization of the molecule lead to mutually consistent

conclusions.

CONCLUDING REMARKS

Coefficients of the eigenfunctions of the AMs A(G Ch

a ) of chemical graphs

of alkanes in terms of atoms have been assumed to determine the extents of

participation of individual atoms in ionization of the molecule. This inter-

pretation is borne out by both the interrelations between the local struc-

tures and the common global structure of the eigenfunctions �i and �i es-

tablished in this paper. In particular, the above-mentioned features of the

eigenfunctions imply that participation of an atom in ionization of the mole-

cule is determined by those of bonds attached to this atom and vice versa,

which result is in line with the expectation. Analysis of particular examples

also supports the above-discussed spectral meaning of coefficients within

the adjacency matrix eigenfunctions.

686 V. GINEITYTE



It is noteworthy that no need arises for specifying the internal structure

of atoms and/or bonds themselves when establishing the extents of their

participation in ionization of the molecule on the basis of the adjacency ma-

trix coefficients. Hence, the relation of the high-energy band within the pho-

toelectron spectra of alkanes to the definite subspectra of the usual chemi-

cal graphs G Ch

a may be regarded as an application of the classical chemical

concepts to the investigation of the spectral characteristics of molecules.

REFERENCES

1. R. S. Drago, Physical Methods in Chemistry, W. B. Sounders Company, Phyla-

delphia-London-Toronto, 1977.

2. V. F. Traven, Elektronnaya Struktura i Svoistva Organitcheskich Molekul, Chi-

mia, Moscow, 1989.

3. V. I. Nefedov and V. I. Vovna, Elektronnaya Struktura Organitcheskich i Elemen-

toorganitcheskich Soedinenii, Nauka, Moscow, 1989.

4. V. M. Tatevskii, Stroyenie Molekul, Chimia, Moscow, 1977.

5. O. Chalvet (Ed.), Localization and Delocalization in Quantum Chemistry. Atoms

and Molecules in the Ground State, Vol. 1, Reidel, Dordrecht, 1975.

6. A. J. Gordon and R. A. Ford, The Chemist's Companion. The Handbook of Practi-

cal Data, Techniques and References, Interscience-Wiley, New York, 1972.

7. S. Hauptman, J. Graefe, and H. Remane, Lehrbuch der Organischen Chemie,

VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, 1976.

8. N. Trinajsti}, Topology and Heuckel Theory in Semiempirical Methods of Elec-

tronic Structure Calculation, Vol. 1, G. Segal, (Ed.), Mir, Moscow, 1980, p. 46.

9. V. Gineityte, Int. J. Quant. Chem. 53 (1995) 245–253.

10. G. Bieri, F. Burger, E. Heilbronner, and J. P. Maier, Helv. Chim. Acta 60 (1977)

2213–2333.

11. G. Bieri, J. D. Dill, E. Heilbronner, and A. Schmelzer, Helv. Chim. Acta 60 (1977)

2234–2247.

12. E. Heilbronner, Helv. Chim. Acta 60 (1977) 2248–2257.

13. D. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs. Theory and Application,

VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.

14. V. Gineityte, Lithuanian Phys. J. (Engl. Ed., Allerton Press, Inc.) 31 (1991) 246–

251; (Russ. Ed. p. 425).

15. V. Gineityte, ibid. 31 (1991) 303–310; 522.

16. V. Gineityte, ibid. 32 (1992) 175–182; 326.

17. S. Huzinaga, The MO Method, Mir, Moscow, 1983, in Russian.

SPECTRAL MEANING OF COEFFICIENTS WITHIN THE ADJACENCY MATRIX 687



SA@ETAK

Spektralni zna~aj koeficijenata u vlastitim funkcijama matrice
susjedstva izvedenih iz kemijskih grafova alkana

Viktorija Gineityte

Prou~ene vlastite funkcije izospektralnih matrica susjedstva izvedenih iz repre-

zentacija alkana (CnH2n+2) preko atoma (GCh

a ) odnosno veza (GCh

b ). Vlastite funkcije �i

i �i dviju matrica susjedstva A(GCh

a ) odnosno A(GCh

b ), kojima je pridru`ena ista vlas-

tita vrijednost �i, izra`ene su preko zajedni~kog skupa od n glavnih koeficijenata, od

kojih se svaki odnosi na po jedan ugljikov atom. Time je dokazano da funkcije �i i �i

imaju zajedni~ku globalnu strukturu. Uspostavljen je i odnos izme|u lokalnih

struktura funkcija �i i �i. Taj rezultat podupire pretpostavku o spektralnom zna~aju

koeficijenata u vlastitim funkcijama �i matrica A(GCh

a ). Za te se koeficijente pretpos-

tavlja da odre|uju sudjelovanje pojedinih atoma u ionizaciji molekule premda, iz-

gleda, ne postoji izravna veza izme|u matrice susjedstva A(GCh

a ) i matrice hamilto-

niana.
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