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The expression for rate, da/dT, of the nucleation and growth (NG) process under non-isother-
mal conditions, as described by the Johnson-Mehl-Avrami (JMA) kinetic model, served as the
basis for a detailed study of a class of functions F(m) = (da/dT)Tm, where m ÎÂ. Studies of
the fractional conversion, a, of the NG process at the temperature of the maximum of function
F(m), T = T(m), have shown that when reduced activation energy, x = E/RT, approaches in-
finity (x®¥), fractional conversion, a, at the temperature corresponding to the maximum of
function F(m), a(m), converges to a = 0.632, for any value of m. It has been further shown
that fractional conversion, a, for the NG process is equal to a = 0.632 at the temperature cor-
responding to the maximum of function F(m) = (da/dT)Tm for the particular value of parame-
ter m from the interval: 1 £ m £ 2.
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INTRODUCTION

The well known work of Criado and Ortega,1 Gao, Chen
and Dollimore,2 and Malek3–5 has shown that fractional
conversion, ap, of the non-isothermal NG process de-
scribed by the JMA kinetic model, at the temperature of
the maximum rate of the NG process, Tp, is less than
0.632. However, the exact temperature corresponding to
the fractional conversion, a = 0.632, has not been estab-
lished yet.

In order to improve kinetic analysis, the product of
functions has been applied,1–9 for example Malek’s func-
tion z(a) = (da/dT)T2. This function can be considered
as a special case of the functions with the general form
F(m) = (da/dT)Tm when m = 2. The concept of function
F(m) is somewhat analogous to the assisting function
j introduced previously in the analysis of isothermal ki-
netic processes:10

F = Fj (1)

The relationship between function F(m) and JMA
function is illustrated in Figure 1. If the function F =
F(m) = (da/dT)Tm has the maximum for a selected value
of m at temperature T(m), then at the same temperature
the JMA kinetic model function has the degree of con-
version a(m). For m = 0, it follows that T(m=0) = Tp, and
function F(m=0) is identical with the JMA curve. Also,
for this special case a(m=0) = ap. In all other cases, i.e.,
for m≠0, the temperature of the maximum of curve F(m)
is different from the temperature of the maximum of the
JMA curve (T(m≠0) ≠ Tp). Therefore, fractional conver-
sion of the JMA process at that temperature is different
from ap, i.e., (a(m≠0) ≠ ap), and corresponds to the tem-
perature of the maximum of F-function only, while T(m)
and a(m) are parameters of the JMA function.



In this article, the analysis of the class of functions
of the general form: F(m) = (da/dT)Tm (where the value of
parameter m is chosen at will) has shown that the tempera-
ture corresponding to the fractional conversion a = 0.632
corresponds to the maximum of function F(m), where
the particular value of m lies in the interval: 1 £ m £ 2.

THEORETICAL

The reaction rate of a solid-state process is usually de-
scribed by the following differential equation based on
the isokinetic hypothesis and Arrhenius temperature de-
pendency:11
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where a is the fractional conversion at time t and f(a) is
an arbitrary kinetic model equation (e.g., n(1–a)[–ln(1–
a)]1–1/n). A is the pre-exponential factor, E is the activa-
tion energy for crystallization, R is the gas constant and
T is absolute temperature.

Assuming a constant heating rate, b, that is T = Ti +
bt and dT = bdt, g(a) (integral form of kinetic equation)
is calculated by integration of Eq. (2):
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is called the Arrhenius integral. Z is the pre-exponential
factor, and in this work it has been assumed to be tem-
perature independent.

By substituting x = E/RT (reduced activation ener-
gy), Eq. (4) yields:
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It is well known that the Arrhenius integral (IA) can-
not be calculated exactly and is therefore expressed by
an approximate function; the most common approxima-
tion is Eq. (6):
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R
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x
x
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where p(x) denotes the function related to the integral in
Eq. (5). With Eq. (6), the integral form of kinetic equa-
tion (3) reads:
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If the nucleation and growth process (NG) could be
described by the JMA equation, g(a) = (–ln(1–a))1/n, for
the rate of NG process, one can write:
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d

dT

a
=

nE

RT
x I

2
1( ( ))+ m (14)

There are a number of methods for determination of
the p(x) values. In some of them asymptotic series and
complex approximations for p(x) are used.11–14 Flynn15

criticized some of the approximations, as he considers
complex approximation16 to be far better. There are first
to fourth degree rational approximations for the Arrhe-
nius integral. The first degree rational approximation is
the Gorbachev17 function with p(x) = 1/(x+2), and the
fourth degree rational approximation is by Senum and
Yang16 »with an accuracy better than 10–5 % for x �

20«:18,19

p(x) =
x x x

x x x x

3 2

4 3 2

18 86 96

20 120 240 120

+ + +
+ + + +

(15)
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For small values15,16 of x, the Arrhenius integral may
be better expressed by using the power series expansion:
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By coupling Eqs. (6) and (16), p(x) can be defined
as:
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where g = 0.5772156649 (Euler-Mascheroni constant).
The desired accuracy can be achieved by truncating the
number of terms in the series.

Equations (15) and (17) can be used to calculate va-
lues for p(x) over the whole range of x (Table I). Table I
gives the values of p(x), calculated at five decimals. Cal-
culated values are checked against the tabulated values
of Gautschi and Cahill20 and a very good match has been
found.

As known, Doyle’s approximation presumes the same
activation energy correction for a wide range of x values.21

For 28 < x < 50 the correction factor is equal to 1.052,
whereas for 18 < x < 35 the correction factor is equal15

to 1.075. However, Doyle also carried out a function
changing the correction factors continuously, resulting in
E/(xp(x)) instead of E*const.21 In this work, a new ex-
pression for continuous correction has been obtained in
deriving dI/dT and it reads: E*(1 + m(x)) (Eq. 12). The
two mentioned expressions for continuous correction are
in full agreement, which is confirmed by equation (1 +
m(x)) = 1/(xp(x)) (Eq. A4).

Application of Function F(m) to the Differential
Form of the JMA Kinetic Model

If F(m)-function is expressed as:

F(m) =
d

dT
T

nE

R
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m= + − −( ( )) exp( )1 2 (18)

then for dF/dT = 0 one obtains (Eq. A6–A9):

nx(1+m(x))(–ln(1–a(m))–1) = m–xm(x) (19)

Equation (19) can be rearranged in (Eq. A4):

n(–ln(1–a(m))–1) = [m–xm(x)]p(x) (20)

In some early works, it was accepted that at the maxi-
mum of the JMA curve ap = 0.632. Criado and Ortega,1

Gao, Chen and Dollimore,2 and Malek3,5 rejected this
wrong assumption. They have shown that fractional con-
version at the maximum of the JMA curve is always smal-

ler than 0.632, even for large values of x (as illustrated
by ap values in Table II).

In this work, the analysis of a values has been ex-
tended beyond the maximum of the JMA curve in order
to find out the position of a = 0.632 for cases other than
x®¥. From the above cited works it is obvious that a is
equal to 0.632 at temperatures higher than that corres-
ponding to the maximum of the experimental JMA curve,
but the position of a = 0.632 has not been established.
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TABLE I. Values of p(x), xp(x), m(x) and xm(x) to five decimal places

x p(x)(a) xp(x) m(x) xm(x)

x®0 1 0 ¥ 1

0.01 0.95921 0.00959 103.251 1.03251

0.1 0.79854 0.07985 11.5229 1.15229

0.5 0.53854 0.26927 2.71371 1.35686

1 0.40365 0.40365 1.47738 1.47738

2 0.27734 0.55469 0.80282 1.60565

3 0.21375 0.64125 0.55946 1.67839

4 0.17462 0.69847 0.43170 1.72681

5 0.14789 0.73945 0.35236 1.76182

6 0.12839 0.77037 0.29809 1.78851

7 0.11351 0.79459 0.25852 1.80962

8 0.10176 0.81410 0.22835 1.82677

9 0.09224 0.83018 0.20456 1.84100

10 0.08437 0.84367 0.18530 1.85302

12 0.07209 0.86504 0.15602 1.87224

14 0.06294 0.88123 0.13478 1.88695

16 0.05587 0.89393 0.11866 1.89856

18 0.05023 0.90416 0.10600 1.90802

20 0.04563 0.91258 0.09579 1.91584

25 0.03713 0.92831 0.07722 1.93057

30 0.03131 0.93942 0.06470 1.94088

35 0.02706 0.94726 0.05567 1.94852

40 0.02384 0.95342 0.04886 1.95441

45 0.02130 0.95828 0.04354 1.95908

50 0.01924 0.96223 0.03926 1.96289

60 0.01614 0.96823 0.03281 1.96871

70 0.01389 0.97259 0.02818 1.97294

80 0.01220 0.97589 0.02470 1.97617

90 0.01087 0.97849 0.02199 1.97871

100 0.00981 0.98058 0.01981 1.98076

200 0.00495 0.99015 0.00995 1.99019

500 0.00199 0.99602 0.00399 1.99603

x®¥ 0 1 0 2

(a)
p(x) values for x < 9 are calculated according to Eq. (17) using 40

members of infinite row expansion. p(x) for x ³ 9 are calculated ac-
cording to Eq. (15).



From Eq. (20), it follows that:

p(x)[m–xm(x)] = 0 (21)

if

–ln(1–a(m))–1 = 0 (22)

i.e., a = 0.632. Equation (21) is satisfied when p(x)®0
or/and [m – xm(x)]®0.

If x®¥, then p(x)®0 (Table I) regardless of the va-
lues of m. It means that as x®¥ all functions (da/dT)Tm

have a(m) = 0.632 regardless of the values of m (Figure 2a).
From Figure 2a, it can be seen that as reduced activation
energy, x, increases, the value of the product p(x)[m – xm(x)]
approaches zero and consequently fractional conversion
at the maximum, a, approaches 0.632 (Figure 2a).

It follows from Eqs. (20)–(22) that 0.632 is the cha-
racteristic value of a for the JMA kinetic model and, also,
that this value does not depend on n, while all the other
fractional conversions depend on n. The mentioned equa-

tions comprise the core of the present work. They show that
a = 0.632 for all the m-values for which [m – xm(x)] = 0.
Since it is unlikely that the x-value (and thus xm(x)) is
known in advance, only a span can be determined within
which the m-value lies. It is essential that Eqs. (20)–(22)
comprise the dependence of m-values on x-values. This
dependence refines Malek’s conclusion according to which
a = 0.632 occurs at the maximum of z(a) = (da/dT)T2

function.

Precisely, if m < 1 the a-values increase and if m � 2
the a-values decrease towards a = 0.632 with an increa-
se of reduced activation energy (Table II and Figure 2a.).
This fact was previously established only for m = 2 (Ma-
lek’s z function)5.

Situations x�0 or x�8 are not realistic. Those are
limiting cases and it is better to consider the situations
for »small values of x« or »large values of x«. In this case
(0 < x < 8) 0 < p(x) < 1, and only the equation m–xm(x)
= 0 is decisive for a = 0.632. From Eqs. (21)–(22) it fol-
lows that for every value of x there is a value

m = M = xm(x) (23)

This is illustrated in Figure 2b for three different va-
lues of M. As shown in Figure 2b, the curves within the
range 1 £ m £ 2 intercept the abscissa for finite x, i.e. m
= M = xm(x).

Fractional conversion a = 0.632 occurs at the tem-
perature of the maximum of function F(m) where the
value of m is given by Eq. (23). It means that a = 0.632
is obtained for T(m=M). Since the possible values of the
product xm(x) are

1 � xm(x) � 2 (24)

If the limit of x approaches zero, the value of xm(x)
approaches 1, and if the limit of x approaches infinity,
the value of xm(x) approaches 2 (Table I). It follows:

T(m=1) � T(m=M) � T(m=2) (25)

and

a(m=1) � a(m=M) � a(m=2) (26)

4 A. BEZJAK et al.
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Figure 1. The differential form of the JMA function, F = (da/dT),
describing the rate of the nucleation and growth process (full line)
and normalized function F(m) = (da/dT)Tm (dashed line). At the
temperature of the maximum of function F(m), the JMA function
has the degree of conversion a(m) (hatched) corresponding to
temperature T(m).

TABLE II. A series of non-isothermal JMA kinetic curves (n = 2) were simulated in such a way that fractional conversion a = 0.632 occurs
at T0 = 1100.0 K as the value of reduced activation energy at that temperature changes to give x0 = 2 to x0 = 200

x0 Ea / kJ mol–1 Tp(m=0) / K ap(m=0) T(m=1) / K a(m=1) T(m=2) / K a(m=2)

2 18.29 1063.3 0.542 1086.8 0.600 1108.2 0.652

5 45.73 1088.8 0.581 1095.3 0.611 1101.4 0.639

10 91.45 1096.2 0.602 1098.3 0.619 1100.3 0.634

20 182.9 1098.9 0.616 1099.5 0.624 1100.0 0.633

50 457.3 1099.8 0.625 1099.9 0.629 1100.0 0.632

100 914.5 1099.9 0.629 1100.0 0.630 1100.0 0.632

200 1829 1100.0 0.630 1100.0 0.631 1100.0 0.632



As shown in Figure 3, the value of M is between 1
and 2. The F(M) function has the maximum at tempera-
ture T(M), where the JMA function has fractional con-
version equal to a = 0.632 (hatched). Therefore, the tem-
perature corresponding to a = 0.632 could be obtained
by determining the maximum of (da/dT)*TM function,
where M = xm(x).

TESTING AND DISCUSSION

To test the derived equations, 7 basic functions in the
span from x0 = 2 to x0 = 200 have been formed. For eve-
ry function T0 = 1100 K has been taken, which according
to Eq. (9) gives I = 1. Activation energy has been deter-
mined from E = x0RT0. In this way, the basic parameters
are defined, which enables simulation of 7 different JMA

curves. Characteristic values for these 7 functions are listed
in Table II (x0, E, Tp and ap). In addition, all relevant data
for model systems, i.e., (da/dT), (da/dT)T and (da/dT)T2,
are given. These systems, besides x0 = E/(RT0) and T0 =
1100 K, include also a constant member (as follows from
Eq. 9):

n ln
ZE
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
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
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nE
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– n ln
p( )x

x
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0


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


 (27)

and n = 2. All Tp and T(m) values in Table II are deter-
mined as follows: Tp values are temperatures of the maxi-
mum of simulated curves on the basis of JMA functions
(da/dT)(m=0). T-values for m = 1 and m = 2 are obtained
by determination of the maximum of curves (da/dT)T and
(da/dT)T2. All the a-values (Table II) are calculated from
Eq. (28):
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TABLE III. Values of T(m=M) for the F-functions calculated using
simulated non-isothermal JMA curves given in Table II

x0 M T(m=M)(a) T(m=M) ≈
Tp+DT (b)

T0
(c)

2 1.606 1101.7 1098.7 1100.0

5 1.762 1099.6 1099.9 1100.0

10 1.853 1099.7 1100.0 1100.0

20 1.916 1099.9 1100.0 1100.0

50 1.963 1100.0 1100.0 1100.0

100 1.980 1100.0 1100.0 1100.0

200 1.990 1100.0 1100.0 1100.0

(a) Eq. (29), (b) Eq. (30), (c) Eq. (31).

Figure 2. a) Graphical illustration of Eq. (20). It is shown that as
x®¥, [m-xm(x)]p(x)®0, and therefore, a®0.632. b) Only for
values of parameter m: 1 £ m £ 2 curves intercept the abscissa.
Namely, for M = 1.762, M = 1.853 and M = 1.963 the curves
intercept the abscissa at x = 5. 10 and 50, respectively (Table I).

Figure 3. Details of normalized F-functions for m = 0, 1 and 2.



a(m) = 1–exp − − −
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where the corresponding value of x is calculated from: x
= x0T0 / T(m).

It follows from the theoretical part that the determi-
nation of temperature corresponding to a = 0.632 has
been reduced to the determination of the maximum of the
(da/dT)*TM function.

The calculation of (da/dT)TM is difficult for 1 £ M £

2. It has been observed that in this case satisfactory
values for T(m=M) (where a = 0.632) could be obtained
according to:
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where C = constant. In this manner, the approximation
of x could be obtained. Further calculation could be per-
formed through T(m=M) » Tp + DT, where:
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Table III give values for T(M) according to Eq. (29) with
C = 0.3 and Eq. (30), as well as the best values obtained
as the maximum of the expression:

F(M) =
d

dT
T Ma


 


 (31)

which always gives T(M) = T0 (Eq. 31).

Each simulated curve has M for which function
F(M) = (da/dT)TM has the maximum at T(M) where for
the simulated curve a = 0.632 (Table III). a(M) is be-
tween a(m=1) and a(m=2), and T(M) between T(m=1)
and T(m=2). All the functions (da/dT)Tm for M < m £ 2
have maxima at T = T(m), for which a of the JMA curve
is greater than 0.632. All the functions (da/dT)Tm for

1 £ m < M have maxima at T = T(m) for which a of JMA
the curve is less than 0.632.

These facts give a new insight into the position of
a = 0.632, as shown in Table IV, where previous findings
concerning this problem are chronologically listed.

The results outlined in the last row of Table IV, are
based on Eq. (21).

CONCLUSIONS

The class of functions of the general form: F(m) = (da/
dT)Tm, where a is fractional conversion of the non-iso-
thermal process described by the JMA kinetic model and
m parameter with a value chosen at will, was analyzed
concerning the position of the function maximum taking
into consideration reduced activation energy, x.

It has been shown that as x®¥ all functions (da/dT)Tm

have maxima at a(m)®0.632 regardless of the values of
m. With an increase of reduced activation energy a-va-
lues increase towards 0.632 for m £ 1, and decrease to-
wards 0.632 for m ³ 2.

It has been shown for 1 £ m £ 2 that the tempera-
ture for which a = 0.632 of function (da/dT) occurs at
M = xm(x) of F(m).

Thus, for every value of x, regardless of its being small
or large, there is M = xm(x), a parameter of the generaliz-
ed function F(m), giving a particular function F(M) that
has a maximum at temperature T(M) for which a = 0.632.
The a-value equal to 0.632 always occurs at temperatu-
res between T(m=1) and T(m=2), for 0 < x < ¥.

The exact temperature T(M) corresponding to the
fractional conversion a(M) = 0.632 can be determined
only if the value of the reduced activation energy, x, is
known.

At the current state of measurement techniques, these
findings are of little help in the determination of kinetic
parameters but offer a contribution to a better under-
standing of the properties of the JMA kinetic model in
non-isothermal conditions.
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TABLE IV. Different approaches to the problem of a=0.632

Early works22 The position of a = 0.632 is at the maximum of JMA curve (ap = 0.632).

Criado and Ortega;1 Gao,
Chen and Dollimore;2 Malek3

If x is not infinite, a-values at the maximum of JMA curve are always smaller than 0.632.
If x®¥, a = 0.632.

Malek5 Function z(a) = (da/dT)*T2 is introduced. The maximum of z(a) function corresponds to the
TA peak for infinite x.

This work Function F(m) = (da/dT)*Tm is introduced. a = 0.632 is obtained for x®¥ and for M = xm(x),
where a(m=1) < a(m=M) = 0.632 < a(m=2).

This means that a = 0.632 is always at a temperature between T(m=1) and T(m=2) for 0 < x < ¥.
T(M) = T0.



APPENDIX

Going from Eq. (17) which reads:
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







=

∞

∑ln
( )

!
x

x

nn

n n

n

1

1

x exp(x) (A1)

and its derivative, by taking into account:
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one obtains:
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i.e.,
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From Eq. (13), it follows:

xp(x)(1 + m(x)) = 1 (A4)

d

dt
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and

F(m) =
d

dT
T

nE

R
x I I Tm ma

m= + − −( ( )) exp( )1 2 (A6)

for dF/dT = 0:
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m p p
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= + = (1 + m(x))(2–xm(x))T

(A9)
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SA@ETAK

Polo`aj a = 0,632 u neizotermnoj JMA kinetici

Aleksandar Bezjak, Stanislav Kurajica i Juraj [ipu{i}

Johnson-Mehl-Avramijev matemati~ki model brzine procesa nukleacije i rasta, da/dT, u neizotermnim uvje-
tima uporabljen je kao osnova za prou~avanje funkcija oblika F(m) = (da/dT)Tm, gdje je mÎÂ. Prou~avanjem
konverzije, a, procesa nukleacije i rasta pri temperaturi maksimuma funkcije F(m), T = T(m), pokazano je da
kada reducirana energija aktivacije, x = E/RT, te`i u beskona~nost (x®¥), konverzija pri temperaturi koja od-
govara maksimumu funkcije F(m), a(m), te`i vrijednosti 0,632 za svaki m. Nadalje, pokazano je da, bez obzira
na iznos reducirane energije aktivacije, konverzija procesa nukleacije i rasta iznosi 0,632 pri temperaturi maksi-
muma funkcije F(m) za odre|enu vrijednost parametra m iz intervala: 1 £ m £ 2.
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