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The present work deals with modeling of the transient behavior of grounding systems in the presence of layered
media. A simple and efficient Transmission Line (TL) model featuring the use of the Finite Difference Time Domain
(FDTD) is proposed. The proposed approach easily accounts for the influence of semi-infinite media (soil or air)
and imposes conditions at the interfaces. The TL model is verified through the direct solution of the Maxwell’s
equations in the time domain by means of the FDTD method. Some illustrative computational examples addressing
some engineering applications stemming from industry are given in the paper.

Key words: Transient response, Grounding system, Transmission line theory, Maxwell’s equation’s approach,
Two-layer soil, Finite difference time domain (FDTD) method

Tranzijentni odziv uzemljivačkog sustava u dvoslojnom tlu primjenom teorije prijenosnih linija. U radu
se razmatra modeliranje tranzijentnog odziva uzemljivačkog sustav au prisutnosti slojevitih sredina. Predložen je
jednostavan i efikasan model prijenosne linije uz upotrebu metode prijenosnih linija u vremenskom području. U
okviru predloženog pristupa lako se uzima u obzir utjecaj polubeskonačnih sredina (tlo ili zrak) te postavljaju uvjeti
na granici sredina. Model prijenosne linije verificira se direktnim rješenjem Maxwellovih jednadžbi u vremen-
skom području primjenom metode konačnog diferencija u vremenskom području. U radu se daju neki ilustrativni
računalni primjeri koji se odnose na neke inženjerske primjene proizašle iz prakse.

Ključne riječi: Tranzijentni odziv, uzemljivački sustav, teorija prijenosnih linija, pristup preko Maxwellovih jed-
nadžbi, dvoslojno tlo, metoda konačnih diferencija u vremenskom području

The principal task of grounding systems is to ensure the
safety of personnel and prevent damage of installations and
equipment. Defect on grounding systems may cause oper-
ation error, malfunction and destruction of components in
electric and electronic systems connected to the grounding
systems. During a short circuit or lightning discharge, the
assessment of fault currents in the grounding systems is
rather important task, as these currents cause an increase
of ground potential and related high intensity electromag-
netic fields. The increase in ground potential is dangerous
for the technical staff inside the substation, while the ra-
diated fields may affect the measuring equipment required
for the control and management of the power network.

To analyze the behaviour of grounding systems under
lightning regime, several models for transient analysis of
grounding systems were developed. Thus, the problem of
the grounding is usually treaded by means of the Moment
Method (MoM) [1], Finite Element Method (FEM) [2-3]
and Finite Difference Method (FDM) [4-5]. Recently, an

approach based on voltage propagation equation and Fi-
nite Difference Time Domain (FDTD) solution method has
been reported in [5].

The model proposed in this work has been developed
as an extension of the homogeneous soil model, based on
the Transmission Line (TL) theory and the FDTD solution
method. The two-layer soil effects are taken into account
by means of the concept of apparent resistivity.

An alternative approach used in this work for the tran-
sient analysis of grounding systems is the FDTD solution
of Maxwell’s equations in inhomogeneous media (layers
of soil, air and the conductors of the ground).

First, a rather simple case of a single horizontal buried
electrode is considered. What follows up is the configura-
tion of a grounding grid. Some illustrative computational
examples are presented throughout the paper.

1 TRANSMISSION LINE APPROACH
The use of numerical models leads to rigorous solu-

tions, but at the same time very often difficult to imple-
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ment and use by engineers. When the grounding systems
are composed entirely of wire conductors as shown in the
Figure 1, a simple model developed using the TL theory
could be used.

 

 

Single horizontal conductor 

Grid 
Crow’s  foot 

Single vertical conductor

Fig. 1. Representation of grounding by a single conductor
or by interconnected conductors

It is worth mentioning that TL has been already used
to simulate the transient behaviour of counterpoise wire.
Transient behaviour of counter-poise wire is similar over-
head transmission lines. TL approach for modeling tran-
sient behaviour of grounding systems can be carried out in
either time or frequency domain, but it is easier to include
soil ionization in the time domain.

Using the TL approach enables one to predict surge
propagation delay which is quite important for large
grounding systems. Furthermore, the computational cost
required for TL approach is significantly less compared to
the requirements posed by the full wave model.

2 TRANSIENT ANALYSIS VIA TL EQUATIONS

The transient behaviour of the grounding conductors
can be simulated using the TL equations:

∂v(x, t)

∂x
+Ri(x, t) + L

∂i(x, t)

∂t
= 0, (1)

∂i(x, t)

∂x
+Gv(x, t) + C

∂v(x, t)

∂t
= 0, (2)

where v(x, t), and i(x, t) are the unknown distributed volt-
age and current along the grounding wire. R is the per-unit
length series resistance. L, G and C are the effective per-
unit length inductance, conductance and capacitance of the
conductor, respectively.

The per unit lines parameters of buried vertical and hor-
izontal electrodes can be calculated by using E. D. Sunde
[6] or Y. Liu [7] formulas, respectively.

Figure 2 shows the grounding system composed from
simple conductors and it is considered as a graph. Note

  Node 

Line (wire conductor) 

Branche i 

Node j 

Node k 

Fig. 2. Meshed network with N uniform transmission Lines
and m nodes

that the branches of this graph are the wires (conductors)
interconnected by nodes.

The transient behaviour of grounding systems in the
lightning regime is governed by the following matrix equa-
tion:

[A] [X] = [B] , (3)

obtained by discretizing the TL equations based on FDTD
method and the application of Kirchhoff’s laws in all nodes
of meshed network.

Not that the system matrix is composed from two sub
matrices, as follows:

[A] =

[
[A1]
[A2]

]
, (4)

where [A1] is the matrix of the network topology that ac-
counts for the propagation on the line segments; [A2] is
the sub matrix obtained by applying the Kirchhoff’s laws
(KCL and KVL) for junctions (terminations’ and intercon-
nections’ networks) [2].

Furthermore [X] denotes the vector of unknown cur-
rents and voltages in all nodes while [B] stands for the
source vector.

2.1 Quadruple representation of the line in time do-
main

For a conductor of length L, following notation is used:

(v)
n
k ≡ v ((k − 1) ∆x, n∆t) , (5)

(i)
n
k ≡ i ((k − 1/2) ∆x, (n+ 1/2)∆t) , (6)
l = (kmax − 1) ∆x,

tmax = nmax∆t.

The related FDTD scheme is shown in Fig. 3.

Discretizing the TL equations (1) and (2) using the for-
malism of the FDTD method one the following discrete
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Fig. 3. The relation between the spatial and temporal dis-
cretizations to achieve second order accuracy in the dis-
cretization of the derivatives

equations are obtained:

[vnk ] =

(
C

∆t
− G

2

)−1
[(

C

∆t
− G

2

)
[vn−1
k ]−

−
(

[in−1
k ]− [in−1

k−1 ]

∆x

)]
, (7)

[ink ] =

(
L

∆t
+
R

2

)−1
[(

L

∆t
− R

2

)
[in−1
k ]−

−
(

[vnk+1]− [vnk ]

∆x

)]
. (8)

Note that the two ends of the line are defined in terms of the
voltage nodes. Figure 4 shows a quadruple representation
of the line in the time domain:

j

i
v

j

i
i

k

i
v

k

i
i

  

 
line ( )  

 

 

 

node (j) node (k)

i

Fig. 4. Quadruple representation in time domain of the sin-
gle branch

Two fictitious nodes of currents at the two ends of line
are formed (for X = 0 and X = L).

Setting:

vn1 = (v(0))n and i
n−1/2
0 = (i(0))n−1/2 for x = 0, (9)

vnkmax+1 = (v(L))n and i
n−1/2
kmax+1 = (i(L))n−1/2

for x = L, (10)

and by assuming the approximations:

(i(0))n−1/2 =
(i(0))n + (i(0))n−1

2
, (11)

(i(L))n−1/2 =
(i(L))n + (i(L))n−1

2
, (12)

the equation corresponding to the first end of the line k = 1
(x = 0) is obtained:
[
C

∆t
+
G

2

]
[vn (0)]− [in (0)]

∆x
=

[
C

∆t
− G

2

] [
vn−1 (0)

]

−
[
in−1
1

]

(∆x/2)
+

[
in−1 (0)

]

(∆x)
. (13)

Furthermore, the equation corresponding to second end
of the line is k = kmax + 1 (x = L):
[
C

∆t
+
G

2

]
[vn (L)]− [in (L)]

∆x
=

[
C

∆t
− G

2

] [
vn−1 (L)

]

+

[
i
n−1/2
k max

]

(∆x/2)
−
[
in−1 (L)

]

(∆x)
. (14)

Finally, one derives the quadruple time domain repre-
sentation given by:

[
C
∆t + G

2 − 1
∆x 0 0

0 0 C
∆t + G

2
1

∆x

]



(v(0))n

(i(0))n

(v(L))n

(i(L))n


 =




[
C
∆t − G

2

] [
vn−1 (0)

]
− [in−1

1 ]
(∆x/2) +

[in−1(0)]
(∆x)[

[C]
∆t −

[G]
2

] [
vn−1 (L)

]
+

[
i
n−1/2
k max

]

(∆x/2) −
[in−1(L)]

(∆x)


 .

(15)

Having numbered all the wires (branches) and nodes of
the graph representation (Figure 2) of the grounding sys-
tem, the sub matrix [A1] is obtained while writing for each
line the relation (15). The contribution of the line l (be-
tween nodes j and k) as shown on Fig. 2 in the sub matrix
[A1] can be written:




. . . . . . . . . . . . . . . . . .
... C

∆t + G
2 − 1

∆x 0 0
...

... 0 0 C
∆t + G

2
1

∆x

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . .







...
vjl
ijl
vkl
ikl
...




,

(16)
where j and k subscribe the extremities of the conductor
and l represents the branch.
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Furthermore, the sub matrix [A2] is developed using
the Kirchhoff’s laws (KVL and KCL) at each node m of
the grounding system [8]
NL∑

j=1

(
[Y
¯
m
j ][vmj ] + [Z

¯
m
j ][imj ]

)
− [Pm

(
vmj , i

m
j

)
] = 0, (17)

where
[
Y
¯
m
j

]
represents resultant matrices from the appli-

cation of Kirchhoff’s laws (KVL and KCL) in themth net-
work, which can contain the numerical values 0, 1,−1 and
admittances values according to the topology of the net-
work,

[
Z
¯
m
j

]
is related to resultant matrices from the ap-

plication of Kirchhoff’s laws (KVL and KCL) in the mth

network, which can contain the numerical values 0, 1, −1
and impedances values according to the topology of the
network, [Pm] is the vector of current or voltage localized
sources.

Finally, the submatrix [B] is composed of two sub vec-
tors [B1] and [B2], as follows:

[B] =

[
[B1]
[B2]

]
(18)

Note that the sub vector [B1] is constructed from the
second member of the matrix system (15), the sub vec-
tor [B2], contains the equivalent Thévenin and/or Norton
sources (localized network) in one or more node.

3 TRANSIENT ANALYSIS VIA MAXWELL’S
EQUATIONS
Assuming neither anisotropic nor dispersive medium

in the domain of interest, the Maxwell’s equations in the
Cartesian coordinates are:

∇× ~E(t, r) =
−∂ ~B(t, r)

∂t
, (19)

∇× ~H(t, r) = ~J(t, r) + ε
∂ ~E(t, r)

∂t
, (20)

where ~E is the electric field; ~His the magnetic field while
ρ stands for charge density; ε is the permittivity; µ perme-
ability and σ is the conductivity.

The domain of interest is a rectangular-parallelepiped,
referred to as the Yee cell [9]. Figure 5 shows the cell with
the configuration of electric and magnetic fields considered
to be constant within the cell.

Using this cell configuration (Fig. 5) and space-time
finite difference discretisation of (19) and (20) yields:

En+1
x

(
i+

1

2
, j, k

)
= A · Enx

(
i+

1

2
, j, k

)
+

+B ·




H
n+1

2
z (i+ 1

2 ,j+
1
2 ,k)−H

n+1
2

z (i+ 1
2 ,j− 1

2 ,k)
∆y

−H
n+1

2
y (i+ 1

2 ,j,k+ 1
2 )−H

n+1
2

y (i+ 1
2 ,j,k− 1

2 )
∆z


 ,

(21)

  

Hx 

Ez Ez 

Ey 

Hz 

Ey 

Hy 

Ex 
Ex 

Δz

 

y 
x 

(i,j,k) 

Δy 

Δx 

z

 

Ey 

Ex 

Ez 

Fig. 5. Configuration of electric and magnetic fields in cell

H
n+ 1

2
x

(
i, j +

1

2
, k +

1

2

)
= H

n− 1
2

x

(
i, j +

1

2
, k +

1

2

)

− ∆t

µ
·




En
z (i,j+1,k+ 1

2 )−En
z (i,j,k+ 1

2 )
∆y

−E
n
y (i,j+ 1

2 ,k+1)−En
y (i,j+ 1

2 ,k)
∆z


 , (22)

where A and B are given by:

A =
1− σ·∆t

2·ε
1 + σ·∆t

2·ε
, B =

∆t
ε

1 + σ·∆t
2·ε

. (23)

Other electromagnetic field components are deduced
by a simple circular permutation of the space variables.

4 THIN WIRE REPRESENTATION
Analysis of the frequency content of the lightning wave

shows that the maximum frequency does not exceed a few
MHz (fmax < 10MHz). In this case the cell size is larger
than the section of the conductors of the buried electrode.
Thus, a simplified model proposed by Umashankar et al. is
used [10]. This method avoids the high computation time
and is based on the thin wire representation by correcting
the adjacent magnetic fields of the wire according to its
radius [11-12]. The thin wire is defined as a conductive
wire with radius smaller than the size of a cell in the FDTD
simulation. The approximation is outlined in this section
for the sake of completeness.

4.1 Modification of permittivity and permeability
In many engineering applications, such as antennas and

grounding systems, it is necessary to model electrically
thin conducting cylinders which means that the radiuses r0

of such conducting structures are smaller than the smallest
Yee’s cell dimensions. Thus, a special formulation must be
implemented in order to correctly model the radii. There
are two basic approaches: a) correction of tangential mag-
netic field components [10] and b) correction of the param-
eters ε, σ and µ for the field components near the conductor
as depicted in Fig. 6 [10].
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Fig. 6. A thin wire transversal section and four adjacent
cells (a) four radial electric field components near the
wire; (b) four magnetic field components involving the wire

As the latter methodology is appropriate for conductive
media containing metallic thin wires it used in this work,
as well. The corrected values of the parameters σs, εs and
µs used for updating the field components shown in figure
6 are given by [10]:

σ∗ = σs
ln (1/0.23)

ln (∆x/r0)
, (24)

ε∗s = εs
ln (1/0.23)

ln (∆x/r0)
, (25)

µ∗s = µs
ln (∆x/r0)

ln (1/0.23)
, (26)

where r0 is the desired radius (r0 < ∆x/2), σ, εs and µs
are the real media parameters, ∆x is the edge dimension
of a cubic Yee’s cell and σ∗, ε∗s and µ∗sare the corrected
values of the specified parameters for the proper field com-
ponents.

5 THE AIR-GROUND INTERFACE

Contour Integral Approach [13], derived from
Maxwell’s equations in integral form is used to account
for the air-ground interface. For the problems including
inhomogeneous media and a non-uniform spatial dis-
cretization, Maxwell’s equations in their integral form are
convenient to use [13].

Fig. 7 shows a grid of FDTD discretization of the air-
ground interface.

From Ampere’s law( Maxwell’s equation in) integral
form:

∮

l

~H · ~dl =

∫∫

s

(
σ ~Ex + ε

∂ ~Ex
∂t

)
~ds, (27)

Fig. 7. Consideration of air-ground interface by the “the
contour integral approach” method

it follows:∮

l

~H~dl =
[
H
n+ 1

2
z (i+ 1/2, j + 1/2, k)

−Hn+ 1
2

z (i+ 1/2, j − 1/2, k)
]
∆z

+
[
H
n+ 1

2
y (i+ 1/2, j, k − 1/2)

−Hn+ 1
2

y (i+ 1/2, j, k + 1/2)
]
∆y, (28)

∫∫

s

(
σ ~Ex + ε

∂ ~Ex
∂t

)
~ds =

∆y∆z

2
ε0
∂Ex
∂t

+
∆y∆z

2

(
εs
∂Ex
∂t

+ σsEx

)
. (29)

Combining (28) and (29) yields:

En+1
x (i+ 1/2, j, k) =

K

N
· Enx (i+ 1/2, j, k)

+
1

N ·∆y ·
[
H
n+ 1

2
z (i+ 1/2, j + 1/2, k)

−Hn+ 1
2

z (i+ 1/2, j − 1/2, k)
]

− 1

N ·∆z
[
H
n+ 1

2
y (i+ 1/2, j, k + 1/2)

−Hn+ 1
2

y (i+ 1/2, j, k − 1/2)
]
, (30)

where
K = 1

2∆t (ε0 + εs)− σs

4 ,
N = 1

2∆t (ε0 + εs) + σs

4 .
(31)

The other field components can be derived in the simi-
lar manner. The same expression is used to ensure the pas-
sage between the two conductive layers of the soil.

6 THE LATTICE TRUNCATION CONDITIONS
Observing the FDTD equations (22 and 23), it is clear

that it is necessary to truncate the calculation domain, as
long as, for open domains, they require an infinite lattice.
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In order to achieve this goal, absorbing regions must be
implemented at the domain’s limits, simulating the wave
propagation to infinitely long distances. This avoids non-
natural reflections into the domain under analysis. In this
context, the absorbing conditions delayed [14] formulation
has been employed.

7 NUMERICAL RESULTS

In order to verify the TL approach in two-layer soil us-
ing the concept of apparent resistivity [15], the transient
behaviours of horizontal grounding systems is simulated
and compared with the direct solution of the Maxwell’s
equations in two-layer soil. In the calculations carried out
via TL approach, the two-layer soil are homogenized and
replaced by a single resistivity called apparent resistiv-
ity. The solution of Maxwell’s equations by FDTD is per-
formed by taking into account the variation in conductivity
between the conductive layers of the soil.

7.1 Two-Layer Soil Apparent Resistivity

A resistivity determination using the Wenner-method
results in an apparent resistivity which is a function of the
electrode separation.

The apparent resistivity ρa is given by:

ρa = ρ1


1 + 4

∞∑

i=1

Kn

√
1 +

(
2nha

)2 −
Kn

√
4 +

(
2nha

)2


 ,

(32)
where h is the first layer height, whileρ1 and ρ2 is the first
and second layer resistivity, respectively. n et a

A two-layer soil can be represented by an upper layer
soil of a finite depth above a lower layer of infinite depth.
The abrupt change in resistivity at the boundaries of each
soil layer can be described by means of a reflection factor,
K, is defined by (31) [15].

K =
ρ2 − ρ1

ρ2 + ρ1
. (33)

7.2 Electrode in two-layer stratified soil

Figure 8 shows an electrode buried horizontally at
depth of 0.4 m from the soil-air interface. The radius of
the conductor is 7 mm and its length is 20 m, while the
height of the upper layer is of 2 m. The electrode is excited
by a voltage source given by double-exponential function:
V (t) = 30(e−45099t − e−9022879t) KV.

Physical constants (ε, ρ) of the medium are shown in
the Fig. 8.

Figures 9 to 12 show transient currents and voltages
induced on the horizontal grounding electrode determined
by TL and Maxwell’s equations approaches, respectively.

Fig. 8. Horizontal grounding conductors in two layer soil
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Fig. 9. Transient currents at different points for the hori-
zontal grounding wire
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Fig. 10. Transient voltages at different points for the hori-
zontal grounding wire

From the presented numerical results in figures 9 and
10 it can be observed that the two approaches provide
similar results in both amplitude and general shape. The
concept of apparent resistivity is confirmed by solving
Maxwell’s equations via FDTD, as well.
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Fig. 11. Time variation of current on the middle of the
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Fig. 12. Temporal variation of current at different points of
buried conductor

Next, a parametric study has been undertaken. First, the
resistivity of the upper layer is kept constant and the resis-
tivity of the lower layer is varied. Furthermore, the same
resistivity of the two layers is assumed while the the burial
depth of the horizontal electrode is modified. Influence of
the variations in resistivity between the two layers is pre-
sented in Figs 12 and 13. In order to confirm the validity
of the concept of apparent resistivity, the same electrode is
considered. of section B. Note that ρ1 it’s the resistivity of
the top layer of the finite height h and ρ2 it’s the resistivity
of the lower layer of an infinite height. The case of a vari-
ation in resistivity between these two layers is considered
by assuming two possible scenarios: ρ1<ρ2 and ρ1>ρ2.
First the resistivity ρ1= 200 Ωm of the upper layer is kept
constant and the resistivity of the lower layer successively
assumes the values ρ2=1000, 2000 and 4000 Ωm, respec-
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Fig. 13. Temporal variation of current at different points of
buried conductor
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Fig. 14. Temporal variation of current at different points of
buried conductor (h = 0.4m)

tively. The corresponding transient response is shown in
Fig 12.

In the second case the value ρ1=1000 Ωm is consid-
ered while ρ2 takes successively the values 50, 100 and 200
Ωm, respectively. The corresponding transient response is
shown in Fig. 13.

Next set of Figs deals with the influence of the burial
depth to the transient response of the horizontal electrode.
Figures 14 to 16 show the transient variation of current for
different burial depth of the electrode; 0.4, 0.8 and 1.2m
respectively.

In part of the spectrum which is of interest for light-
ning an inductive and capacitive effect, respectively, can
be noticed. These effects become less important at low fre-
quency and only a resistive behaviour is dominant, which
is visible from figures 11 and 17.
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In part of the spectrum which is of interest for light-
ning an inductive and capacitive effect, respectively, can
be noticed. These effects become less important at low fre-
quency and only a resistive behaviour is dominant, which
is visible from Figs. 11 and 12.

Table 1 summarizes the results of calculations for the
resistance (for t > 8µs) performed numerically and those
obtained analytically by the expressions proposed by E.D.
Sunde [6].

7.3 Grounding grid in two-layer stratified soil

In this subsection the case of a grounding grid buried
in two layer soil is considered by using the TL approach
and the Maxwell’s equations approach. Figure 18 shows
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Table 1. Calculation results of the resistance
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Fig. 18. The horizontal grounding grid in two layer soil

the grid buried at 0.8 m depth in the stratified soil and the
size of the grounding grid is 20 m×20 m. The radius of the
conductors is 7 mm and in our simulation, the grounding
grid system is excited by double-exponential voltage im-
pulse, V (t) = 30

(
e−45099t − e−9022879t

)
. Physical con-

stants (ε, ρ) of the medium are shown in the Fig. 18.

Two cases are considered, with the injection point on
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the corner and in the middle of the grounding grid system,
respectively, as shown in Fig. 18.

Figures 19 to 22 show transient currents and voltages
induced on the horizontal grounding grid determined by
TL and Maxwell’s equations approaches, respectively.

Observing the numerical results obtained by different

Table 2. CPU time consumed
Approach CPU time consumed

Maxwell 3D 10 hours

[A][X]=[B] 40.44 seconds
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Fig. 21. Transient currents at different points for the hori-
zontal grounding grid
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Fig. 22. Transient voltages at different points for the hori-
zontal grounding

approaches presented in figures 19 to 22 agree rather satis-
factorily.

It is worth noting that there is a large difference in the
computation time required by both approaches on the same
machine. For an Intel (R) Core (TM) 2, 1.86 GHz and 0.98
Go of RAM, the results are given in the Table 2.

8 CONCLUSION

The paper deals with two different formalisms for mod-
eling a grounding system excited by a lightning discharge
in the presence of multi-layered soils.

For the calculation of currents and voltages distribu-
tion using the concept of apparent resistivity it is clear that
the TL theory ensures acceptable results. The TL model is
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simple for implementation and demands a very low com-
putational cost, as it is not required to account for open
boundaries. Thus, the principal feature of the method is its
simplicity.

On the other hand, the approach related to the solution
of Maxwell’s equations via the FDTD method provides an
advantage of studying the problem directly in the time do-
main for the layered soil.
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