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Van der Waals and electrostatic double layer interactions between

two colloidal particles are evaluated from the corresponding inter-

action energies per unit area between two infinite flat plates using

a recently developed technique, the surface element integration.

Application of the technique to two interacting spheres results in

predictions of interaction energies that are substantially more ac-

curate compared to the predictions based on conventional Der-

jaguin's approximation. The superior results of the technique com-

pared to Derjaguin’s approximation are attributed to the more ri-

gorous consideration of particle curvature effects in the surface ele-

ment integration technique.

INTRODUCTION

Colloidal interactions formulated on the basis of the DLVO (Derjaguin-

Landau-Verwey-Overbeek) theory1,2 are frequently invoked to investigate a

vast array of natural and engineered phenomena, such as particle aggrega-

tion,3,4 heterocoagulation,5–8 colloid deposition,4,9 and a host of processes in-

volving colloidal stability and transport.3,4,10 Application of DLVO theory to

small colloidal particles may, however, lead to anomalous predictions of the

interaction energy, and consequently, the properties of systems involving
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such particles. Preponderance of several explanations for such anomalies –

for instance, presence of non-DLVO interactions,10,11 modification of the

range of the interactions,12,13 and presence of surface chemical and morpho-

logical heterogeneities14,15 – have often led to an oversight of the influence

of particle curvature and shape on colloidal interactions.

The DLVO interaction energy for a system of like-charged colloidal par-

ticles comprises an attractive van der Waals interaction and a repulsive

electrostatic double layer interaction. In typical colloidal dispersions, the

particle sizes and the separation distances of interest are often larger than

the range of these interactions. The effects of particle curvature may be ne-

glected for such systems, thus simplifying the procedure of evaluating the

interaction energy. Consequently, many common analytical expressions for

the interaction energy between large colloidal particles consider curvature

effects only to the leading order. One such well-known procedure leading to

several analytical expressions for the interaction energy is Derjaguin’s ap-

proximation.16,17 The analytical expressions for the interaction energy based

on this technique, which are often remarkably accurate for large particles,

may, however, yield erroneous predictions of the interaction energy when

the colloidal particles become very small. Barring a few studies that at-

tempt to improve these analytical results by considering the particle curva-

ture effects more rigorously,8,18–20 it is generally accepted that detailed nu-

merical techniques must be invoked to determine the interaction energy

between colloidal particles accurately.

Recently, the rationale of improving the Derjaguin approximation tech-

nique was described by systematically analyzing and eliminating some of its

debilitating assumptions.21–23 Based on these principles, an improved scal-

ing technique, the surface element integration (SEI), was developed. This

technique rigorously considers the effects of particle curvature and shape.

Application of the technique to the sphere - flat plate geometry results in re-

markably accurate predictions of the interaction energy.21

Here, we extend the surface element integration technique, enabling

evaluation of the interaction energy between two curved surfaces, and as-

sess the accuracy of the technique vis-a-vis conventional Derjaguin’s ap-

proximation. The paper is organized as follows. First, we analyze the as-

sumptions in Derjaguin’s approximation (DA) leading to its approximate

predictions, and point out how SEI corrects some of these approximations. A

general formalism for evaluation of the interaction energy between two par-

ticles from the corresponding interaction energy per unit area between infi-

nite flat plates is also presented. Following this, the approximations inherent

in SEI and DA techniques are analyzed with a specific example of unretarded

van der Waals interaction between two spherical particles. Finally, we deal
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with the prediction of electrostatic double layer interaction energy using

SEI. The paper is concluded with a few remarks regarding our key observa-

tions.

SURFACE ELEMENT INTEGRATION FOR

TWO CURVED SURFACES

In this section, the primary assumptions in DA, which render the tech-

nique approximate, are described. Following this, the mathematical formu-

lation of SEI is presented, highlighting how the assumptions in DA can be

avoided for the particle - flat plate geometry to yield extremely accurate re-

sults for the interaction energy. Finally, a general formulation for evaluat-

ing the interaction energy between two particles from the corresponding in-

teraction energy per unit area between two infinite flat plates is presented.

Assumptions in Derjaguin’s Approximation

The Derjaguin approximation (DA) procedure relates the interaction en-

ergy per unit area between two flat plates E and the interaction energy be-

tween two curved surfaces U by16,17

� �U(D) E(h) A f a a E h h
A D

� � � � � �� �
�

d d1 2, ( ) (1)

Here, D is the distance of closest approach between the two curved surfaces,

E(h) is the interaction energy per unit area between two infinite flat plates

separated by a distance h, dA is the differential area of the surfaces facing

each other, �a1� and �a2� represent the sets of the two principal radii of

curvature of surfaces 1 and 2, respectively, at the distance of closest

approach, and f (�a1�,�a2�) is a function of the radii of curvature of the

surfaces. One should note that for a spherical particle the two principal

radii of curvature are identical.

Two assumptions lead to the final expression in Eq. (1).16,17,21–23 First,

the range of the interaction energy is considered much shorter than the ra-

dii of curvature of the particles. This implies that the entire interaction en-

ergy between the two particles arises from a small region of the particles in

the vicinity of the distance of closest approach, thus enabling the extension

of the upper integration limit in Eq. (1) to infinity.3,17 Furthermore, this as-

sumption allows us to neglect higher order curvature effects in writing the

final form of Eq. (1).17,21,22 Consequently, the function f (�a1�,�a2�) represents

curvature effects that are valid only near the distance of closest ap-

proach.3,16–18
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The second assumption underlying DA is related to the interpretation of

the interaction energy per unit area between two infinite flat plates. The in-

teraction energy per unit area is ideally defined as the interaction energy at

any point on one of the flat surfaces due to the entire second flat plate.21

When using DA for two curved surfaces, the interaction energy per unit

area between two infinite flat plates is conveniently defined as the interac-

tion energy between two similar area elements on the opposing plates di-

rectly facing each other.10,17–19 This interpretation of interaction energy per

unit area leads to an overestimation of the interaction energy between two

particles, as will be shown shortly.

Surface Element Integration

The ideal interpretation of the interaction energy per unit area between

two infinite flat plates is recovered when dealing with the specific geometry

of a particle interacting with an infinite flat plate.21 In this case, the inter-

action energy of a differential area element dS on the particle surface arises

due to the entire infinite flat plate. For this particular geometry, we can rig-

orously incorporate the particle curvature in the interaction energy scaling

process. Integration of the differential interaction energy of every area ele-

ment over the exact particle surface leads to the final expression for the to-

tal interaction energy between a particle and an infinite flat plate21

U D E h S E h A
S A

( ) ( ) ( )� 	 �
	
	� �n k

n k

n k
d d (2)

where n is the outward unit normal vector on the surface element dS and k

is a unit vector normal to the flat plate (directed along the positive z axis).

The last expression in Eq. (2) is obtained by projecting the surface of the

particle S on a plane parallel to the infinite flat plate.21 In other words, the

area A is a projection of the actual curved surface of the particle on a plane

facing the infinite flat plate. It is however important to note that the first

integral in Eq. (2) is evaluated over the closed surface S of the particle,

which implies that the quantity n 	k can assume both positive and negative

values.

Assumptions Used in Interaction Energy Scaling

It should be noted that either additional information or some assump-

tions regarding the decay behavior of the interaction energy are necessary

when mapping the interaction energy per unit area between two flat plates

to the interaction energy between a particle and a flat plate. In deriving the
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surface element integral (Eq. (2)), it was assumed that the interaction force

per unit area acts normal to the particle surface.21 This is an underlying as-

sumption in DA as well. Fortunately, the forces indeed act normal to the

particle surface for van der Waals interaction and electrostatic double layer

interaction at constant surface potential.21 For these interactions, Eq. (2)

provides very accurate scaling for the sphere – flat plate geometry. However,

for double layer interaction at constant surface charge, the stress does not

necessarily act normal to the particle surface, and hence, surface element

integration cannot give accurate results based on the interaction energy per

unit area alone.

Similarly, mapping the interaction energy for two particles (both having

curved surfaces) requires additional information about the decay behavior

of the interaction energy. In absence of such information, some assumptions

regarding the interaction energy become essential. Here, we describe the

additional assumption made in such circumstances, and show its conse-

quences when determining the interaction energy.

Consider an infinite flat plate at a distance D from the surface of an infi-

nite cylindrical half-space of radius a, as shown in Figure 1. Let the interac-

tion energy between the half-space and the infinite flat plate be U(D). This

implies that the total interaction energy felt by the infinite flat plate due to

the cylindrical half-space is U(D) as well. However, the interaction energy is

not entirely confined to a circular cylindrical region of the flat plate that is
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Figure 1. Schematic representation of a cylindrical half-space of radius a (with dS

being the area of the circular face) interacting with an infinite flat plate located at a

distance D. The geometrical considerations are shown on the left, while the cor-

responding energy density on the surface of the flat plate is shown on the right. The

shaded contours in the right hand side figure represent the radial decay behavior of

the interaction energy on the surface of the plate.



identical to the cylindrical half-space. Rather, the interaction energy origi-

nates from a larger region of the infinite flat plate, with a non-uniform en-

ergy density (interaction energy per unit area). The energy density is maxi-

mum near the distance of closest approach between the cylinder and the flat

plate, and decays radially outward (the decay behavior is schematically

shown by the shaded concentric circles in Figure 1).

The above decay behavior should also be observed when considering the

interaction energy between a differential area element on the particle and

the infinite flat plate. If the interaction is short ranged, and in the limit

when the surface element tends to a point (dS 
 0), the radial decay behav-

ior of the energy density on the flat plate may be approximated as a delta

function with its center located directly in front of the surface element. In

other words, a surface element will interact with another element directly

facing it with an intensity E(h), where h is the separation distance between

the elements. Derjaguin’s technique for two particles is based on this inter-

pretation of interaction energy per unit area. We note that this assumption

will become progressively inaccurate as the range of the interaction energy

becomes larger. Furthermore, the approximation results in an overestima-

tion of the interaction energy between two surface elements facing each

other as we assume the entire interaction due to a larger area of the plate to

be confined within a small area element of the plate.

In absence of any additional information regarding the interaction en-

ergy, there are practically no other means of further progress without the

above assumption. However, using this assumption in SEI provides an up-

per bound of the interaction energy that is considerably more accurate com-

pared to DA. It is important to note that despite its approximate nature, the

simplicity of DA has led to its widespread use in evaluation of the DLVO in-

teraction energy. Furthermore, in several circumstances involving complex

geometries, DA might be the only feasible computational technique that can

be used to evaluate the interaction energy. Similar arguments can be used

in favor of SEI. While it involves a marginal increase in computational ef-

forts compared to DA, it provides an immense improvement in the interac-

tion energy prediction.

Application of SEI for Two Curved Surfaces

Consider two colloidal particles 1 and 2 facing each other as shown in

Figure 2. The origins of these particles are located at O1 and O2. The body

fixed coordinate system for each particle is selected in such a manner that

their xy planes are mutually parallel, while their z axes face each other. In

this system, the planes x1y1 and x2y2 are separated by a distance H. The

equations of the two surfaces may be written as
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z x y1 1� � ( , ) (3a)

and

z x y2 2� � ( , ), (3b)

while the local distance h between the two surfaces at any given (x,y) is

h H x y x y� �� ��1 2( , ) ( , ). (4)

It should be noted that for the closed particle surfaces, the functions �1 (x, y)

and �2 (x, y) are multi-valued, as will be shown shortly for the specific case

of spherical particles.

The curved surfaces of the particles 1 and 2 can be considered as made

up of numerous differential surface elements of area dS. Each pair of these

surface elements on the two surfaces facing each other is assumed to pos-

sess a differential interaction energy given by

d dU E h S� 	 	( ) ( ) ( )n k n k1 1 2 2 , (5)
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Figure 2. Schematic representation of two interacting spherical particles of radius a1

and a2. The centers of the spheres 1 and 2 are origins of two body-fixed coordinate

systems, with their z axes directly facing each other. The xy planes of these coordi-

nate systems are parallel to each other. Differential area elements on the surfaces of

the particles are represented by dS. The outward unit normals to the particle sur-

faces at these differential elements are denoted by n1 and n2. The distance between

the origins O1 and O2 is H. For radially symmetric particles, the geometry can be

conveniently described using cylindrical coordinates (r, z). The surface of each particle

is bound by a convex and a concave surface, denoted by PAQ and PA
Q, respectively.



where the magnitude of the differential interaction energy is governed by

the separation distance h. In this equation, the vectors n1 and n2 represent

the outward unit normals to the surfaces, and k1 and k2 represent the unit

vectors directed towards the positive z axes of each body-fixed coordinate

system. The separation between the two surface elements facing each other

is governed by Eq. (4).

Summation of the differential interaction energy over all such pairs of

interacting surface elements constituting the two curved surfaces will give

the total interaction energy between particles 1 and 2. This interaction en-

ergy can be expressed as

U U E h A
AS

� � 	
	

	�� d dn k
n k

n k
2 2

1 1

1 1

( ) 1

11

. (6)

Here, the first integration is performed over the actual surface of particle 1,

while the second integration is performed over the projected area of particle

1 on the xy plane, denoted by A1.

It should be noted that Eq. (5) is an approximate expression for the in-

teraction energy between two surface elements based on the assumption of

pairwise interaction between two surface elements facing each other. The

error involved in this assumption will be small only when the interaction

energy is very short ranged. This assumption constitutes the basic limita-

tion of both DA and SEI when considering two curved surfaces. It is clear

that whenever this assumption fails, the interaction energy predicted by DA

or SEI will be greater than the actual interaction energy.

Application of SEI for Two Spherical Particles

Utilizing the radial symmetry of the spherical geometry, we can use cy-

lindrical coordinates and considerably simplify the problem. Considering

circular elements on the surfaces of the spheres (see Figure 2), the distance

between two elements on the spheres facing each other is

h H a r a a r a� � �� �1
2

1
2

2
2

2
21 1 (7)

where H is the distance between the centers of the two spheres and a1 and

a2 are the radii of the spheres. The signs in the above equation are negative

or positive, depending on which hemispheres of the spheres 1 and 2 are

considered. For instance, when the hemispheres PAQ on both the spheres

(Figure 2) are considered, both the signs in Eq. (7) are negative.
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Each spherical volume is bound by two hemispherical surfaces (shown

as PAQ and PA
Q in Figure 2). From Eq. (6) we note that the quantity n1 	k1

/ �n1 	k1� will assume a value of +1 or –1 depending on whether n1 	k1 is po-

sitive or negative. The term n1 	k1 represents the cosine of the angle that

the unit outward normal to the surface makes with the positive z axis. It is

evident that for spherical surfaces, when we consider the hemisphere PAQ,

this quantity will be positive, while for hemisphere PA
Q, it will be negative.

Furthermore, the term n2 	k2 will also assume positive and negative values

on hemispheres PAQ and PA
Q of the second sphere. Therefore, in case of

two spheres, a total of four interaction energy terms are obtained. Each

hemispherical surface of sphere 2 (PAQ and PA
Q) interacts with two hemi-

spherical surfaces of sphere 1. Thus, when determining the interaction en-

ergy between spheres 1 and 2, the interaction energy of sphere 1 due to the

surface PAQ of sphere 2 is obtained first. This requires the evaluation of two

interaction energy terms, U AA
12 and U A A

12
' , where the subscripts 1 and 2 refer

to the spheres considered and the superscripts A and A
 refer to the hemi-

spheres PAQ and PA
Q, respectively. Following this, the interaction energy

between sphere 1 and the hemisphere PA
Q of sphere 2 is determined. The

two interaction energy terms needed for this step are U AA
12

' and U A A
12

' ' . Fi-

nally, the total interaction energy between the two spheres is obtained by

adding all the four interaction energy terms, yielding

U(H) = U AA
12 – U A A

12
' – U AA

12
' + U A A

12
' ' (8)

where U(H) is the total interaction energy between the two particles with

center to center separation H.

The signs preceding the interaction energy terms in Eq. (8) arise from

the different combinations of the signs of n1 	k1 and n2 	k2. Writing Eq. (6)

in cylindrical coordinates, the four interaction energy terms used in Eq. (8)

assume the following explicit forms

� � � �U r a E H a r a a r a r rAA

a

12
2

2
2

1
2

1
2

2
2

2
22 1 1 1� � � � � ���

0

1

d

� � � �U r a E H a r a a r a r rA A

a

12
2

2
2

1
2

1
2

2
2

2
22 1 1 1' � � � � � ���

0

1

d

(9)

� � � �U r a E H a r a a r a r rAA

a

12
2

2
2

1
2

1
2

2
2

2
22 1 1 1' � � � � � ���

0

1

d

� � � �U r a E H a r a a r a r rA A

a

12
2

2
2

1
2

1
2

2
2

2
22 1 1 1' ' � � � � � ���

0

1

d
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The term 1 2
2
2� r a in the above integrals represents �n2 	k2�. The terms

in the square brackets arise from the four possible combinations of signs in

Eq. (7). Equation (9) implies that four integrals need to be evaluated to ob-

tain the interaction energy, each of which is evaluated over a pair of hemi-

spherical surfaces bounding the spherical particles as described earlier. In

evaluating the interaction energy using Eq. (9), one should perform the in-

tegration over the radius of the smaller particle, i.e. a1 � a2. Here, the differ-

ential area dA1 (= 2 p r dr) is the projection of the actual spherical surface

element dS1 on the xy plane.

Although we have considered the curvature of the two spheres, the inter-

action energy was obtained by assuming pairwise interaction between two

surface elements facing each other. This assumption leads to the approxima-

tion in the surface element integral. However, consideration of the exact cur-

vature of the surface in SEI renders this technique superior to Derjaguin’s

approximation over larger separation distances and smaller particle sizes.

The influence of both these effects are shown in the next section for the par-

ticular case of van der Waals interaction between two spheres.

VAN DER WAALS INTERACTION BETWEEN

TWO SPHERICAL PARTICLES

In this section, the superiority of SEI over DA is demonstrated by con-

sidering the example of van der Waals interaction between two spherical

particles. The non-retarded van der Waals interaction energy per unit area

between two infinite flat plates separated by a distance h is given by24

E h
A

h
( ) � � H

12 2
p

, (10)

where AH is the Hamaker constant of the interacting media. Substituting

this in Eq. (9) yields the interaction energy between two spherical particles.

The expression for the non-retarded van der Waals interaction energy

between two spherical particles of radii a1 and a2 can be obtained using Ha-

maker’s approach4,24

U
A a a

D a D a D

a a

D a D a
VDW
Hamaker H�

� �
�

� �
–

6

2

2 2

2

2 2

1 2

2
1 2

1 2

2
1 2 D a a�

�

�
�

4 1 2

(11)

�
� �

� � �

�

�
�
�

�

�
�
�
�

�
�
�

ln
D a D a D

D a D a D a a

2
1 2

2
1 2 1 2

2 2

2 2 4
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where D is the distance of closest approach between the particle surfaces,

that is, D = H – a1 – a2. This expression is used here as a benchmark for

comparison of the van der Waals interaction energy predictions obtained

using the SEI and DA techniques. The corresponding expression for the

interaction energy obtained using DA is4

� �
U

A a a

a a D
VDW
DA H� �

�6

11 2

1 2

(12)

Figure 3 compares the ratios of the van der Waals interaction energy ob-

tained using SEI and DA with the prediction given by Eq. (11). It is evident

that both SEI (solid lines) and DA (dashed lines) overpredict the interaction

energy between two spherical particles, though the agreement between the

interaction energy predictions obtained using SEI and Eq. (11) is much bet-

ter over all separation distances. Furthermore, as the size ratio of the two

particles (a2 / a1) increases, the predictions based on SEI improve considera-
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Figure 3. Comparison of the unretarded van der Waals interaction energy between

two spheres of different radii obtained using SEI and DA. Variations of the ratio of

van der Waals interaction obtained using either of the approximate techniques to

the Hamaker result is shown with the scaled separation distance D/a1 for different

size ratios a2 / a1. A value of 1 for the interaction energy ratio indicates an exact

agreement between the approximate and the Hamaker results (indicated by the

horizontal dotted line). This exact agreement is achieved by SEI for the sphere – in-

finite flat plate geometry. The results shown in the figure are independent of the

particle radii.



bly, resulting in exact agreement with the Hamaker expression for the

sphere – flat plate geometry (a2 
�). For the sphere – flat plate geometry,

SEI and Hamaker's approach provide the same analytical expression for the

unretarded van der Waals interaction energy, indicating that SEI provides

an exact scaling of the interaction energy in this case.21

Although the results presented here are applicable to unretarded van

der Waals interaction energy, application of SEI should not be limited to

this case alone. The technique can be applied to predict the retarded van

der Waals interaction energy between two particles from the corresponding

interaction energy per unit area between two infinite flat surfaces. Finally,

although the results presented here were derived for the spherical geome-

try, the technique may be used for arbitrary particle shapes, and hence, may

be a more facile substitute of the Hamaker integration approach for evalua-

tion of the VDW interaction energy between colloidal particles of various

shapes. An estimate of the accuracy of the technique for various particle

geometries can always be obtained by evaluating the interaction energy be-

tween a particle and a flat plate, in which case it has been shown that the

technique predicts the unretarded VDW interaction energy exactly.21

ELECTROSTATIC DOUBLE LAYER INTERACTION

BETWEEN SPHERES

In this section, we use SEI to determine the electrostatic double layer

(EDL) interaction energy between a sphere and a flat plate at constant sur-

face potential, and compare the results with the corresponding interaction

energies predicted by Derjaguin’s technique and the linear superposition

approximation (LSA). We commence this section with a summary of the

various approaches used to determine the interaction energy from the solu-

tion of the Poisson-Boltzmann (PB) equation and their limitations. This is

followed by a presentation of the explicit forms of the flat-plate interaction

energy per unit area used in SEI to determine the interaction energy be-

tween two spheres. Finally, the interaction energies predicted by SEI, DA,

and the LSA techniques are compared.

Limitations of Available Approaches

The interaction energy and the force between overlapping spherical dou-

ble layers are generally derived from the corresponding expressions for flat

plates using Derjaguin’s approximation.3,4,25 A second approach for deter-

mining the interaction energy between spherical particles is based on the

linear superposition principle.26 Both these approaches for obtaining the in-
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teraction energy between two spherical particles are approximate as they

either neglect higher order curvature effects, or assume non-overlapping

double layers. While DA is likely to be accurate at short separation dis-

tances, the linear superposition results are considered more appropriate at

large separations or for thin double layers.18,26,27

More accurate techniques for evaluation of double layer interactions

have been developed based on variational, series expansion, and perturba-

tion methods.18,28–31 In addition, numerical results using finite element,

boundary element, and finite difference solutions of the PB equation have

been reported.27,32–35 A major deterrent toward usage of these detailed nu-

merical or series solutions is the considerable computational burden.

Several rigorous numerical and analytical results for the interaction en-

ergy between two infinite flat plates based on the solution of the PB equa-

tion are available.25,36 However, one must revert to Derjaguin’s approxima-

tion to obtain the interaction energy for other particle geometries.25 When

scaling the interaction energy for other particle shapes, the accuracy of the

flat plate interaction energy may be completely obscured by the approxima-

tions inherent in Derjaguin’s technique. Recently, some detailed numerical

solutions of the PB equation and the corresponding predictions of the double

layer force and interaction energy of spherical particles have been re-

ported.34,35 Following the behavior of the interaction energy and the force

predicted by these studies, it appears that for high electrolyte concentra-

tions, that is, when the double layers are thin, Derjaguin’s approximation is

reasonably accurate under constant potential conditions. However, at low

electrolyte concentrations, the agreement between DA and these numerical

results deteriorates substantially. Therefore, the interaction energy ob-

tained using DA should be applied cautiously keeping in mind the domains

of validity of such results.

EDL Interaction at Constant Surface Potential

In this (sub)section, predictions of the EDL interaction energy between

two spherical particles under constant surface potential based on SEI are

presented. A rigorous comparison of the SEI estimates for the interaction

energy derived here with some of the more detailed numerical or semi-

analytical results is beyond the scope of the present study. Hence, we re-

strict our comparisons with the most facile analytical expressions commonly

used to determine the EDL interactions.

Two expressions for flat-plate interaction energy at constant surface po-

tential are used in SEI. First, SEI was applied to the expression of Hogg

et al.,37 which is given by
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� �� �� �E h h hCP,LPB
r

1 2cosech( ) coth( ) ( )� � � �
� � �

� �
0

1

2

2

2

2
1 2y y y y (13)

Here, e0 is the permittivity in vacuum, er is the relative dielectric permit-

tivity of the solvent, k is the inverse Debye screening length, and y1 and y2

are the surface potentials of the two flat surfaces. This expression is valid

for small surface potentials (less than 25 mV) and symmetrical electro-

lytes. The sphere-sphere interaction energy was also obtained from the

linear superposition expression for the flat plate interaction energy per unit

area38

E
kT

e
hCP,LSA r 1 2� �

�
�

�

�
� �32 0

2

e e k k� �
�

exp( ) (14)

where � �� i i� tanh /Y 4 , Yi = n e yi/kT, k is the Boltzmann constant, n is the

charge number, e is the electronic charge, and T is the absolute tempera-

ture.

To determine the interaction energy between two spheres, the surface

element integration is performed by substituting Eq. (13) or (14) in Eq. (9).

The sphere-flat plate interaction energies obtained using SEI are compared

with the Derjaguin approximation results. Application of DA to Eq. (13)

yields37
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while using Eq. (14) in DA yields4,38
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Furthermore, we also compare SEI with the linear superposition expression

of Bell et al.26 for the interaction energy between two spheres. This expres-

sion, which is known to be accurate for kD >> 1 and ka  10 is given by26
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The interaction energies obtained by the various techniques are com-

pared in Figures 4 to 7. All the figures were obtained using surface poten-
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tials of 25 mV on both the spheres, and by varying the electrolyte (1:1) con-

centration between 10–4 and 10–1 mol dm–3. The radius of one of the spheres

was fixed as 10 nm. Thus, for two similar spheres, the radii of both spheres

was taken to be 10 nm, while for dissimilar spheres, the particle size ratio

a2/a1 was varied by changing the radius of the larger sphere (a2) keeping

the radius of the smaller sphere (a1) fixed at 10 nm. In all the figures, varia-

tions of the electrostatic double layer interaction energy scaled with respect

to kT (corresponding to T = 298 K) are shown with the scaled separation dis-

tance kD for different values of the parameter ka. The parameter ka reflects

the combined influence of particle size and ionic strength of the electrolyte.

For a fixed particle radius, the parameter reflects the change in the electro-

lyte concentration. For instance, when considering a sphere of radius 10 nm,

the parameter ka has a value of about 10 for ionic strength of 10–1 mol dm–3,

while it has a value of about 0.3 at ionic strength of 10–4 mol dm–3.

Figure 4 compares the dimensionless interaction energy, UEDL/kT, ob-

tained using Eq. (13) in SEI and DA for two equal spheres of radius 10 nm.

There is a marked difference between the quantitative predictions of the in-

teraction energy using DA and SEI. While the two predictions are in confor-

mity at larger values of the parameter ka, the interaction energy predicted

DLVO INTERACTION BETWEEN COLLOIDAL PARTICLES 897

Figure 4. Comparison of the electrostatic double layer (EDL) interaction energy at

constant potential between two equal spheres of radii 10 nm obtained by applying

SEI and DA to Eq. (13). The variation of the predicted interaction energy with the

scaled separation distance kD and the parameter ka are shown. The dimensionless

surface potential Y (= ney/kT) on both the sphere and the flat plate is 1.



using SEI deviates significantly from DA predictions at lower values of ka.

It is worth noting that for fixed particle radii, when the interaction energy

is presented as a function of the scaled distance kD, DA appears to be insen-

sitive to variations in ka. In sharp contrast, the interaction energy predicted

by SEI decreases with decreasing ka, thus signifying an additional depend-

ence on electrolyte concentration.

The corresponding predictions of the interaction energy obtained using

Eq. (14) in SEI and DA are depicted in Figure 5. Once again, similar trends

are observed as in Figure 4. Since the underlying flat-plate interaction en-

ergy expression based on LSA (14) is accurate at large separation distances,

the corresponding SEI predictions depicted in Figure 5 should also be accu-

rate at large separations. The predictions based on DA, Eq. (16), however,

remain unaffected by variations of the parameter ka. Hence, the interaction

energies predicted by SEI at low electrolyte concentrations are substantially

lower compared to the predictions of DA.

Figure 6 depicts the interaction energy predictions obtained using Eq.

(13) in SEI, and from the well-known LSA expression of Bell et al., Eq. (17)

for two equal spheres. Unlike the DA result, Eq. (16), which remains un-

changed with variations of ka (see Figure 5), the expression of Bell et al. in-

898 S. BHATTACHARJEE ET AL.

Figure 5. Electrostatic double layer repulsion between two identical spheres of radii

10 nm obtained using Eq. (14) in SEI and DA. All the parameters used are same as

in Figure 4.



deed shows an additional dependence of the interaction energy on ka. It is

evident that the agreement between the SEI and the LSA predictions im-

proves at larger kD for all ka. Furthermore, the LSA predictions at large

separations become slightly lower than the corresponding SEI predictions,

thus confirming our earlier observation that SEI should slightly overpredict

the interaction energy because of the inherent assumption of pairwise inter-

action of surface elements. At small separation distances, LSA is known to

be inaccurate and overpredicts the interaction energy considerably for con-

stant potential surfaces.

Finally, Figure 7 provides a rough assessment of the extent of error in

SEI for electrostatic double layer interactions. Previously it was shown that

SEI provides very accurate results for electrostatic double layer interaction

between a sphere and an infinite flat plate under constant surface potential

condition.21 Utilizing this asymptotic limit as a benchmark, the interaction

energy between two spheres is determined for various size ratios a2 / a1. Fig-

ure 7 indeed demonstrates that as the size ratio is increased, the SEI pre-

dictions for two spheres tend towards the sphere-flat plate interaction en-

ergy. Furthermore, the interaction energy for a size ratio of 2 or larger is

remarkably close to the sphere-flat plate interaction energy. Thus, the SEI

predictions of the interaction energy become very accurate for such dissimi-

lar spheres.
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Figure 6. Comparison of the EDL interaction energy between two equal spheres of

radii 10 nm predicted by using Eq. (13) in SEI and the linear superposition approxi-

mation (LSA) Eq. (17). The dashed lines represent the LSA results. The curves were

obtained using a scaled surface potential of 1 on both particles.



CONCLUDING REMARKS

The surface element integration (SEI) technique can be used to deter-

mine the interaction energy between two particles much more accurately

than Derjaguin’s approximation. Performance of SEI improves for interac-

tion between two spherical particles of different size, and in the limit of

sphere-flat plate interaction, the technique becomes very accurate.

Calculation of the electrostatic double layer interaction for constant par-

ticle surface potential using SEI suggests that Derjaguin’s approximation

and the linear superposition approximation for spherical double layers re-

sult in gross overestimation of the interaction energy for small particles at

low electrolyte concentrations. It is postulated that the vast difference be-

tween SEI and existing methods is primarily due to surface curvature ef-

fects. Existing methods neglect higher order particle curvature effects,

which might result in a marked overestimation of electrostatic double layer

interactions for small particles and low ionic strength. The use of the sur-

face element integration technique results in lower repulsive DLVO interac-

tion energies for small particles, particularly at low ionic strengths.
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Figure 7. Electrostatic double layer interaction energy for dissimilar spheres predic-

ted using Eq. (13) in SEI. The predictions were obtained by fixing the radius of one

sphere as 10 nm, and by varying the radius of the second sphere to yield different

values of the ratio a2/a1. All the curves were obtained for an electrolyte concentra-

tion of 10–3 mol dm–3 (ka about 1) and scaled surface potentials of 1 on both the

particles. The symbols represent the interaction energy between a sphere and an in-

finite flat plate.



Another important and powerful feature of SEI is its applicability to

particles and surfaces of arbitrary geometry. In this study, SEI was used for

simple cases of interaction between two spherical particles or between a

spherical particle and a flat surface. SEI, however, can be readily applied to

obtain the orientation dependent interaction between non-spherical parti-

cles, such as ellipsoids, or the interaction between rough surfaces provided

the roughness of the surface can be modeled appropriately.

APPENDIX: NOMENCLATURE

a sphere radius

A projected area of a curved surface on the xy plane

AH Hamaker constant

D distance of closest approach between two surfaces

E interaction energy per unit area

e electronic charge

h distance between two surface elements

H distance between the origins of two half-spaces

k Boltzmann constant (1.38 ! 10–23 J K–1)

k unit normal vector directed towards the positive z axis of a
body fixed coordinate system

n unit outward normal vector to the surface

r radial coordinate in a cylindrical coordinate system

S actual curved surface of a particle

T absolute temperature (kelvins)

U interaction energy between two particles

x, y, z Cartesian coordinates

Greek Symbols

e0 dielectric permittivity in vacuum, 8.8542 ! 10–12 C2/J m (SI
units)

er relative dielectric permittivity of solvent (78.54 for water)

Y dimensionless surface potential (ney/kT)

k inverse Debye screening length

n charge number (valence of a electrolyte)

y surface potential

DLVO INTERACTION BETWEEN COLLOIDAL PARTICLES 901



Abbreviations

CP constant surface potential

DA Derjaguin’s Approximation

DLVO Derjaguin-Landau-Verwey-Overbeek

EDL electrostatic double layer

LSA linear superposition approximation

PB Poisson-Boltzmann

SEI surface element integration

VDW van der Waals

REFERENCES

1. B. V. Derjaguin and L. Landau, Acta Physicochim. (URSS) 14 (1941) 633–662.

2. E. J. W. Verwey and J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids,

Elsevier, Amsterdam, 1948.

3. W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cam-

bridge Univ. Press, Cambridge, 1989.

4. M. Elimelech, J. Gregory, X. Jia, and R. A. Williams, Particle Deposition and Ag-

gregation: Measurement, Modelling and Simulation, Butterworth-Heinemann,

Oxford, 1995.

5. E. Matijevi} and N. Kallay, Croat. Chem. Acta 56 (1983) 649–661.

6. J. E. Kolakowski and E. Matijevi}, J. Chem. Soc., Faraday Trans. I, 75 (1979)

65–78.

7. R. J. Kuo and E. Matijevi}, J. Chem. Soc., Faraday Trans. I, 75 (1979) 2014–2026.

8. H. Kihira and E. Matijevi}, Adv. Colloid Interface Sci. 42 (1992) 1–31.

9. J. N. Ryan and M. Elimelech, Colloids Surf. A, 107 (1996) 1–56.

10. J. N. Israelachvili, Intermolecular and Surface Forces, 2nd Ed., Academic Press,

London, 1992.

11. C. J. van Oss, Colloids Surf. A, 78 (1993) 1–49.

12. K. S. Schmitz, Langmuir 12 (1996) 3828–3843.

13. P. M. Chaikin, P. Pincus, S. Alexander, and D. Hone, J. Colloid Interface Sci. 89
(1982) 555–562.

14. M. Elimelech and C. R. O’Melia, Langmuir 6 (1990) 1153–1163.

15. J. Czarnecki, Adv. Colloid Interface Sci. 24 (1986) 283–319.

16. B. V. Derjaguin, Kolloid Z. 69 (1934) 155–164.

17. L. R. White, J. Colloid Interface Sci. 95 (1983) 286–288.

18. A. B. Glendinning and W. B. Russel, J. Colloid Interface Sci. 93 (1983) 95–104.

19. K. D. Papadopoulos and H. Y. Cheh, AIChE. J. 27 (1984) 7–14.

20. E. Barouch and E. Matijevi}, J. Chem. Soc., Faraday Trans. I, 81 (1985) 1797–

1817.

21. S. Bhattacharjee and M. Elimelech, J. Colloid Interface Sci. 193 (1997) 273–285.

22. S. Bhattacharjee and A. Sharma, Langmuir 12 (1996) 5498–5500.

23. S. Bhattacharjee and A. Sharma, J. Colloid Interface Sci. 187 (1997) 83–95.

24. H. C. Hamaker, Physica 4 (1937) 1058–1072.

902 S. BHATTACHARJEE ET AL.



25. D. McCormack, S. L. Carnie, and D. Y. C. Chan, J. Colloid Interface Sci. 169
(1995) 177–196.

26. G. M. Bell, S. Levine, and L. N. McCartney, J. Colloid Interface Sci. 33 (1970)

335–359.

27. P. Warszynski and Z. Adamczyk, J. Colloid Interface Sci. 187 (1997) 283–295.

28. L. R. White, J. Chem. Soc., Faraday Trans. II, 73 (1977) 377–396.

29. H. Ohshima, T. W. Healy, and L. R. White, J. Colloid Interface Sci. 89 (1982) 484–

493.

30. H. Ohshima and T. Kondo, J. Colloid Interface Sci. 126 (1988) 382–383.

31. S. L. Carnie, D. Y. C. Chan, and J. S. Gunning, Langmuir 10 (1994) 2993–3009.

32. B. K. C. Chan and D. Y. C. Chan, J. Colloid Interface Sci. 92 (1983) 281–283.

33. L. N. McCartney and S. Levine, J. Colloid Interface Sci. 30 (1969) 345–354.

34. S. L. Carnie, D. Y. C. Chan, and J. Stankovich, J. Colloid Interface Sci. 165 (1994)

116–128.

35. M. L. Grant and D. A. Saville, J. Colloid Interface Sci. 171 (1995) 35–45.

36. O. F. Devereux and P. L. DeBruyn, Interaction of Plane Parallel Double Layers,

MIT Press, Cambridge, 1963.

37. R. I. Hogg, T. W. Healy, and D. W. Fuerstenau, Trans. Faraday Soc. 62 (1966)

1638–1651.

38. J. Gregory, J. Colloid Interface Sci. 51 (1975) 44–51.

SA@ETAK

DLVO-interakcije izme|u koloidnih ~estica iznad
Derjaguinovih aproksimacija

Subir Bhattacharjee, Menachem Elimelech i Michal Borkovec

Novorazvijena tehnika integriranja povr{inskih elemenata primijenjena je za

ra~unanje van der Waalsovih i elektrostatskih interakcija u elektri~nom me|usloju

izme|u dvije koloidne ~estice. Razmatraju se interakcijske energije po jedinici po-

vr{ine za dvije beskona~ne ravne plohe. Taj pristup, primijenjen na dvije sfere, daje

znatno pouzdanije rezultate od uobi~ajene Derjaguinove aproksimacije. Prednost je

ove tehnike pred Derjaguinovom aproksimacijom u stro`em razmatranju zakrivlje-

nosti.
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