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Introduction

Modelling the central carbon metabolism, and 
particularly the glycolysis pathway in bacteria is one 
of the essential bioengineering / bioinformatics top-
ics as long as these models, completed by the –omics 
data, are considered as a ‘core’ part of any systematic 
and structured analysis of the cell metabolism with 
immediate practical applications (such as target me-
tabolite synthesis optimization, in silico reprogram-
ming of the cell metabolism and design of new 
micro-organisms, bioreactor / bioprocess optimiza
tion1–3). Such representations are able to simulate, in 
a consistent and accurate way and at a certain degree 
of detail, the kinetics of a large number of cell bio-
syntheses and genetic circuits controlling the cell ad-
aptation to environmental changes.

However, to cope with the astronomic com-
plexity of cellular processes, of low observability, 

involving O(103–104) number state variables (spe-
cies conc.), O(103) gene expression transcription 
factors TF, and O(104–105) reactions, versatile mod-
els of ‘building-blocks’ like modular constructions 
including individual and lumped species and reac-
tions have been developed over decades. These 
models are based on the observation that the gene 
network is sparsely interconnected (e.g. one gene 
interacts with maximum other 23–254,5), and the 
cellular syntheses regulatory network is a modular 
structure (hierarchically organised) with a certain 
repeatability of gene expression control.6 Such an 
approach allows reducing the model complexity by 
relating the cell response to stimuli in response to 
only a few metabolic reactions and regulatory loops 
instead of the response of thousands of regulatory 
circuits in gene expression over a complex metabol-
ic pathway.7,8 Thus, the model identification be-
comes a problem of simultaneous model structure 
and parameter identification.7,9,10 By using the con-
cepts of ‘reverse engineering’ and ‘integrative un-
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derstanding’,1,11 such a rule seeks reduction of the 
identification effort by disassembling the cell sys-
tem into parts (functional modules), which can be 
individually studied and characterized, and then, 
following an appropriate linking algorithm, the 
whole metabolic pathway and the afferent genetic 
regulatory circuit are recreated for reproducing the 
real system. Application of such advanced lumping 
techniques increases model estimability by reducing 
the number of considered reactions and species, by 
keeping the most influential terms related to a target 
synthesis.

The assumed model reduction cost is related to 
the loss of information on certain species and reac-
tions, a loss in model generality, prediction capabil-
ities, physical meaning of some rate constants, and 
alteration of some systemic properties (stability, 
multiplicity, sensitivity, regulatory characteristics). 
Such model reduction drawbacks are compensated 
by the model’s simplicity, computer tractability, 
easier rate constant identification from usually in-
complete structured data sets, interpretable repre-
sentation of the cell complexity (sometimes in an 
analytic computational way), and quicker in silico 
cell design possibilities.

For linear kinetic models there are standard 
procedures for exact or approximate model reduc-
tion based on the analysis of system invariants, stoi-
chiometric matrix properties, and the number of in-
dependent species and reactions leading to determine 
the link matrix between the extended and reduced 
models.12 However, for extended nonlinear kinetic 
models (such as the case of cell metabolic process-
es), there is no general reduction rule to be applied. 
For such situations, model quality tests, sensitivity 
analysis of model outputs vs. parameters and spe-
cies concentrations, principal component, and other 
algorithms to find the redundant part of the model 
should be applied.13–15

Due to the enormous complexity of metabolic 
processes, and differences between enzyme Mi-
chaelis-Menten rate constants determined from sep-
arate in-vitro experiments and those determined 
from in-vivo metabolic data, the extended model 
rate constants are either imported from other sepa-
rate modelling studies, or identified, or eventually 
eliminated based on available (usually incomplete) 
kinetic data sets.1,16 Recent advances in experimen-
tal techniques, such as the time-series micro-array 
data with a sampling frequency of seconds to min-
utes17,18 will create the possibility to continuously 
expand and improve such metabolic dynamic mod-
els.

In any alternative – reduced or extended, a 
‘core’ model of the central carbon metabolism, 
completed with extensions describing target metab-
olite syntheses, and involved genetic control cir-

cuits can achieve a satisfactory trade-off between 
model simplicity and predictive quality, being able 
to simulate the organism behaviour under specified 
conditions. Various applications are reported, such as 
optimization of synthesis of amino-acids (AA),19–22 
ethanol,23–24 succinate,25 lactate,26 or other metabo-
lites in mutant cells27,28. Deterministic simulation 
platforms allow in silico design of modified cells 
with desirable gene circuits and ‘motifs’ of practical 
applications in the biosynthesis industry, environ-
mental engineering, and medicine.

A large number of bacteria glycolysis models, 
of a reduced or extended form depending on the 
available information and utilization purpose, have 
been proposed over decades. Among them are those 
developed for E. coli glycolysis by:

–– Selkov29 (5 species, 5 reactions)
–– Termonia and Ross30,31 (TRM, 9 species, 7 

reactions, 19 parameters)
–– Hatzimanikatis & Wang 32 (6 species, 9 reac-

tions)
–– Bier et al.33 (7 species, 9 reactions, 15 pa-

rameters)
–– Buchholz et al.34 (3 species, 5 reactions, 24 

parameters)
–– Chassagnole et al.16 (ChassM, 48 reactions, 

18 species, 127 parameters)
–– Westermark & Lansner35 (pancreatic cells; 6 

species, 6 reactions)
–– Degenring et al.14 (10 species, 22 reactions, 

123 parameters)
–– Ceric & Kurtanjek36 (10 species, 24 reac-

tions)
–– Costa et al.15 (25 species, 30 reactions, 116 

parameters)
–– Usuda et al.21 (52 reactions, 23 gene expres-

sions, 30 species)
–– Kadir et al.28 (24 species, 30 reactions, more 

than 150 parameters).
A significant number of models have been 

translated in the SBML, PYSCES or other specific 
programming languages, being on-line available on 
public simulation platforms (e.g. JWS of Olivier & 
Snoep37; Laiterä38).

Extensions of such glycolysis / central metabo-
lism models can be performed accordingly to a par-
ticular interest in detailing a certain biosynthesis, by 
preserving the optimised regulatory properties of 
the ‘core’ model)6,39–43 under variable volume and 
isotonic constraints.7,9,10,43

However, when modelling the kinetics of a tar-
get metabolite synthesis, it is questionable at what 
degree of detail the central carbon metabolism must 
be represented, that is glycolysis, PPP, PTS-system, 
TCA cycle, AA-synthsis, nucleotide metabolism, 
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synthesis of lipid precursors, and others (see the 
complete list of central metabolism reactions of E. 
coli in Ecocyc, or KEGG data-bases16,44). Obvious-
ly, a detailed representation of the essential cell pro-
cesses better reflects the cell requirements, and the 
way of using the substrate from the environment 
together with the control of key syntheses. Howev-
er, a too detailed ‘core’ model might increase with 
orders of magnitude the number of rate constants 
necessary to be estimated concomitantly with those 
of the target metabolite pathways from a quite lim-
ited amount of experimental information. Besides, 
complicated models of the central metabolism do 
not necessarily add essential information of interest 
for the target process modification, but might un-
necessarily increase the experimental effort to iden-
tify the model parameters, and complicate further 
engineering computational steps for bioprocess 
characterization, design, optimization, and control.

One of the most valuable representations of the 
central carbon metabolism in E. coli is the Chassa-
gnole et al.16 model (ChassM, 48 reactions, 18 spe-
cies, 127 parameters, see reaction scheme of Fig. 
1-left) able to accurately reproduce the PTS-system, 
glycolysis, PPP, and storage material dynamics un-
der stationary or perturbed conditions, with a model 
average relative error of ca. 25 % (but up to 100 % 
for parts of some species recovering trajectories). 
Being quite complex, and with a wide range of time 
constants of reactions (from 0.29 ms to 85 s), some 
authors underlined the low significance of some 
model terms under common environmental condi-
tions.15 In spite of that, ChassM remains one of the 
most refereed models for E. coli cell central metab-
olism simulations, being implemented on the on-
line JWS platform.37

Currently, there is a collection of available re-
duced representations of glycolysis, including simu-
lations of the occurrence of glycolytic oscillations, 
which deserve to be used for developing simplified 
E. coli metabolism models. Such a model is that of 
Termonia and Ross30,31 (TRM; 9 species, 7 reac-
tions, 19 parameters, see reaction scheme of Fig. 
1-right) able to fairly simulate the cell glycolysis 
under steady state, oscillatory, or transient condi-
tions according to the defined glucose input flux 
and total A(MDT)P cell energy resources.

The aim of this paper is to extend a compara-
tive analysis of these two valuable models (ChassM 
and TRM) used for representing the glycolysis in 
Escherichia coli cells, by proposing a few comple-
tions of the reduced TRM (leading to mTRM model 
of 17 identifiable parameters; it is well known that 
reduced models lead to increased identifiability vs. 
data 56) to better fit the extended ChassM model 
predictions over a broader bioprocess operating do-

main than those experimentally investigated, under 
both stationary and dynamic conditions.

In such a manner, at the expense of an inherent 
reduction in model adequacy of ca. 10 %, the gain 
in simplicity offered by the mTRM reduced repre-
sentation, might be useful for developing simplified 
models of some metabolic pathways of E. coli, by 
preserving the essential features of the glycolysis 
process. The obtained reduced model flexibility is 
tested by reproducing / predicting stationary or os-
cillatory glycolysis conditions in the bioreactor.

Glycolysis simulation with the extended ChassM

The kinetic model proposed by Chassagnole et 
al.16 (ChassM) used to simulate the central carbon 
metabolism in E. coli is quite complex and includes 
48 reactions, 18 species, and 127 parameters (see 
reaction scheme of Fig. 1-left; rate expressions are 
not displayed here). The rate constants are estimat-
ed from dynamic data concerning the external glu-
cose (GLC), and eight intra-cellular metabolite con-
centrations (G6P, F6P, FDP, GAP, PEP, PYR, G1P, 
6PG, see notations in Fig. 1) recorded from experi-
ments using a continuous bioreactor after applying 
a “pulse”-like perturbation in the glucose feeding 
concentration. The nominal conditions of the biore-
actor from Table 1 have been adjusted to match the 
hydrodynamic residence time (FL/VL) with the cul-
ture dilution constant and the intracellular content 
dilution rate (D). In the bioreactor operation prac-
tice, the cell culture dilution rate (equal to the loga-
rithmic average cell growth rate) is ranged to equal 
the hydrodynamic residence time to avoid the bio-
mass washout.55 The model initial parameter guess 
is taken from literature information.

Due to ChassM’s high complexity, most of the 
enzymatic rate expressions are imported from liter-
ature, being sometimes simplified according to the 
acquired experimental information. Some reactions 
of the nonoxidative part of PPP (that is Ru5P, R5PI, 
TKa, TKb, TA, see Fig. 1) are assumed to reach 
near-equilibrium conditions, while the gene expres-
sion control is not explicitly included in the model. 
In addition, the mass balance describing the dynam-
ics of nucleotide [A(MDT)P] species (that is the 
driving force of the glycolytic pathway, and a mea-
sure of the total cellular energy dynamics), as well 
as the evolution of NADH/NAD+ and NADPH/
NADP+ co-factors are not included in ChassM, but 
recorded data are used instead during simulations 
thus limiting the model’s predictive power over an 
extended operating domain.

Even if the large number of ChassM rate con-
stants are estimated from using quite reduced exper-
imental information (that is the kinetic data set re-
corded for the feeding solution of [GLC]feed= 110.96 
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mmol L–1), the resulting model adequacy is quite 
good (ca. 25 % average relative error), even if some 
species trajectories (FDP, PYR) reported much larg-
er bias vs. experimental data (ca. 100 % relative er-
ror) over some parts of the transient regime. The 
PFK-ASE and PK-ASE are included in the rate 
constants, but their role as oscillation “nodes” for 
the coupled F6P ® FDP and PEP ® PYR reactions 
is not explicitly studied in the original paper. In 
principle, ChassM can describe the dynamic behav-
ior of metabolites in the metabolic networks includ-
ing the central metabolism pathway, as well as the 
intracellular metabolite oscillations observed exper-
imentally.45

A typical simulation of the E. coli cell response 
to an applied pulse in the glucose concentration in a 
steady-state culture, from the stationary level of 
[GLC]s = 0.055 mmol L–1 to [GLC] = 2 mmol L–1 at 
time t = 0 is plotted in Fig. 2 under nominal operat-
ing conditions of Table 1, with keeping [GLC]feed = 
110.96 mmol L–1. The perturbation is transmitted 
via the glycolytic, and PPP reaction chain, each spe-
cies displaying a concentration “peak” not exceed-
ing 4 mmol L–1 in the G6P and PYR cases, the sys-
tem eventually recovers homeostatic steady state. 
The ChassM prediction error of ca. 25 % (some-
times higher, i.e. 40–100 % for some species15) is 
acceptable being experimentally checked under 
both stationary and dynamic conditions. The stron-
gest part of the model refers to the valuable link 
between the PTS glucose import system and the 
control of the glycolytic pool concentrations of PEP 
and PYR.

In spite of the previously mentioned limita-
tions, ChassM has proved to be a worthy instrument 
in developing extended simulation platforms of 
complex metabolic pathways,19,46–47 aiming at im-
proving the synthesis rate of a desired metabolite by 
applying a multi-objective optimization ap-
proach.24,47

Termonia and Ross glycolysis model – 
some tests and a few completions

A valuable reduced model for glycolysis in 
E. coli has been proposed by Termonia and Ross,30,31 
trying to highlight the determinant role played by 
the ATP/ADP ratio and of the total adenine nucleo-
tide concentration [A(MDT)P] in driving stationary, 
oscillatory, or unstable evolution of the glycolytic 
species. The ‘core’ reaction scheme of Fig. 1 (right) 
and Table 2 (parameters of the last column), togeth-
er with the Michaelis-Menten (M-M) or allosteric 
rate expressions (assuming a cooperative substrate 
binding over n or m active protomers of the 
PFK-ASE and PK-ASE) attempt to reproduce not 
only the activity of the main enzymes (HK-ASE, 
PFK-ASE, PK-ASE, ATP-ASE) but also the role of 
PFK-ASE and PK-ASE as oscillation “nodes”48 by 
inducing two adverse (negative and positive) back-
ward and forward regulatory loops on the same two 
interconnected reactions: I) a backward activation 
with AMP (in equilibrium with ADP) concomitantly 
with a forward inhibition with ATP of the F6P ® 
FDP and, ii) a backward inhibition with ATP con-
comitantly with a FDP forward activation of the 
PEP ® PYR reaction. The modelled oscillatory node 
of PFK reproduces the activation role played by 
ADP but also by FDP, as proved in the literature.35

The TRM model is based on the following sim-
plificatory hypotheses30,31 (Fig. 1-right):

i) The G6P-to-F6P reaction quickly reaches 
its  equilibrium, being considered together with 
GLC-to-G6P reaction in the model;

ii) All intermediate steps of FDP-to-PEP path-
way (see Fig. 1 – left) have been lumped in only 
one reversible reaction;

iii) ATP + AMP « 2 ADP is considered a very 
fast equilibrium reaction;

iv) The total adenine nucleotide [A(MDT)P] is 
nearly constant being related to cell resources, and 
displaying a slow change vs. environmental condi-
tions;

v) The PTS reaction of GLC-to-F6P (V1 in Fig. 
1 and Table 2) is considered constant, the TRM 
model being thus decoupled from the bioreactor dy-
namic model. Consequently, concentrations of GLC 
and products derived from PYR are considered at a 
constant level.

In spite of such strong hypotheses, most of the 
TRM parameters fitted by Termonia and Ross30,31 
match the values recommended in literature for var-
ious organisms (not necessarily E. coli bacteria, but 
also cells from yeast, brain, muscle, liver, erythro-
cytes, S. carlsbergensis).

The main value of the TRM model derives 
from its remarkable property to accurately repro-
duce the oscillatory behaviour of the glycolytic 

Ta b l e  1 	–	Parameters of the E. coli cell culture used in sim-
ulations (imported values from Chassagnole et al.16 
except for [GLC]feed)

Parameter Value

Biomass concentration 
( xC ) 8.7 gDW L–1 culture volume

Cell content dilution 
rate (D) 1.667·10–3 min–1

Culture dilution rate 
(FL/VL)

1.667·10–3 min–1 

(adjusted to be identical to D)

Glucose feeding 
solution concentration 
[GLC]feed

50 mmol L–1 

110.96 mmol L–1 (nominal, ChasssM) 
21.651, 110.96, 200, mmol L–1 

(this paper to in silico generated data).

Biomass density ( x ) 565.5 gDW (L cytosol)–1 
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pathway under certain environmental conditions 
(constant V1 glucose input flux via PTS system), 
and certain values of the model parameters reflect-
ing the mutual kinetic coupling of the two men-
tioned nonlinear processes, leading to oscillations 
propagating over the whole cell metabolism. For 

instance, by using the original rate constants of Ter-
monia and Ross30,31 from Table 2 (last column), os-
cillatory behaviour of a small period (0.2–0.5 min-
utes) involving the main glycolytic species and 
fluxes (Fig. 3) occurs when enough A(MDT)P ex-
ists and for small ATP/ADP ratios, the adenine nu-

F i g .  1 	–	 Extended and simplified reaction schemes of glycolysis in E. coli used by: (left scheme) ChassM extended model, including 
PPP (adapted from Chassagnole et al.16); (right scheme) mTRM reduced model, including adenosin co-metabolites ATP, ADP, AMP 
synthesis. Squares include notations of enzymatic reactions in the mTRM (right). Species in parenthesis are not explicitly included in 
the mTRM model. Italic letters denote the enzymes.

F i g .  2 	–	 Typical species concentration dynamics in E. coli generated in silico using the ChassM model (––––) after an impulse-per-
turbation in the environmental glucose level ([GLCex] = 2 mmol L–1 at time = 0) under nominal bioreactor conditions of 
Table 1 ([GLC]feed = 111 mmol L–1)
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Ta b l e  2 	–	Original (TRM) and modified glycolysis kinetic model (mTRM) of Termonia and Ross,30 its re-estimated parameters over 
a wide range of glucose concentrations in the feeding solution ([GLC]feed = 50–200 mmol L–1), and comparison with lit-
erature data

LITERATURE INFORMATION AND METHODS

– ChassM16 (Note a) use the same PTSr  rate expression with the following parameters:

[ max
PTSr , , 1PTS aK , , 2PTS aK , , 3PTS aK , , 6PTS G PK , , 6PTS G Pn ] = [7829.78, 3082.3, 0.01, 245.3, 2.15, 3.66], (mmol L–1, s)

– Ceric & Kurtanjek36 (Note a) rate expression:

max

,PTS ,PTS 6 ,PTS 6( )( )( )

ext
PTS GLC PEP

PTS nPTS
mGLC GLC mPEP PEP iG P G P

r c c
r

K c K c K c


  

[ max
PTSr , ,PTSmGLCK , ,PTSmPEPK , 6 ,PTSiG PK ,nPTS] = [1.336, 1.0943, 0.0067, 0.4309, 3.7678], (mmol L–1, s)

– Usuda et al.21 (Note a):PTS system of 5 successive reactions of complex Michaelis-Menten kinetics;

– Kadir et al.28 (Note a) use the same ChassM PTSr  expression:

[ max
PTSr , , 1PTS aK , , 2PTS aK , , 3PTS aK , , 6PTS G PK , , 6PTS G Pn ] = [25.739 mmol (gDW)–1 h–1, 1, 0.01, 1, 0.5, 4], (mmol L–1)

– Degenring et al.14 (Note a) rate expression:

PTSr = 1 3 42
, , 6( ) PTS PTS PTSnn n next PTS

f PTS GLC PEP b PTS G P PYRk c c k c c ;

[ ,f PTSk , ,b PTSk , 1PTSn , 2PTSn , 3PTSn , 4PTSn ] = [4.358, 0.814, 0.996, 1.053, 1.183, 0.141], (mmol L–1, s)

– Westermark & Lansner35 (Note a):
max

0.5

0.5

( / )
1 ( / )

GK

GK

hext GK
PTS GLC

PTS hext GK
GLC

r c S
r

c S



 , [ max
PTSr , 0.5

GKS , GKh ] = [10 μmol (gDW)–1 min–1, 8 mmol L–1, 1.7]

RESULTS

Kinetic model parameters
Reaction

GLC + PEP ® F6P + PYR

PYR + ATP ® PEP + ADP + H

GLC + ATP ® F6P + ADP +H

max

1
, 6

6
, 1 , 2 , 3

, 6

/

1ext
GLC

ext
x PTS GLC PEP PYR

PTS nPTS G Px ext G PPEP PEP
PTS a PTS a PTS a GLC

PYR PYR PTS G P

r c c c
V r

C cc c
K K K c c

c c K


  

  
        

Modification: 6 6G P F Pc kc , (Note b)

Proposed mTRM 
(units in mmol L–1, min)

Original TRM 
(organism)

max
PTSr  = 308.8587

, 1PTS aK  = 1.0260

, 2PTS aK  = 3740.091

, 3PTS aK  = 5911.072

, 6PTS G PK , , 6PTS G Pn  = absent

k  = 5.8

V1 = 2 mmol L–1 min–1

(adjustable; no rate constant)
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LITERATURE INFORMATION AND METHODS

– Chassagnole et al.16 PFKr  rate expression:

max
6

, , 6 , 6 ,
, ,

( (1 ))( )(1 )
PFK

PFK ATP F P

ADP PFK
ATP PFK ATP s F P PFK F P s n

PFK ADP c

r c c
c LAc K c K

K B D
   

, , , , ,
1 PEP ADP AMP

PFK PEP PFK ADP b PFK AMP b

c c c
A

K K K
    ; 

, , , ,
1 ADP AMP

PFK ADP a PFK AMP a

c c
B

K K
   ; 6

, 6 ,
1

( / )
F P

PFK F P s

c
D

K A B
 

[ max
PFKr , , 6 ,PFK F P sK , , ,PFK ATP sK , ,PFK PEPK , , ,PFK ADP aK , , ,PFK ADP bK , , ,PFK ADP cK , , ,PFK AMP aK , , ,PFK AMP bK , PFKL , PFKn } =

= [1840.58, 0.325, 0.123, 3.26, 128, 3.89, 4.14, 19.1, 3.2, 5629067, 11.1], (mmol L–1, s)

– Kadir et al.28 use a similar rate expression:

[ max
PFKr , , 6 ,PFK F P sK , ,PFK PEPK , , , ,PFK ADP AMP aK , , , ,PFK ADP AMP bK , PFKL , PFKn ] =

= [24.613 mmol (gDW )–1 h–1, 0.14, 3.26, 1.1118, 98.88, 1000, 4], (mmol L–1)

– Degenring et al.14 indicate very complex PFKr  rate expressions; Usuda et al. (2010) do not supply parameter values.

– Westermark & Lansner35 (Note a):

*

max
6 0.5

0.5 0.5 0.5
6 0.5

0.5 0.5 0.5

( / )
1 (( / )( / ))

( / )
1 ( )(( / )( / ))

PFK

FBP
PFK

PFK FBP

hPFK
PFK F P

PFK hFBA FBA
hPFK FBP

F P h hFBA FBA
FBP

r c S
r

S X c S
c S

S X c S





 b

[ max
PFKr , 0.5

PFKS , 0.5
FBAS , 0.5X , PFKh , FBPh , acth , b ] = [100 μmol (gDW)–1 min–1, 4 mmol L–1, 5 μmol L–1, 10 μmol L–1, 2.5, 2.5, 1, 5],

where:
* 0.5 0.5 0.5

0.5 0.5 0.5

( / )( / )
( )

1 ( / )( / )

FBA FBA
FBP

PFK PFK PFK act FBA FBA
FBP

S X c S
h h h h

S X c S
  



RESULTS

Kinetic model parameters

Reaction

F6P + ATP ® FDP + ADP + H

1 2 6
2

2 2 6

( / ) m F P
PFK n nAMP

R ATP
m m F PATP

AMPT

V V c
V r

K c
K K c

cK

d

d d d

 
           

Proposed mTRM 
(units in mmol L–1, min)

Original TRM 
(organism)

d  = 1.0437 2 (Note c)

n  = 2 2 (muscle)

2mV  = 0.062028 (Note d) V1 / 0.16 (yeast)

2mK = 6.16423 0.04 (brain)

AMP
RK = 25 μmol L–1 25 μmol L–1 (E. coli)

ATP
TK = 60 μmol L–1 60 μmol L–1 (E. coli)
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LITERATURE INFORMATION AND METHODS

– Chassagnole et al.16 (ChassM) use six successive reversible reactions of complex Michaelis-Menten rate expression:

ALDOr  and TISr  for (FDP  GAP/DHAP), GAPDHr  for (GAP  PGP), PGKr  for (PGP  3PG),

PGluMur  for (3PG  2PG), ENOr  for (2PG  PEP).

– Ceric and Kurtanjek36 use three successive reversible reactions of complex Michaelis-Menten rate expression:

ALDOr  and TISr  for (FDP  GAP/DHAP), and GAPPEPr  for (GAP  PEP).

– Usuda et al.21 use six successive reversible reactions of complex Michaelis-Menten rate expression:

FBAr  and TPIr  for (FDP  GAP/DHAP), GAPr  for (GAP  PGP), PGKr  for (PGP  3PG),

PGMr  for (3PG  2PG), ENOr  for (2PG  PEP).

– Kadir et al.28 use two successive reversible reactions of complex Michaelis-Menten rate expression:

ALDOr  for (FDP  GAP/DHAP), and GAPDHr  for (GAP/DHAP  PEP).

– Degenring et al.14 use three successive irreversible reactions of complex Michaelis-Menten rate expression:

ALDOr  and TIMr  for (FDP  GAP/DHAP), and GAPr  for (GAP  PEP)

(the last resulting from multiplication of the four intermediate step rates):

ALDOr  = 
max ,1 ,2

3 3 ,

,1 ,1
,

( / )
n nALDO ALDO

ALDO FDP G P G P ALDO
n nALDO ALDO
m ALDO FDP

V c c K

K c
;

[ max
ALDOV , 3 ,G P ALDOK , ,m ALDOK , ,1ALDOn , ,2ALDOn ] = [0.897, 0.811, 4.991, 3.091, 2.671], (mmol L–1, s)

GAPr  = 
, , ,( )( )( )

GAP PEP
f GAP NAD ADP

GAP PEP GAP PEP GAP PEP
m GAP GAP m NAD NAD m ADP ADP

V c c c
K c K c K c



    
;

[ GAP PEP
fV  , ,

GAP PEP
m GAPK  , ,

GAP PEP
m NADK  , ,

GAP PEP
m ADPK  ] = [1.929, 3.672, 4.29, 6.783], (mmol L–1, s)

– Westermark and Lansner35 use two successive reversible reactions FBAr  and TPIr  for (FDP  GAP/DHAP), and one irreversible 
reaction GAPr  for (GAP  PEP) of complex Michaelis-Menten rate expression.

RESULTS

Kinetic model parameters
Reaction

FDP + 2 ADP (+ 2 NAD + 2 P)  2 PEP + 2 ATP (+ 2 NADH + 2 H + 2 H2O)

3 3 3FDP p PEPV k c k ca b 

Proposed mTRM 
(units in mmol L–1, min)

Original TRM 
(organism)

3k = 73.63477 5.8; 2.5

3 pk = 337.0371 0.01

a = 0.05 0.05

b = 3 3 (6)
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LITERATURE INFORMATION AND METHODS

– Chassagnole et al.16 PKr  rate expression:

1max
,

,
, ,

,

, ,

( / 1)

1
1 ( )

1

PK

PK

PK

n
PK PEP PEP PK PEP ADP

n
ATP

n
PK ATP PEP

PK PEP PK ADP PK ADP
AMP FDP PK PEP

PK AMP PK FDP

r c c K c

c
K c

K L c Kc c K
K K


  
                     

[ max
PKr , ,PK PEPK , ,PK ATPK , ,PK ADPK , ,PK AMPK , ,PK FDPK , PKL , PKn ] = [0.0611315, 0.31, 22.5, 0.26, 0.2, 0.19, 1000, 4], (mmol L–1, s)

– Kadir et al.28 use a similar rate expression with the same rate constants, excepting max
PKr  = 1.0849 mmol (gDW)–1 h–1.

– Degenring et al.14 indicate very complex PFKr  rate expressions; Usuda et al.21 do not supply parameter values.

,1 ,2
, , , 6 , 6 , 5 , 5( / )( / ) ( / )PK PKn n

f PK PEP ADP PYR ATP eq PK i G P PK G P i C P PK C P
PK

V c c c c K K c K c
r

A B





,

(C5P = lumped pool of RIB5P, RIBU5P, XYL5P),

, , , , , , , ,(1 / ) ( )PEP ADP PYR i PYR PK m ADP PK PEP i PEP PK m PEP PK ADPA c c c K K c K K c    

, , ,
, , , ,

, , , , , , , , ,
(1 ) 1 1f PK m PEP PK ADPPEP ADP

m ATP PK PYR ATP m PYR PK PYR
r PK eq i PEP PK i PEP PK m ADP PK i ADP PK

V K cc c
B K c c K c

V V K K K K

     
                    

[ ,f PKV , eq PK , , ,i PYR PKK , , ,m ADP PKK , , ,i pep pkK , , ,i PEP PKK , ,r PKV , , ,m ATP PKK , , ,m PYR PKK , , ,i ADP PKK , , 6 ,i G P PKK , , 5 ,i C P PKK , ,1PKn , ,2PKn ,] =

= [1.113, 0.801, 1.259, 1.01, 0.391, 1.094, 2.444, 0.799, 0.107, 2.232, 1.03, 1.949, 2.074, 0.089], (mmol L–1, s)

RESULTS

Kinetic model parameters
Reaction

PEP + ADP + H ® PYR + ATP

1 4
4

4 4
,

( / )m PEP
PK m mFDP

R ATP
m m PEPATP

FDPT PK

V V c
V r

K c
K K c

cK

g

g g g

 
               

Proposed mTRM 
(units in mmol L–1, min)

Original TRM 
(organism)

g  = 1.33188 1 (S. carlsbergensis)

m  = 4 4 (S. carlsbergensis)

4mV  = 0.13336 (Note d) V1 / 0.02 (yeast)

4mK = 1.14644 0.6 (liver)

FDP
RK = 0.2 mmol L–1 0.2 (S. carlsbergensis)

,
ATP
T PKK  = 9.3 mmol L–1 9.3 (S. carlsbergensis)
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LITERATURE INFORMATION AND METHODS

– Chassagnole et al.16 use two parallel reactions for PYR consumption, 2Synthr  and PDHr , of Michaelis-Menten rate expression:

max
2

2
2,

Synth PYR
Synth

Synth PYR PYR

r c
r

K c



; 

max

,

PDH

PDH

n
PDH PYR

PDH n
PDH PYR PYR

r c
r

K c



;

[
max

2Synthr , Synth2,PYRK ] = [0.0736186, 1], (mmol L–1, s); [ max
PDHr , ,PDH PYRK , PDHn ] = [6.05953, 1159, 3.68], (mmol L–1, s)

– Kadir et al.28 use only one reaction for PYR consumption PDHr  (PYR ® ACCOA), of a complex Michaelis-Menten rate 
expression; Usuda et al.21 include three PYR consumption reactions (no parameter supplied).

– Degenring et al.14 use only one reaction for PYR consumption PDHr  (PYR ® ACCOA), of a complex Michaelis-Menten rate 
expression:

,

, , , , , ,

 
( )( )( ) PDH

f PDH PYR NAD
PDH n

m PYR PDH PYR m NAD PDH NAD i ACCOA PDH ACCOA

V c c
r

K c K c K c


  

[ ,f PDHV , , ,m PYR PDHK , , ,m NAD PDHK , , ,i ACCOA PDHK , PDHn ] = [0.996, 0.996, 0.996, 0.998, 1.696], (mmol L–1, s)

RESULTS

Kinetic model parameters
Reaction

PYR ® products (ACCOA, CIT, SUCC, LAC, ETOH, AC, …)

,
5

5
,

consum PYRn
PYR

consum PYR PYR

k c
V

K c




Proposed mTRM 
(units in mmol L–1, min)

Original TRM 
(organism)

5k = 693.3544 1 (adopted)

,consum PYRK  = 395.525 –

,consum PYRn = 2.68139 –

LITERATURE INFORMATION AND METHODS

– Chassagnole et al.16 do not include reactions that interconnect the adenine nucleotide compounds ATP, ADP, AMP (experimental 
data are used instead).

– The same approach for other glycolytic models, e.g. Ceric & Kurtanjek36, Usuda et al.21, Kadir et al.28, Westermark & Lansner35

RESULTS

Kinetic model parameters
Reaction

ATP ® ADP +H

6 6 ATPV k c

Proposed mTRM 
(units in mmol L–1, min)

Original TRM 
(organism)

6k = 4025.351 0.1 
(rat erythrocytes)
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cleotide playing one of the essential roles in gener-
ating self-sustainable oscillations.

Heyland et al.49 experimentally proved the lim-
ited resources of adenine nucleotides in a cell, even 
if internal control circuits are constantly changing 
ATP/ADP/AMP ratios, trying to compensate the 
metabolic burden by enhancing the production of 
ACCOA and acetate allowing NADH and ATP syn-
thesis via TCA cycle, concomitantly with the con-
version of NADPH excess in NADH (through oxi-

dative phosphorylation, not included in the TRM). 
Such a complex inter-dependence between energy 
resources and free-energy dissipation was consid-
ered by Termonia and Ross30,31 in a simple way, by 
including only two reactions (Table 2, last rows) by 
which ATP is converted to ADP, while ADP quickly 
reaches its equilibrium state vs. ATP and AMP, the 
sum of adenine nucleotide concentrations [A(MDT)
P] remaining all times constant (see the mass bal-
ances of Table 3). Experimental proof of such qua-

LITERATURE INFORMATION AND METHODS

Termonia and Ross30 indicate experimental evidence of a very fast reversible reaction catalysed by AKASE, the equilibrium being 
quickly reached.

RESULTS

Kinetic model parameters

Reaction

2 ADP  ATP + AMP

2
ATP AMP ADPc c Kc

Proposed mTRM 
(units in mmol L–1, min)

Original TRM 
(organism)

K  = 1 1

Footnotes:
(a) Separate rate expressions for the two reactions ( PTSr  and PGIr )(see Fig. 1 – left).
(b) The 6 6G P F Pc kc  proportionality tries to overcome the lack of the PGIr  rate expression in the mTRM.
(c) Constants d  and n  present the same value in the original TRM.30 In the mTRM, they display different values by similarity with 
the V4 expression.
(d) The stationary V1 flux in Chassagnole et al.16 simulated experiments is larger than that of the Termonia and Ross,30 which is 5.4157 
mmol L–1 min–1 (cyt) for [GLC]feed = 50 mmol L–1 (environment), 12.017 mmol L–1 min–1 (cyt) for [GLC]feed = 110.96 mmol L–1 
(environment), and 21.651 mmol L–1 min–1 (cyt) for [GLC]feed = 200 mmol L–1 (environment).

Ta b l e  3 	–	Bioreactor and glycolysis mass balance equations for the mTRM model

Species mass balance Auxiliary relationships

  1

ext
feed extGLC x

GLC GLC
x

dc C
D c c V

dt
  



i) AMP ADP ATP AMDTPc c c c    = constant; 30

ii) ADPc  results from solving the thermodynamic equilibrium 

   relationship 2
ATP AMP ADPc c Kc , that is:

        2 0ADP ADP AMDTP ATP
ATP

K
c c c c

c
   

iii) SUCCy   1/38 (from the GLC/ATP stoichiometric 
  coefficient54)

6
1 2 6 F P

F P
dc

V V D c
dt

  

2 3  FDP
FDP

dc
V V D c

dt
  

3 42  PEP
PEP

dc
V V D c

dt
  

4 5  PYR
PYR

dc
V V D c

dt
  

1 2 3 4 62  ATP
ATP

dc
V V V V V D c

dt
     

SUCC ATP
SUCC

dc dc
y

dt dt

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si-constancy of [A(MDT)P] in E. coli is offered by 
Chassagnole et al.16 dynamic data obtained after a 
pulse perturbation in the GLC substrate.

A few modifications of the TRM have been 
proposed in the present study, leading to the mTRM, 
in order to improve its adequacy vs. ChassM over a 
large bioreactor operating domain, as follows:

i) The constant inlet glucose flux V1 in Table 3 
mass balance was replaced by the ChassM extended 
M-M expression of Table 2 for glucose symport 
PTS to account for the PEP/PYR ratio and external 
GLC level of influence on the PTS.34

ii) As G6P is not explicitly included in the 
model, it was replaced by the 6 6g p f pc kc  propor-
tionality, with constant k to be identified. Prelimi-
nary observations pointed out the quasi-constancy 
of [G6P]/[F6P] ratio over a wide range of external 
[GLCex) levels.

iii) In contrast to the original TRM, the con-
stant d in the V2 rate expression was considered at 
taking different values from n , similarly to differ-
ent values of g and m constants in V4 rate expression 
of TRM. The assumption is that the number (n  or 
m) of ligand molecules binding to one molecule of 
enzyme (PFK-ASE or PK-ASE) depends on the 
type of ligand, leading to /

namp atp
R TK K    or 

,/
mfdp atp

R T PKK K    terms in the allosteric control ex-
pression of V2 and V4 respectively (where KR and KT 
are the dissociation constants for ligands bound 
to the R and T conformations of PFK-ASE and PK-
ASE, respectively). However, due to the applied 
lumping procedure, the allosteric exponents (d and 
g) of substrate F6P or PEP might have different val-
ues than those of the Michaelis-Menten substrate 
constants 2mK  and 4mK .

iv) The first-order rate V5 of the PYR consump-
tion in the original TRM was replaced by the M-M 
expression of ChassM model to roughly account for 
the consumption rate inhibition with the PYR sub-
strate.

v) To simply illustrate how a metabolic end 
product synthesis can be attached to the glycolysis 
pathway, the succinate production is included in the 
mTRM of Table 3, in a very approximate form, by 
considering its synthesis concomitantly with the 
ATP in the TCA cycle, of an average stoichiometry 
of 1:38 SUCC-to-ATP ratio. A more sophisticated 
synthesis pathway module of TCA might be used 
instead, but it is beyond the aim of this study.

The mass balance equations of mTRM are pre-
sented in Table 3, and the rate expressions in Table 
2.

Parameter adjustment of the proposed 
mTRM model to fit the ChassM predictions

To ensure a satisfactory adequacy of the pro-
posed mTRM reduced model over a wide bioreactor 
operation domain, and due to lack of experimental 
data, the rate constants have been refitted to match 
the ChassM m-key species predictions generated by 
repeated system simulations under various feeding 
conditions. Three such bioreactor / cell culture 
dynamic regimes (N = 3) have been simulated 
with ChassM, that is [GLC]feed = 110.96 mmol L–1, 
[GLC]feed = 50, and [GLC]feed = 200 mmol L–1, re-
spectively, by keeping the nominal conditions as in 
Table 1. The dynamic data sets have been generated 
by applying each time an initial pulse pertubation of 
GLC level in the bioreactor from [GLC]ext = 0.055 
mmol L–1 to [GLC]ext = 2 mmol L–1, similarly to the 

F i g .  3 	–	 Predictions of the original TRM model (Table 2, last column) concerning species concentrations and metabolic fluxes 
under stationary oscillations in E. coli, over a longer (left) or shorter (right) time-window for [AMDTP] = 42.5 mmol L–1, 
V1 = 2 mmol L–1 min–1, and D = 1.667·10–3 min–1
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experimental perturbation applied to the bioreactor 
operation employed by Chassagnole et al.16 during 
their estimation step.

The mTRM model parameters (vector k) have 
been estimated by minimizing the differences be-
tween the mTRM and ChassM predictions in terms 
of species stationary concentrations, but also in tra-
jectory amplitudes during recovery of steady state 
after an impulse perturbation of the glucose level in 
the bioreactor. The two fitting criteria are joined in 
a multi-objective estimation rule by applying the 
weighting function method with scaled objectives.50 
The solution results from minimization of a com-
posite objective function F that includes the resi-
dues between mTRM and ChassM model predic-
tions over the three generated data sets, in terms of 
relative standard deviations of species stationary 
concentrations, and of the average relative deviation 
in species recovering amplitudes,13 that is in scaled 
form:

	 k̂  = arg Min F = ( ys  + w× ampls ),

ys  =     
2

, , ,
1 1

/ /
N m

mTRM ChassM ChassM
uj uj uj

u j

c c c Nm¥ ¥ ¥
 

 ,

	 j = GLCex, F6P, FDP, PEP, PYR




1 1

 Max( ( )) Max( ( ) /

/Max( ( ) / ( )

N m
mTRM ChassM

ampl uj uj
u j

ChassM
uj

s c t c t

c t Nm

 

 
,

	 s.t. k̂  > 0; [AMDTP]mTRM = [AMDTP]ChassM =
	 = constant (imposed),	 (1)

where: AMDTP = adenosin-(mono)(tri)phosphate; 
N = number of ChassM generating “experimental” 
data sets (N = 3); m = number of “observed” mTRM 
variables (m = 5 here); ‘^’ = estimated values, ‘¥’ = 
stationary value; w = weights in the joint objective 
function. The adopted weight w = 0.01 tries to real-
ize the match of the two models (extended ChassM 
and reduced mTRM) rather in terms of stationary 
concentrations of key-species than those in the re-
covering trajectories of species steady states. The 
weighting factors in objective function (1) chosen 
to reflect that glycolysis species stationary levels 
are very important for the other metabolic syntheses 
deriving from them.

The adaptive random optimization algorithm 
MMA of Maria51 implemented in MATLABTM, was 
used as an effective solver. The multimodal search 
was started from the original TRM parameters and 
those indicated by ChassM, by searching over rea-

sonable parametric ranges of 1–2 orders of magni-
tude higher/lower than the initial guess (except for 
k3p which varied over a larger domain).

Estimation was applied to only 17 parameters 
of mTRM (from the total of 26), that is vector 
k = [ max

PTSr , , 1PTS aK , , 2PTS aK , , 3PTS aK , k , d , 2mV , 
2mK , 3k , 3 pk , g , 4mV , , 5k , ,consum pyrK , 

,consum pyrn , 6k ], the others being adopted from the 
values recommended by Termonia and Ross30,31 as 
discussed below. The estimate is presented in Table 
2. Comparative mTRM vs. ChassM predictions of 
the stationary conditions at large experimental re-
covery times after the GLC-pulse-perturbation (i.e. 
more than 20 minutes) are presented in Fig. 4. It 
should be mentioned that, for these simulated biore-
actor conditions and cell culture characteristics, 
there is no oscillatory glycolytic process.

By analysing the estimated rate constants of the 
mTRM comparatively to the literature results (Table 
2), several aspects can be underlined.

Reaction V1. In the PTS rate expression, the 
G6P inhibition term from denominator can be ne-
glected and , 6PTS g pK  parameter can be missed. A 
comparison between mTRM, ChassM and Kadir et 
al.28 constants in the V1 denominator (GLC import 
noncompetitive inhibition by PEP, PYR, and exter-
nal GLC) reveals very different values due to the 
influence of the whole model structure. Comparison 
with other PTS rate expressions from literature (Ta-
ble 2) is not easy even if they include similar types 
of inhibition (with less or more terms). A exception 
is the power-law rate expression of Degenring et 
al.14 which advanced a reversible PTS reaction due 
to the strong inhibition with PYR and G6P. The ad-
opted constant V1 for GLC import flux in the basic 
TRM model appears to be a too strong approxima-
tion by missing the various inhibitory effects on 
PTS, as proved by the very different predicted V1 
values in the three sets of simulated experiments 
with ChassM (see footnote d of Table 2).

Reactions V2 and V4. The F6P-to-FDP and 
PEP-to-PYR reactions can be analyzed together by 
presenting the same allosteric form of the rate ex-
pression, both reactions playing a central role in 
generating glycolytic oscillations due to the coupled 
positive and negative regulatory feedback loops act-
ing on the activity of the two enzymes PFK-ASE 
and PK-ASE (i.e. oscillatory ‘nodes’). The number 
(n or m) of ligand molecules bound to the enzymes 
(PFK-ASE or PK-ASE), and the KR and KT dissoci-
ation constants in the control of V2 and V4 have been 
adopted at the TRM values (see discussion of Ter-
monia and Ross;30,31 also m = nPK = 4 of ChassM). 
The estimated exponent d = 1.04 in V2 is half that of 
TRM but similar to that of ChassM, while g = 1.33 
in V4 is very close to that of TRM. The other rate 
constants ( 2mV , 2mK , 4mV , 4mK ) present estimated 
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F i g .  4  – Species concentration dynamics predicted by the modified mTRM model (––– ,----) in E. coli after a pulse-perturbation in 
the environmental glucose level ([GLCex] = 2 mmol L–1 at time = 0). The in silico generated dynamic trajectories (·······) and sta-
tionary concentrations (*, , ,  symbols) are generated in silico by using the Chassagnole et al.16 model (ChassM) under the 
nominal bioreactor operation of Table 1 ([AMDTP] = 5.82 mmol L–1, D = 1.667·10–3 min–1), for three different feeding conditions: 
[GLC]feed = 50 mmol L–1 (a), [GLC]feed = 110.96 mmol L–1 (b), [GLC]feed = 200 mmol L–1 (c). The first two columns from the left in-
clude plots in a longer time-window (50 min), while the two right columns include plots in a shorter time-window (15 min).
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values comparable to those of TRM. A comparison 
of these estimated constants with those of other 
models listed in Table 2 is difficult due to differenc-
es in the rate expressions, even though they present 
the same order of magnitude.

Reaction V3. The FDP-to-PEP transformation is 
considered as a reversible reaction by most of the 
reported models (Table 2), taken as a lump in TRM 
or mTRM, or as a succession of 2-to-6 reversible 
steps. The considered power-law kinetics in mTRM 
preserves the same values for the reaction orders as 
in the original TRM, while the estimated ( 3k , 3 pk ) 
constants present larger values due to the much 
higher GLC input fluxes into the cell in the simulat-
ed Chassagnole et al.16 experiments than those con-
sidered by TRM.

Reaction V5. The PYR consumption in the cell 
follows a significant number of pathways (e.g. see 
the classical Edwards & Palsson model discussed 
by Maria et al.25). Such a PYR consumption term is 
considered in lumped form in the basic TRM and 
mTRM, while ChassM considers only two parallel 
consumption reactions ( 2Synthr  and PDHr  in Table 2). 
However, to account for PYR inhibition control, the 
rate expression in the mTRM was adopted from an 
M-M type similar to ChassM, the estimated rate 
constants indicating a high-order ( ,consum PYRn  = 2.68) 
PYR consumption comparable to those leading to 
ACCOA synthesis ( PDHn  = 3.68 in Table 2). Other 
literature expressions of complex M-M type assume 
a non-competitive inhibition with PYR and NAD+ 
substrates, and ACCOA product.

Reaction V6 and nucleotides interconversion. 
Most of the kinetic models from literature (such as 
ChassM and others, see Table 2) do not explicitly 
account for the interconversion and equilibrium re-
actions involving ATP, ADP, and AMP, but instead 
consider experimental data or constant levels. How-
ever, the nucleotide species are the driving force of 
the glycolytic pathway, and a measure of the total 
cellular energy dynamics, which plays an essential 
role in the glycolysis regulation and oscillation oc-
currence as extensively studied by Termonia and 
Ross30,31. This is why the same ATP/ADP/ATP reac-
tion system was adopted in the mTRM, the estimat-
ed 6k  constant being much higher than that of TRM 
due to the high glycolytic fluxes in the ChassM 
simulated experiments. However, the equilibrium 
constant of ADP to ATP and AMP interconversion 
was kept at the same value ( K  = 1).

As revealed by the comparative plots of species 
dynamic trajectories for all three simulated experi-
ments (Fig. 4), the species steady-state concentra-
tions predicted by mTRM and ChassM fairly match. 
A detailed comparison of bias between the two 
model predictions given in Table 4 reveals an aver-
age relative error of 38 %, which means a plus of 

ca. 8–13 % to the 25–30 % deviation of ChassM vs. 
experimental data (reported only for one data set by 
Chassagnole et al.16 Such a satisfactory result is 
quite remarkable if considered together with the 
large reduction in model parameterization from 127 
difficult to identify parameters of ChassM to only 
17 easily identifiable parameters of the reduced 
mTRM (i.e. ca. 7–8-fold reduction in parameter 
vector size). At the same time, the mTRM fit real-
ized over a wide experimental domain of [GLC]feed 
= 50 – 200 mmol L–1 increases the model value. 
The bias between the two models is however 
non-uniformly distributed among species: GLCex 
and PYR report negligible deviations (below 5 %), 
F6P and FDP deviations are in the range of ChassM 
model error of 25–30 %, while only PEP species 
concentrations reports a larger relative difference of 
ca. 60 % between the two models. Such a result can 
be explained by the central role played by PEP in 
controlling the glycolytic fluxes, its concentration 
level trying to compensate the effect of lumping of 
species and reactions in the reduced model. Surpris-
ingly, the mTRM reports lower maximum devia-
tions (of ca. 60 %) comparatively to ChassM maxi-
mum deviations vs. experimental data for some 
species (of ca. 100 %). This relatively low adequacy 
of the reduced model might be caused by the small-
er number of parameters used to reproduce the pro-
cess high complexity using the same experimental 
data. This model adequacy can be improved using 
different rate expressions and adding new model 
terms.56

Dynamic simulations with the identified mTRM 
given in Fig. 4 reveal moderate species transient 
amplitudes (smaller than 4 mmol L–1) after an initial 
impulse in the external glucose, valid for all three 
simulated feeding conditions. Such results fairly 
match with ChassM simulations (Fig. 4, dashed 
lines in the right column of plots), even though the 
recovering trajectories for some species are differ-
ent in shape (PEP, FDP) due to the inherent effect 
of reaction lumping. Also, the steady-state recover-
ing time of ca. 10 minutes is practically the same 
for both mTRM and ChassM models. The bias in 
species recovering amplitudes is small (below 
20 %) for all species except FDP (68 %).

Finally, the mTRM gain in simplicity and ver-
satility is obtained at the expense of a loss of infor-
mation about some glycolytic species, and of ob-
taining max. 60–70 % biased predictions for one or 
two species under stationary or dynamic operating 
conditions. However, the obtained mTRM adequa-
cy is very satisfactory (below ChassM extended 
model error) for all other species, the mTRM model 
passing the adequacy c2-test (i.e. a model variance 
ratio smaller than the minimum of 3.8 for a 95 % 
confidence level13).
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Reduced mTRM model relevance 
and glycolytic oscillation occurrence

The results obtained with the proposed reduced 
mTRM must be analysed in more detail to under-
stand the model advantages and limitations, as long 
as such a reduced, easily identifiable structure might 
be part of extended metabolic models.

i) Certainly, the considerably reduced identifi-
cation effort of mTRM model parameters is one of 
its strongest characteristics as long as extended sim-
ulation platforms already include large parameter-
ization. With the expense of a plus of 8–13 % in 
model deviations vs. ChassM, and a larger devia-
tion in the recovering amplitudes and steady-state 
levels for 1–2 species, the considerable reduction in 
the parameter number to only 17, together with a 
validity over a wide bioreactor operating domain, 
recommend the mTRM for quick analyses of the 
central carbon metabolism main fluxes.

ii) Being of simple structure, the mTRM is eas-
ily adaptable (less computation intensive) to cor-
relate various data sets from different cell cultures, 
easily extensible and connectable to other metabolic 
pathways. Such reduced representations do not re-
place the large capabilities of the extended metabol-
ic models, but only replace them in quick analyses 
of parts of cell metabolism, such as substrate utili-
zation, oscillation occurrence, or structured inter-
pretation of metabolic changes in modified cells. 
Being part of modular constructions, reduced glyco-
lytic models deserve various objectives, e.g. analy-
sis of genetic regulatory circuits controlling synthe-
sis of target metabolites, flux distribution and 
in  silico reprogramming of some metabolic path-
ways, whole cell model studies (e.g. amino acid, 
succinic acid synthesis), etc.7,8,10,25,43,46

iii) The mTRM simplicity is also an advantage 
for easier characterization of the cell system (stabili-
ty, responsivity to stimuli, species connectivity, regu-
latory efficiency) in terms of Metabolic Control 
Analysis (MCA) definitions (see the MCA indices on 
the JWS platform of Olivier & Snoep37, Laiterä38, 
Heinrich & Schuster52 not detailed here).57,58,43,25,46

iv) Being less parameterized, the required 
structured and unstructured information from exper-
iments and –omics data banks by the mTRM identi-
fication step is considerably smaller than that neces-
sary for extended models. However, such an 
advantage is accompanied by inherent model draw-
backs, such as: loss in predictive power on certain 
species and reaction steps; loss in system flexibility 
given by a reduced number of intermediates and 
species interactions; lack of physical meaning for 
some parameters; possible alteration of some sys-
temic properties in terms of recovering trajectory 
and amplitudes, stability strength, system sensitivi-
ty, and regulatory characteristics. As proved by our 
tests, the bias introduced over the dynamic and sta-
tionary simulations of the checked bioreactor case 
are acceptable.

v) To test the capability of mTRM model to re-
produce regulatory characteristics and self-sustain-
able stationary oscillations in the glycolytic path-
way, a modified cell system was analysed. As 
extensively discussed in the literature, stationary 
oscillations occurrence depends on the characte
ristics of the concomitant positive and negative 
regulatory loops applied to the oscillation ‘node’ 
(e.g. enzyme activity characteristics reflected by 
some rate constant values), being also influenced 
by  the system fluxes (i.e. bioreactor operating 
conditions).48 As PFK-ASE and PK-ASE act as 
oscillation “nodes” for the interconnected reactions

Ta b l e  4 	–	Differences between mTRM vs. ChassM model predictions, compared to ChassM model relative error vs. experimental 
data.16 Notation: QSS = quasi-steady-state

Species

Relative deviation (%) for QSS concentrations, 
mTRM ChassM
j j

ChassM
j

c c

c



Relative deviation (%) for QSS recovering 

amplitudes, 
Max( ) ( )

Max( )

mTRM ChassM
j j

ChassM
j

c Max c

c



GLCex 4.2 –

PYR 2.1 16.6

PEP 61.8 10.2

F6P 28.3 19.5

FDP 30.4 68.6

mTRM model relative error 
standard deviation (a) 

38.2 % 
(max. 62 %) 54.0

ChassM model average relative 
error (vs. experimental data of 
Chassagnole et al.16)

ca. 25 % 
(max. 100 %)

ca. 25 % 
(max. 100 %)

(a) in relative terms, over all data sets and species.



G. MARIA, In silico Derivation of a Reduced Kinetic Model for Stationary or…, Chem. Biochem. Eng. Q., 28 (4) 509–529 (2014)	 525

	 F6P ATP®  FDP 
  ( )3

 ( )3 2
    

k ADP NAD P

k ATP NADH H H Op

  

   

®



	 PEP ADP®  PYR,

the external conditions inducing certain F6P synthe-
sis flux as well as the ATP/ADP/AMP ratio and to-
tal [A(MDT)P] play an essential role in determining 
the oscillation occurrence in the species concentra-
tions. This is why Termonia and Ross30,31 varied 
[A(MDT)P] and k3 constant to induce cellular oscil-
lations with the basic TRM. For the proposed 
mTRM model, this ‘oscillation engine’ can be easi-
ly started-up for instance by operating at high cell 
fluxes (i.e. high input substrate levels in the biore-
actor, [GLC]feed = 200 mmol L–1) and for a slower 
regeneration of ADP (i.e. 6k  = 10 min–1 instead of 
identified 4025.351 min–1 from ChassM simulated 
experiments). The resulting oscillations are plotted 
in Fig. 5, being of ca. 1 minute period comparable 
with those of Schaefer et al.45 Oscillation occur-
rence here is related to the continuous system per-
turbation induced by the high GLC external level 
and assimilation flux requiring PFK-ASE activa-
tion, but also to the large amount of ADP for 
PEP  and PYR production. Consequently, the slow 
ADP recovery from ATP cannot be realized at the 
same consumption rate, thus resulting in a continu-
ous oscillatory trajectory for ADP, on the same 
shape with those of ATP. In fact, the oscillatory 
properties can be modulated by changing the pro-
cess conditions and some structural characteristics 
of the cell culture (reflected by the rate constants; 
see Heinrich & Schuster52 for an extensive discus-
sion on the mathematical conditions for oscillation 
occurrence).

Conclusions

The use of reduced vs. extended kinetic models 
when modelling complex metabolic pathways is a 
continuously challenging subject when developing 
structured cell simulators for various applications 
(flux analysis, target metabolite synthesis optimiza-
tion, in silico reprogramming of the cell metabolism 
and design of new micro-organisms, bioreactor / bi-
oprocess optimization). As exemplified by the 
E.  coli glycolysis case study, the reduced mTRM 
model, of simple and easily adaptable structure to 
various cell cultures, can be used in quick analyses 
of cell metabolism, such as substrate utilization, os-
cillation occurrence, or structured interpretation of 
metabolic changes in modified cells.

Reduced structured models, of satisfactory ade-
quacy (even if rough for 1–2 species) is preferable 
to other semi-empirical or lumped representations, 
being easily included in modular cell simulation 
platforms to be used for solving various objectives, 
such as analysis of cell adaptation to certain envi-
ronmental conditions, simulation of genetic regula-
tory circuits controlling the synthesis of some target 
metabolites, simulation of flux distribution and its 
dynamics under transient regimes, in silico repro-
gramming of some metabolic pathways, etc.

At the expense of ca. 8–13 % increase in the 
relative model error vs. extended simulation mod-
els, derivation of reduced kinetic structures to de-
scribe some parts of the core metabolism is worth 
the associated identification effort, due to the con-
siderable reduction in model parameterization (e.g. 
17 parameters in mTRM vs. 127 in ChassM), while 
preserving fair adequacy over a wide experimental 
domain. When cell characteristics are constantly 
changing, the reduced model can be quickly up-
graded by using experimental information, or pre-
dictions of the extended kinetic models such as 
ChassM. In such a manner, a multi-layer model can 
be obtained: in a first step an extended model is de-
veloped based on extensive experimental data; sub-
sequently, for quick cell process analyses, and opti-
mization purposes, a reduced model can be used 
instead, and fitted by using the extended model sim-
ulations for some ‘local’ conditions; finally, the cell 
process complexity appears to be described by a 
succession of local reduced models “enfolded” in 
the real process.43,53

Being quite versatile, the reduced mTRM mod-
el includes enough information to reproduce not 
only the cell energetic potential through the total 
A(MDT)P level, but also the role played by ATP/
ADP ratio as a glycolysis driving force. The model 
can also reproduce the oscillatory behaviour occur-
rence conditions, as well as situations when homeo-
static conditions are not fulfilled.

F i g .  5  – Modified mTRM model (Table 2) predictions of gly-
colytic stationary oscillations occurrence in E. coli for the bio-
reactor operating conditions of Table 1 ([AMDTP] = 5.82 
mmol L–1, D = 1.667·10–3 min–1), for high level feeding condi-
tions of [GLC]feed = 200 mmol L–1 and slower ATP ® ADP +H 
reaction rate of 6k = 10 min–1
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The glycolysis core model can be easily ex-
tended by including any complex synthesis and reg-
ulatory pathway deriving from the main carbon up-
take stream (e.g. the SUCC production here), 
without necessarily complicating the ‘core’ model 
with too many species and parameters of less im-
portance for the target metabolite production.

Generally, the reduced model quality is strong-
ly dependent on the lumping degree, the key-spe-
cies selection and ability to achieve the suitable 
trade-off between model simplicity, its predictive 
power and physical meaning of terms.
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N o m e n c l a t u r e

jc 	 –	species j concentration

xC 	 –	biomass concentration
D 	 –	cell content dilution rate (identical to the adjust-

able culture dilution rate, /L LF V )

LF 	 –	 liquid feed flow rate in the bioreactor

jk , jK , 2mV , 4mV , max
jr 	 –	 rate and equilibrium con-

stants
m	 –	number of observed variables, or rate constant
n	 –	reaction order
N	 –	number of experimental data sets

jr 	 –	species j reaction rate

ys 	 –	standard deviation (in relative terms)
t 	 –	 time

jV 	 –	metabolic fluxes

LV 	 –	 liquid volume in the bioreactor

succy 	–	stoichiometric coefficient
w 	 –	weights in the joint objective function

G r e e k s

a, b, g, d	–	reaction orders
c	 –	c – statistical distribution
F 	 –	composite objective function

x 	 –	biomass density

S u p e r s c r i p t s

^	 –	estimated value

S u b s c r i p t s

¥	 –	stationary value

A b b r e v i a t i o n s

13DPG, PGP	–	1,3-diphosphoglycerate
2PG	 –	2-phosphoglycerate
3PG	 –	3-phosphoglycerate
6PG	 –	6-phosphogluconate
AA	 –	amino-acids
AC	 –	acetate
ACCOA	 –	acetyl-coenzyme A
ACT	–	Hill coefficient in the limiting case of excess FBP
ADP	–	adenosin-diphosphate
AK-ASE	–	adenylate kinase
ALDO		 –	aldolase
AMDTP	 –	adenosin-(mono)(tri)phosphate
AMP	–	adenosin-monophosphate
ATP	 –	adenosin-triphosphate
ATP-ASE	 –	ATP monophosphatase
ChassM	 –	Chassagnole et al. (2002) model
CHO	–	chorismate
CIT	 –	citrate
DAHPS	 –	DAHP synthases
DHAP	 –	dihydroxyacetonephosphate
DIPIM	–	diaminopimelate
DW	 –	dry mass
E4P	 –	erythrose-4-phosphate
ENO	–	enolase
ETOH	 –	ethanol
F6P	 –	fructose-6-phosphate
FDP	 –	fructose-1,6-biphosphate
FOR	–	formate
FUM	   –    fumarate
GAPDH	 –	glyceraldehyde-3-phosphate dehydrogenase
G1P	 –	glucose-1-phosphate
G1PAT	–	glucose-1-phosphate adenyltransferase
G3P, GAP	 –	glyceraldehyde-3-phosphate
G3PDH		  –	glycerol-3-phosphate dehydrogenase
G6P	 –	glucose-6-phosphate
GLC	–	glucose
G6PDH	 –	glucose-6-phosphate-dehydrogenase
GLCex, GLC[ext] – Glucose in the external environment
GLN	–	glutamine
HK-ASE	–	hexokinase
ILE	 –	 isoleucine
JWS	 –	Silicon Cell project of Olivier & Snoep37

KIVAL	–	a-ketoisovalerate
LAC	–	 lactate
LALA	 –	L-alanine
MAL	   –	 malate
MET	   –	 methionine
METsynth	 –	methionine synthesis
M-M	   –	 Michaelis-Menten
MMA  –	 the adaptive random optimization algorithm 

	 of Maria51
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mRNA	–	messenger ribonucleic acid
mTRM	–	modified Termonia and Ross30 model
MUR	 –	mureine
MURsynth	–	mureine synthesis
NAD(P)H	 –	nicotinamide adenine dinucleotide (phos-

phate) reduced
OAA	–	oxaloacetate
P	 –	Phosphoric acid
PDH	–	pyruvate dehydrogenase
PEP	 –	phosphoenolpyruvate
PEPCXYLASE	–	PEP carboxylase
PFK-ASE	 –	phosphofructokinase
PG1	 –	glucose-6-phosphate isomerase
PGDH	 –	6-phosphogluconate dehydrogenase
PGK	–	phosphoglycerate kinase
PGLUMU	 –	phosphoglycerate mutase
PGM		 –	phosphoglucomutase
PK-ASE	 –	pyruvate kinase
PPP	 –	pentose-phosphate pathway
PTS	 –	phosphotransferase, or phosphoenolpyruvate: 

glucose phosphotransferase system
PYR	–	pyruvate
QSS	 –	quasi-steady-state
RIB5P	 –	ribose-5-phosphate
RIBU5P	 –	ribulose-5-phosphate
R5PI		 –	 ribose-phosphate isomerase
RPPK	 –	ribose-phosphate pyrophosphokinase
RU5P	 –	ribulose-phosphate epimerase
SED7P	–	sedoheptulose-7-phosphate
SUCC	 –	succinate
SYNTH1,2	–	synthesis 1,2
TA	 –	 transaldolase
TCA	–	 tricarboxylic acid cycle
TF	 –	gene expression transcription factors
TKA	–	 transketolase, reaction a
TKB	–	 transketolase, reaction b
TIS	 –	 triosephosphate isomerase
TRP	 –	 tryptophan
TRPsynth	 –	 tryptophan synthesis
XYL5P	–	xylulose-5-phosphate
[.]	 –	concentration

R e f e r e n c e s

1.	Styczynski, M. P., Stephanopoulos, G., Overview of compu-
tational methods for the inference of gene regulatory net-
works, Computers & Chemical Engineering 29 (2005) 519.
http://dx.doi.org/10.1016/j.compchemeng.2004.08.029 (2007)

2.	Heinemann, M., Panke, S., Synthetic Biology – putting en-
gineering into biology, Bioinformatics 22 (2006) 2790.
http://dx.doi.org/10.1093/bioinformatics/btl469 (2007)

3.	Hempel, D. C., Development of biotechnological processes 
by integrating genetic and engineering methods, Engineer-
ing in Life Sciences 6 (2006) 443.
http://dx.doi.org/10.1002/elsc.200620149 (2008)

4.	Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, 
T. S., Cantor, C. R., Collins, J. J., Programmable cells: In-
terfacing natural and engineered gene networks, Proceed-
ings of the National Academy of Sciences of the USA 101 
(2004) 8414.
http://dx.doi.org/10.1073/pnas.0402940101 (2005)

5.	Alon, U. An introduction to systems biology. Design princi-
ples of biological circuits, Chapman & Hall / CRC, Boca 
Raton, 2007, pp 233–239.

6.	Kholodenko, B. N., Kiyatkin, A., Bruggeman, F. J., Sontag, 
E., Westerhoff, H. V., Hoek, J. B., Untangling the wires: A 
strategy to trace functional interactions in signalling and 
gene networks, Proceedings of the National Academy of 
Sciences of the USA 99 (2002) 12841.
http://dx.doi.org/10.1073/pnas.192442699 (2005)

7.	Maria, G., Modular-based modelling of protein synthesis 
regulation, Chemical and Biochemical Engineering Quar-
terly 19 (2005) 213.

8.	Maria, G, Application of lumping analysis in modelling the 
living systems – A trade-off between simplicity and model 
quality, Chemical and Biochemical Engineering Quarterly 
20 (2006) 353.

9.	Maria, G., Modelling bistable genetic regulatory circuits 
under variable volume framework, Chemical and Biochem-
ical Engineering Quarterly 21 (2007) 417.

10.	Maria, G., Building-up lumped models for a bistable genetic 
regulatory circuit under whole-cell modelling framework, 
Asia-Pacific Journal of Chemical Engineering 4 (2009) 916.

11.	Zak, D. E., Vadigepalli, R., Gonye, G. E., Doyle III, F. J., 
Schwaber, J. S., Ogunnaike, B. A., Unconventional systems 
analysis problems in molecular biology: A case study in 
gene regulatory network modelling, Computers & Chemi-
cal Engineering 29 (2005) 547.
http://dx.doi.org/10.1016/j.compchemeng.2004.08.016 (2006)

12.	Maria, G., Relations between apparent and intrinsic kinet-
ics of programmable drug release in human plasma, Chem-
ical Engineering Science 60 (2005) 1709.
http://dx.doi.org/10.1016/j.ces.2004.11.009 (2004)

13.	Maria, G., A review of algorithms and trends in kinetic 
model identification for chemical and biochemical systems, 
Chemical and Biochemical Engineering Quarterly 18 
(2004) 195.

14.	Degenring, D., Froemel, C., Dikta, G., Takors, R., Sensitiv-
ity analysis for the reduction of complex metabolism mod-
els, Journal of Process Control 14 (2004) 729.
http://dx.doi.org/10.1016/j.jprocont.2003.12.008 (2005)

15.	Costa, R. S., Rocha, I., Ferreira, E. C., Model reduction 
based on dynamic sensitivity analysis: A systems biology 
case of study, PhD grant report, University of Minho, Braga 
(Portugal), 2008.
http://repositorium.sdum.uminho.pt/bitstream/1822/8421/1/
Abstract_Reducit%5B1%5D.pdf (2009)

16.	Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., 
Mauch, K., Reuss, M., Dynamic modeling of the central 
carbon metabolism of Escherichia coli, Biotechnology and 
Bioengineering 79 (2002) 53.
http://dx.doi.org/10.1002/bit.10288 (2002)

17.	He, F., Zeng, A. P., In search of functional association from 
time-series microarray data based on the change trend and 
level of gene expression, BMC Bioinformatics 7 (2006) 69.
http://dx.doi.org/10.1186/1471–2105–7-69 (2007)

18.	He, F., Balling, R., Zeng, A. P., Reverse engineering and 
verification of gene networks: principles, assumptions, and 
limitations of present methods and future perspectives, 
Journal of Biotechnology 144 (2009) 190.
http://dx.doi.org/10.1016/j.jbiotec.2009.07.013 (2009)

http://dx.doi.org/10.1016/j.compchemeng.2004.08.029%20%282007%29
http://dx.doi.org/10.1093/bioinformatics/btl469%20%282007%29
http://dx.doi.org/10.1002/elsc.200620149%20%282008%29
http://dx.doi.org/10.1073/pnas.0402940101%20%282005%29
http://dx.doi.org/10.1073/pnas.192442699%20%282005%29
http://dx.doi.org/10.1016/j.compchemeng.2004.08.016%20%282006%29
http://dx.doi.org/10.1016/j.ces.2004.11.009%20%282004%29
http://dx.doi.org/10.1016/j.jprocont.2003.12.008%20%282005%29
http://repositorium.sdum.uminho.pt/bitstream/1822/8421/1/Abstract_Reducit%255B1%255D.pdf
http://repositorium.sdum.uminho.pt/bitstream/1822/8421/1/Abstract_Reducit%255B1%255D.pdf
http://dx.doi.org/10.1002/bit.10288%20%282002%29
http://dx.doi.org/10.1186/1471%E2%80%932105%E2%80%937-69%20%282007%29
http://dx.doi.org/10.1016/j.jbiotec.2009.07.013%20%282009%29


528	 G. MARIA, In silico Derivation of a Reduced Kinetic Model for Stationary or…, Chem. Biochem. Eng. Q., 28 (4) 509–529 (2014)

19.	Schmid, J. W., Mauch, K., Reuss, M., Gilles, E. D., Krem-
ling, A., Metabolic design based on a coupled gene expres-
sion-metabolic network model oftryptophan production in 
Escherichia coli, Metabolic Engineering 6 (2004) 364.
http://dx.doi.org/10.1016/j.ymben.2004.06.003 (2007)

20.	Rodriguez-Prados, J. C., Atauri, P., Maury, J., Ortega, F., 
Portais, J. C., Chassagnole, C., Acerenza, L., Lindley, N. 
D., Cascante, M., In silico strategy to rationally engineer 
metabolite production: A case study for threonine in Esche-
richia coli, Biotechnology and Bioengineering 103 (2009) 
609.
http://dx.doi.org/10.1002/bit.22271 (2009)

21.	Usuda, Y., Nishio, Y., Iwatani, S., Van Dien, S. J., Imaizumi, 
A., Shimbo, K., Kageyama, N., Iwahata, D., Miyano, H., 
Matsui, K., Dynamic modeling of Escherichia coli metabol-
ic and regulatory systems for amino-acid production, Jour-
nal of Biotechnology 147 (2010) 17.
http://dx.doi.org/10.1016/j.jbiotec.2010.02.018 (2011)

22.	Kind, S., Becker, J., Wittmann, C., Increased lysine produc-
tion by flux coupling of the tricarboxylic acid cycle and the 
lysine biosynthetic pathway – Metabolic engineering of the 
availability of succinyl-CoA in Corynebacterium glutamic-
um, Metabolic Engineering 15 (2013) 184.
http://dx.doi.org/10.1016/j.ymben.2012.07.005 (2013)

23.	Yazdani, S. S., Gonzalez, R., Engineering Escherichia coli 
for the efficient conversion of glycerol to ethanol and 
co-products, Metabolic Engineering 10 (2008) 340.
http://dx.doi.org/10.1016/j.ymben.2008.08.005 (2008)

24.	Wu, W. H., Wang, F. S., Chang, M. S., Multi-objective opti-
mization of enzyme manipulations in metabolic networks 
considering resilience effects, BMC Systems Biology 5 
(2011) 145.
http://dx.doi.org/10.1186/1752–0509–5-145 (2012)

25.	Maria, G., Xu, Z., Sun, J., Investigating alternatives to 
in-silico find optimal fluxes and theoretical gene knockout 
strategies for E. coli cell, Chem. Biochem. Eng. Q. 25 
(2011) 403.

26.	Zhu, J., Shimizu, K., Effect of a single-gene knockout on 
the metabolic regulation in Escherichia coli for D-lactate 
production under microaerobic condition, Metabolic Engi-
neering 7 (2005) 104.
http://dx.doi.org/10.1016/j.ymben.2004.10.004 (2010)

27.	Kern, A., Tilley, E., Hunter, I. S., Legisa, M., Glieder, A., 
Engineering primary metabolic pathways of industrial mi-
cro-organisms, Journal of Biotechnology 129 (2007) 6.
http://dx.doi.org/10.1016/j.jbiotec.2006.11.021 (2012)

28.	Kadir, T. A. A., Mannan, A. A., Kierzek, A. M., McFadden, 
J., Shimizu, K., Modeling and simulation of the main me-
tabolism in Escherichia coli and its several single-gene 
knockout mutants with experimental verification, Microbial 
Cell Factories 9 (2010) 88.
http://dx.doi.org/10.1186/1475–2859–9-88 (2010)

29.	Selkov, E. E., Self-oscillations in glycolysis. 1. A simple ki-
netic model, European Journal of Biochemistry 4 (1968) 
79.
http://dx.doi.org/10.1111/j.1432–1033.1968.tb00175.x (2007)

30.	Termonia, Y., Ross, J., Oscillations and control features in 
glycolysis: Numerical analysis of a comprehensive model, 
Proceedings of the National Academy of Sciences of the 
USA 78 (1981) 2952.
http://dx.doi.org/10.1073/pnas.78.5.2952 (1998)

31.	Termonia, Y., Ross, J., Oscillations and control features in 
glycolysis: Analysis of resonance effects, Proceedings of 
the National Academy of Sciences of the USA 78 (1981) 
3563.
http://dx.doi.org/10.1073/pnas.78.6.3563 (1998)

32.	Hatzimanikatis, V., Wang, L., The systems engineering of cel-
lular processes, 16th European Symposium on Computer 
Aided Process Engineering, and 9th International Sympo-
sium on Process Systems Engineering, Marquardt, W. and 
Pantelides, C. (Eds.), Elsevier, Amsterdam, 2006, pp 71–80.

33.	Bier, M., Teusink, B., Kholodenko, B. N., Westerhoff, H. V., 
Control analysis of glycolytic oscillations, Biophysical 
Chemistry 62 (1996) 15.
http://dx.doi.org/10.1016/S0301–4622(96)02195–3 (2002)

34.	Buchholz, A., Hurlebaus, J., Wandrey, C., Takors, R., Me-
tabolomics: quantification of intracellular metabolite dy-
namics, Biomolecular Engineering 19 (2002) 5.
http://dx.doi.org/10.1016/S1389–0344(02)00003–5 (2010)

35.	Westermark, P. O., Lansner, A., A model of phosphofruc-
tokinase and glycolytic oscillations in the pancreatic be-
ta-cell, Biophysical Journal 85 (2003) 126.
http://dx.doi.org/10.1016/S0006–3495(03)74460–9 (2010)

36.	Ceric, S., Kurtanjek, Z., Model identification, parameter es-
timation, and dynamic flux analysis of E. coli central me-
tabolism, Chemical and Biochemical Engineering Quarterly 
20 (2006) 243.

37.	Olivier, B. G., Snoep, J. L., Web-based kinetic modelling 
using JWS Online, Bioinformatics 20 (2004), 2143. (JWS 
platform – Online Cellular Systems Modelling,
http://jjj.biochem.sun.ac.za/info.html).
http://dx.doi.org/10.1093/bioinformatics/bth200 (2013)

38.	Laiterä, M., Modelling glycolysis with Cellware, course 
notes S-114.2500, Helsinki University of Technology, 2006.
http://www.lce.hut.fi/teaching/S-114.2500/s2006/Glycellw.pdf

39.	Vance, W., Arkin, A., Ross, J., Determination of causal con-
nectivities of species in reaction networks, Proceedings of 
the National Academy of Sciences of the USA 99 (2002) 
5816.
http://dx.doi.org/10.1073/pnas.022049699 (2013)

40.	Van Someren, E. P., Wessels, L. F. A., Backer, E., Reinders, 
M. J. T., Multi-criterion optimization for genetic network 
modelling, Signal Processing 83 (2003) 763.
http://dx.doi.org/10.1016/S0165–1684(02)00473–5 (2013)

41.	Bussemaker, H. J., Foat, B. C., Ward, L. D., Predictive 
modeling of genome-wide mRNA expression: From mod-
ules to molecules, Annual Review of Biophysics and Bio-
molecular Structure 36 (2007) 329.
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132725
(2008)

42.	Ma, H. W., Zhao, X. M., Yuan, Y. J., Zeng, A. P., Decompo-
sition of metabolic network into functional modules based 
on the global connectivity structure of reaction graph, Bio-
informatics 20 (2004) 1870.
http://dx.doi.org/10.1093/bioinformatics/bth167 (2004)

43.	Maria, G., Luta, I., Structured cell simulator coupled with a 
fluidized bed bioreactor model to predict the adaptive mer-
cury uptake by E. coli cells, Computers & Chemical Engi-
neering 58 (2013) 98.
http://dx.doi.org/10.1016/j.compchemeng.2013.06.004 (2013)

44.	Karp, P., Riley, M., Paley, S., Pellegrini-Toole, A., Krum-
menacker, M., EcoCyc: Electronic encyclopedia of E. coli 
genes and metabolism, Nucleic Acids Research 27 (1999) 55.
http://dx.doi.org/10.1093/nar/27.1.55 (2013)

45.	Schaefer, U., Boos, W., Takors, R., Weuster-Botz, D., Auto-
mated sampling device for monitoring intracellular metabo-
lite dynamics, Analytical Biochemistry 270 (1999) 88.
http://dx.doi.org/10.1006/abio.1999.4048 (2013)

46.	Visser, D., Schmid, J. W., Mauch, K., Reuss, M., Heijnen, J. J., 
Optimal re-design of primarymetabolism in Escherichia coli 
using linlog kinetics, Metabolic Engineering 6 (2004) 378.
http://dx.doi.org/10.1016/j.ymben.2004.07.001 (2004)

http://dx.doi.org/10.1016/j.ymben.2004.06.003%20%282007%29
http://dx.doi.org/10.1002/bit.22271%20%282009%29
http://dx.doi.org/10.1016/j.jbiotec.2010.02.018%20%282011%29
http://dx.doi.org/10.1016/j.ymben.2012.07.005%20%282013%29
http://dx.doi.org/10.1016/j.ymben.2008.08.005%20%282008%29
http://dx.doi.org/10.1186/1752%E2%80%930509%E2%80%935-145%20%282012%29
http://dx.doi.org/10.1016/j.ymben.2004.10.004%20%282010%29
http://dx.doi.org/10.1016/j.jbiotec.2006.11.021%20%282012%29
http://dx.doi.org/10.1186/1475%E2%80%932859%E2%80%939-88%20%282010%29
http://dx.doi.org/10.1111/j.1432%E2%80%931033.1968.tb00175.x%20%282007%29
http://dx.doi.org/10.1073/pnas.78.5.2952%20%281998%29
http://dx.doi.org/10.1073/pnas.78.6.3563%20%281998%29
http://dx.doi.org/10.1016/S0301%E2%80%934622%2896%2902195%E2%80%933%20%282002%29
http://dx.doi.org/10.1016/S1389%E2%80%930344%2802%2900003%E2%80%935%20%282010%29
http://dx.doi.org/10.1016/S0006%E2%80%933495%2803%2974460%E2%80%939%20%282010%29
http://jjj.biochem.sun.ac.za/info.html
http://dx.doi.org/10.1093/bioinformatics/bth200%20%282013%29
http://www.lce.hut.fi/teaching/S-114.2500/s2006/Glycellw.pdf
http://dx.doi.org/10.1073/pnas.022049699%20%282013%29
http://dx.doi.org/10.1016/S0165%E2%80%931684%2802%2900473%E2%80%935%20%282013%29
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132725
http://dx.doi.org/10.1016/j.compchemeng.2013.06.004%20%282013%29
http://dx.doi.org/10.1093/nar/27.1.55%20%282013%29
http://dx.doi.org/10.1006/abio.1999.4048%20%282013%29
http://dx.doi.org/10.1016/j.ymben.2004.07.001%20%282004%29


G. MARIA, In silico Derivation of a Reduced Kinetic Model for Stationary or…, Chem. Biochem. Eng. Q., 28 (4) 509–529 (2014)	 529

47.	Lee, F.C., Rangaiah, G. P., Lee, D. Y., Modeling and opti-
mization of a multi-product biosynthesis factory for multi-
ple objectives, Metabolic Engineering 12 (2010) 251.
http://dx.doi.org/10.1016/j.ymben.2009.12.003 (2012)

48.	Franck, U. F., Feedback kinetics in physicochemical oscil-
lators, Berichte der Bunsengesellschaft für Physikalische 
Chemie 84 (1980) 334.
http://dx.doi.org/10.1002/bbpc.19800840407 (2010)

49.	Heyland, J., Blank, L. M., Schmid, A., Quantification of 
metabolic limitations during recombinant protein produc-
tion in Escherichia coli, Journal of Biotechnology 155 
(2011) 178.
http://dx.doi.org/10.1016/j.jbiotec.2011.06.016 (2013)

50.	Rao, S. S., Engineering optimization – Theory and practice, 
New York, Wiley, 2009, pp 761–771.

51.	Maria, G., In: Proceedings of the 22nd IASTED Interna-
tional Conference on Modelling, Identification, and Con-
trol, February 10–13, 2003, Innsbruck, Austria. IASTED/
ACTA Press, Anaheim (CA).

52.	Heinrich, R., Schuster, S., The regulation of cellular sys-
tems, Chapman & Hall, New York, 1996, pp 138–291.
http://dx.doi.org/10.1007/978–1-4613–1161–4_5 (2001)

53.	Roeva, O., Pencheva, T., Tzonkov, S., Arndt, M., Hitzmann, 
B., Kleist, S., Miksch, G., Friehs, K., Multiple model ap-

proach to modelling of Escherichia coli fed-batch cultiva-
tion extracellular production of bacterial phytase, Journal of 
Biotechnology 10 (2007) 592.

54.	Mathews, C. K., van Holde, K. E., Ahem, K. G., Biochem-
istry, Prentice Hall, New Jersey, 1999.

55.	Lei, F., Jorgensen, S. B., Estimation of kinetic parameters in 
a structured yeast model using regularisation, Journal of 
Biotechnology 88 (2001) 223.
http://dx.doi.org/10.1016/S0168–1656(01)00272–3 (2013)

56.	Degenring, D., Froemel, C., Dikta, G., Takors, R., Sensitiv-
ity analysis for the reduction of complex metabolism mod-
els, Journal of Process Control 14 (2004) 729.
http://dx.doi.org/10.1016/j.jprocont.2003.12.008 (2013)

57.	Xiu, Z. L., Zeng, A. P., Deckwer, W. D., Model analysis con-
cerning the effects of growth rate and intracellular trypto-
phan level on the stability and dynamics of tryptophan bio-
synthesis in bacteria, Journal of Biotechnology 58 (1997) 
125.
http://dx.doi.org/10.1016/S0168–1656(97)00143–0 (1997)

58.	Schmid, J. W., Mauch, K., Reuss, M., Gilles, E. D., Krem-
ling, A., Metabolic design based on a coupled gene expres-
sion-metabolic network model of tryptophan production in 
Escherichia coli, Metabolic Engineering 6 (2004) 364.
http://dx.doi.org/10.1016/j.ymben.2004.06.003 (2013)

http://dx.doi.org/10.1016/j.ymben.2009.12.003%20%282012%29
http://dx.doi.org/10.1002/bbpc.19800840407%20%282010%29
http://dx.doi.org/10.1016/j.jbiotec.2011.06.016%20%282013%29
http://dx.doi.org/10.1007/978%E2%80%931-4613%E2%80%931161%E2%80%934_5%20%282001%29
http://dx.doi.org/10.1016/S0168%E2%80%931656%2801%2900272%E2%80%933%20%282013%29
http://dx.doi.org/10.1016/j.jprocont.2003.12.008%20%282013%29
http://dx.doi.org/10.1016/S0168%E2%80%931656%2897%2900143%E2%80%930%20%281997%29
http://dx.doi.org/10.1016/j.ymben.2004.06.003%20%282013%29

