
Logical Consistency Validation Tools for
Distributed Systems

1Volume 4, Number 1, 2013

Original Scientific Paper

Drago Žagar
J. J. Strossmayer University of Osijek,
Faculty of Electrical Engineering
Kneza Trpimira bb, Osijek, Croatia
drago.zagar@etfos.hr

Nino Vrandečić
Hrvatska elektroprivreda, Osijek
nino.vrandecic@hep.hr

Antun Stoić
J. J. Strossmayer University of Osijek,
Faculty of Mechanical Engineering in Slavonski Brod
Croatia
astoic@sfsb.hr

Abstract – As a result of using Information Technology (IT) in different technological processes it is necessary to develop new
application specific communication protocols. The number of application specific protocols is growing rapidly in different areas:
medicine, communication, industry, power systems, computer networks, etc. Protocol errors discovered in the implementation phase
are usually a consequence of inconsistent protocol design, which implies the necessity of methodology for error detection in an early
design phase. This paper describes formal methods for distributed systems, especially SPIN/Promela tool for formal verification of
logical consistency in distributed systems. A protocol used in power systems IEC60870-5-101 has been verified as an example of formal
verification of a distributed system. Formal specification, simulation and verification of logical consistency have been successfully
done by using SPIN/Promela software.

Keywords – distributed systems, finite state machine, protocol, validation

1.	 INTRODUCTION

The processes within distributed systems communi-
cate by protocols defined according to the processes
needs and specific properties as well as the character-
istics of transmission paths between the processes. A
result of the recent IT technology impact on different
technologies is development of new application spe-
cific communication protocols. The number of applica-
tion specific protocols is increasing very fast in different
and diverse technology fields. A specific protocol is a
very complex product that should be attuned to user
demands and error-free. Protocol errors could be found
in every phase, but the most “expensive” for correction
are final phases of protocol design. As the errors discov-

ered in the coding and implementation phase are very
often the consequence of inconsistent design, it is de-
sirable to find a method for error detection in an early
phase of protocol development. To ensure early error
detection the problems have to be formally defined on
an abstract level.

An increased complexity of new (especially embed-
ded) systems and new system development trends
show an increased level of multidisciplinarity a con-
sequence of which is that system development meth-
ods used in one discipline could be successfully used
in many others. The most important trends in the de-
velopment of multidisciplinary systems are increas-
ing complexity (requirements, hardware and software
components, interfaces, etc.), increasing integration

2 International Journal of Electrical and Computer Engineering Systems

Fig. 1. Communication between machine states
defined by processes

and test effort and increasing time to market pres-
sure. All of these elements influence the lower level of
error tolerance. Some authors use formal models for
formal verification of multidisciplinary embedded sys-
tems (e.g., the Promela model enabled formal verifica-
tion of the SoCoMo system). A result is a more flexible
and cost effective developed process [1]. Another ap-
plication of formal methods is in design and analysis
phases of industrial production systems (and especially
in so-called Flexible Manufacturing Systems, FMSs) as
a complementary tool to current practice of the field.
Some projects showed that the Flexible Manufacturing
approach yielded a deeper understanding of the finer
points of system specification, an improved system reli-
ability (through verification of desired properties), and
other typical engineering qualities [2][3][8].

This paper describes formal methods for distributed
systems and the SPIN/Promela tool for formal specifica-
tion and verification of logical consistency. A possible
usage of formal methods in other disciplines is verified
by specification and verification of a protocol used in
power systems IEC60870-5-101. Formal specification,
simulation and verification of logical consistency have
been successfully done by using SPIN/Promela soft-
ware.

2.	 FORMAL SPECIFICATION OF DISTRIBUTED
SYSTEM

FSM - Finite State Machine is one of the first formal
models used for formal specification of sequence ma-
chine behavior, the machines whose states do not
depend only on input states but also on input states
history. The finite state machine is not a heuristic
model that could be differentially interpreted and has
very good theoretical background. The finite state
machine is a very intuitive method and therefore de-
signer friendly.

On the lowest abstraction level, protocols could be
described as machine states. In the process of protocol
design, it is possible to specify acceptable and non ac-
ceptable protocol states easily as well as the transitions
between states according to input events. A solution
for specification of a complex distributed system is
problem apportion into well-defined abstract and less
complex machine states. This simplified machine states
communicate through interfaces.

The use of machine states will be most effective if
communication is realized as emulation of real distrib-
uted system. This means that communication could be
synchronous or asynchronous. Asynchronous commu-
nication connotes machine states connection by the
FIFO (First-In First-Out) channel (Figure 1.)

The signals of machine states are represented by ab-
stract objects called messages. The input signal is taken
from the input tail while the output signal is sent to the
output tail. Synchronization is achieved by setting the
conditions for input and output signals.

For every state, one or more transition rules that are
executable could exist. If only one transition rule is ex-
ecutable, it means deterministic transition to a new
state. If no transition rule is executable, the machine
will go to the final state.

Hence the distributed system consists of many ma-
chines communicating with each other, and the whole
system could acquire diverse state/behavior combina-
tions. Some of the combinations could be undesirable.
The desirable system behavior is defined by basic sys-
tem design. The system without demands cannot be
correct and we can say that such system behavior is
unpredictable. The relationship between desirable sys-
tem states could be visually presented by sets intersec-
tion of all possible states with the set of undesirable
(irregular) states. The system is valid if this intersection
is an empty set, or mathematically [6]:

L(S) – set of possible states from S

L(p) – is a set of valid (desirable) states

If fulfilled:

L(S) ∩ L(¬ (p)) = Ø,

or if an intersection of possible and undesirable
states if empty, then we can say that the system is er-
ror-free, or more exactly, the system works according
to the defined, required behavior. It is important to em-
phasize that absolute assertion about system validity is
not possible. It could be only stated if the system fulfills
the specific criteria.

Some of the basic criteria for proving compatibility
with demands (validity criteria) are as follows:

•	 the system should not have deadlocks – invalid
end state,

•	 the process should not starvate any other process,
•	 no explicit assertion inside the process should

be transgressed,

global
data

process 0 process 1

Local
data

Local
data

Communication
channel

3Volume 4, Number 1, 2013

•	 all processes should terminate properly (end
state),

•	 the system should be effectively progressive.
Therefore, the distributed system is described by two

formal entities, i.e. by:

•	 system specification,
•	 specification of demands on system behavior.
Both entities together create a verification model,

and a process of system compatibility determination is
called the verification model of the distributed system.
To create both entities we need a high-level abstract
language for system design. The program written in
such language is called the validation model. There is a
small difference between model validations and model
implementation [6].

3.	 FORMAL TOOLS FOR DISTRIBUTED SYSTEM
VERIFICATION

There are several tools for formal verification of logical
consistency in the distributed system. One of the best
that is also free of charge is SPIN. The model in SPIN is
written by Promela language (PROcesses Meta Lan-
guage). Promela does not prevent improper and incon-
sistent design but enables verification of design by us-
ing the “model checker”. Promela defines three types of
basic objects: asynchronous processes, global and local
objects and messages channels. When Promela does not
define the global system clock, synchronization is real-
ized by global variables and channel messages [6][7].

A core of Promela is instruction executability: every
instruction is foregone by a condition, followed by a
consequence. If the condition is not fulfilled, the in-
struction is not executable (it is blocked) and it does
not have the consequence (e.g., it means that the in-
struction is executable if we have q messages m (q?m)
in the channel). If the channel is empty or if it contains
another message, the process must wait.

Fig. 2. SPIN configuration

Every process has its local state consisting of local
variables values and a program state counter, while the
whole model is described by the global state vector
consisting of the values of global variables, messages
channel content and a list of active processes. The pro-
cesses could start and stop at any time, but they leave

the state vector only by LIFO order. The process is de-
leted from the state vector by two steps: termination
and process death. The “parent” processes must termi-
nate before the “children” processes. The initialization
process (init) terminates the last.

Specification of the system and demands on the sys-
tem SPIN are carried out in one file, but it is possible to
create criteria based on linear temporal logic formulae
(LTL) and start process verification without changes in
the system model (Figure 2).

In addition to the basic criteria, SPIN also uses the
definition of non-desirable behavior called the never
claim. The never claim can be built in the system model
or generated from the LTL formula by the LTL property
manager. The LTL formula defines desirable and non-
desirable system behaviors, and SPIN generates the
never claim and translates desirable behaviors in non-
desirable and vice versa, depending on which sort of
behavior is selected as validity demand.

Besides verification, SPIN could be used for simula-
tion of the distributed system. This option could help
us get the visual perception on system validity. Simula-
tion could be run in three modes:

•	 stochastic simulation (if transition is non-deter-
ministic, SPIN stochastically chooses one of them),

•	 interactive simulation (the user chooses the path),
•	 guided simulation (in the case of error by verifi-

cation, SPIN creates trail error).
The SPIN verification model is based on the analyses

of machine states reachable from the initial state.

According the number of states that we have to ana-
lyze, SPIN uses one of three possible methods:

•	 Exhausting search analyzes compatibility of vali-
dation criteria in all system states.

•	 Controlled partial search – Supertrace. Super-
trace will be run in case an available memory
is less than needed for coverage of all machine
states

•	 Stochastical search is used for huge systems by
which neither Supertrace gives satisfactory re-
sults.

1 10

0

20

40

60

80

100

100 1000 10000
number of states x 103

Exhausting search
100% Coverage

Supertrace

PartialC
ov

er
ag

e
fa

ct
or

Fig. 3. Coverage factor and search modes

4 International Journal of Electrical and Computer Engineering Systems

The quality of search is expressed by the coverage fac-
tor of machine states, defined as a ratio of the analyzed
and the total number of states (Figure 3). By exhausting
search the coverage factor is 100%. Switching to uncon-
trolled search the coverage factor decreases, as well as the
quality of analyses. A measure of search quality describes
verification method ability to find the error, and it is de-
fined by the ratio of founded and total errors [6][7][8].

4.	 DESIGN OF EXPERIMENT

As a case study, we will implement the formal proto-
col specification and verification method on protocol
IEC 60879-5-101 used in power systems. In this section,
the case study protocol will be described with basic
communication characteristics [4][5].

4.1.	 COMMUNICATION REGIMES

IEC 60870-5-101 is a very robust protocol for informa-
tion exchange in the power system, specifically for com-
munication of remote terminal units, i.e., RTU. IEC 60870-
5-101 is built on three layers of the OSI model, physical,
data link and application. It describes communication
between the control center and distant stations.

The communication could be arranged in two modes,
i.e., balanced and imbalanced. By balanced mode, both
sides could initiate communication as peer entities.
Therefore, for every single station we must have a sep-
arate communication channel. By imbalanced mode,
communication is based on the master-slave principle.
Only the control center (master station – primary sta-
tion) can initiate communication. The slave station
(secondary station) can only respond to requests re-
ceived from the master station.

Simultaneously, only communication between pri-
mary and one secondary station is possible. Communi-
cation is arranged by polling.

4.2.	 BASIC COMMUNICATION SERVICES

A data link enables three basic services:

•	 SEND / NO REPLAY – the primary station does
not expect any answer from the secondary sta-
tion. It is used for setup in round robin manner,
broadcasting, and time synchronization.

•	 SEND / CONFIRM – the primary station expects
answer from the secondary station. If the answer
fails, the primary station can repeat the message.
CONFIRM message could be only one character
(xE5) or a small message NACK or ACK.

•	 REQUEST / RESPOND – this service could be
used by procedures for application data trans-
mission from the secondary station (User data or
Requested data not available) and also by pro-
cedures for link status establishment (Status of
link). This service is not used by balanced com-
munication.

4.3.	 LOCAL INITIALIZATION OF THE PRIMARY
STATION IN IMBALANCED MODE

Initialization of the primary station is carried by boot-
strapping of the control center (on/off). The process of
initialization starts by reestablishment of communication
between communication sides. The primary station initial-
izes a connection by request “request status of link”. The
secondary station answers positively by “status of link” or
negatively by “access denied”. The next step is to reset the
link “reset remote link”. After primary station initialization
there follows the “general interrogation” sequence.

4.4.	 LOCAL INITIALIZATION OF THE
SECONDARY STATION

Local initialization of the secondary station starts af-
ter bootstrapping (e.g., for maintenance purposes). If
the primary station is active, it will detect the second-
ary station answer failure. The primary station retrans-
mits the same request for a preset number of attempts.
If after that the secondary station does not answer, the
primary station will try to re-establish a link by “request
status link”. If the secondary station is initialized before
the primary station exploited all requests for link status,
the secondary station answers by link status followed
by link reset as described in Section 4.3. To establish
a connection between the application in the primary
and the secondary station, the secondary station sends
a message “end of initialization”.

4.5.	 DISTANT INITIALIZATION OF THE
SECONDARY STATION

Distance initialization of the secondary station is per-
formed by a command “reset process command”. The
secondary station resets all its application processes, and
abandons all previous messages for sending. After that,
on receiving a request for data of class 2 the secondary
station answers by reset acknowledgement. The next step
is activation of link reset, described in the former section.
By terminating the reset process, the secondary station
answers the request for data of class 1 (2) by the end of the
initialization message. Distant initialization of the second-
ary station is used only for maintenance purposes.

4.6.	 DATA ACQUIRED BY IMBALANCED
COMMUNICATION MODE

IEC 60870-5-101 defines two data classes. Data class
1 is defined for spontaneous events (e.g., a change of
single and double indication), while data class 2 speci-
fies periodically acquired data (e.g., measurements). The
normal communication procedure proceeds as follows:

•	 The primary station sends requests for data class
2 (request user data class 2). If the secondary sta-
tion does not have any event from class 2 (peri-
odical event), it will send negative acknowledg-
ment (NACK), and the primary station will poll a
succeeding secondary station.

5Volume 4, Number 1, 2013

•	 •	 If the secondary station has a spontaneous
event from class 1, it will reply negatively to
the request of class 2 and in control byte it will
change the ACD (access denied) bit into 1. After
that, the primary station issues request for data
class 1, and the secondary station replies by data
of class 1, depending on ASDU organization and
data amount the data could be sent in one frame
of variable length. If not all data can be sent in
one frame class 1, then the secondary station
will repeat with frames of class 1 until all events
are sent. The last frame of the secondary station

will notify by ACD=0. Afterwards, the primary
station starts polling of class 2.

•	 If only spontaneous data are transferred (no
measurements), then it is more efficient to use
class 2.

•	 If the secondary station continuously generates
on the application level, it could also be a con-
sequence of error state and the other secondary
stations will be blocked. Therefore, the second-
ary station limits the maximal number of con-
secutive requests of class 1.

Fig. 4. Local initialization of primary station

4.7.	 GENERAL INTERROGATION

The function general interrogation is used for full up-
date of process data after the primary station detects
data loss (unsuccessful timeout after many retransmis-
sions). The general interrogation function undergoes
procedures of local/distant initialization of the second-

ary station and local initialization of the primary sta-
tion. Interrogation data are sent to the primary station
in one or more ASDUs according the amount of pro-
cess data. A procedure ends with end interrogation no-
tification (TI100/COT=10). The interrogation procedure
could be interrupted if spontaneous events happen.

6 International Journal of Electrical and Computer Engineering Systems

5.	 RESULTS OF EXPERIMENTS

In this section, formal tools will be applied for speci-
fication and verification of the primary and the sec-
ondary station in the IEC 60870-5-101 protocol. In a
modeling process, we will start from the level of imple-
mentation which is partially described in the following
section [4][5][7][9].

5.1.	 GLOBAL VARIABLES

A core of the model consists of two processes, i.e., a
process specifying primary station behavior - PRMsta-
tion, and a process specifying secondary station behav-
ior - SECstation. These two processes communicate by
two channels:

•	 channel to_rcvr for data transmission from pri-
mary to secondary station, declared as: chan
to_rcvr = [0] of { mtype, bit,bit };

•	 channel to_sndr for data transmission from sec-
ondary to primary station, declared as: chan to_
sndr = [0] of { mtype, bit,bit };

A communication between processes is synchronous
and defined by 0 channel capacity

Channel messages are of type mtype carrying two
binary parameters.

Mtype is defined as:

mtype = { ReStatLink, StaOfLink,ResRemLink,
ACK, ReqClas2, ReqClas1, NACK, DataClas,
error,ReqClas2GI, GIData, TI100 , TI100GIEnd};

with following semantics:

ReStatLink –the primary station requests link status
from the secondary station.

StaOfLink – the secondary station replies to the pri-
mary station by link state information.

ResRemLink – the primary station requests link reset
from the secondary station

ACK – the secondary station replies positively to mes-
sage type SEND/CONFIRM

ReqClas2 – the primary station requests class 2 data.

ReqClas1 - the primary station requests class 1 data.

NACK - the secondary station replies negatively to
message type SEND/CONFIRM.

DataClas – represents user data, i.e., ASDU message
code in direction monitoring. This variable is attached
the value on the application level and symbolizes a
process value.

error - is a symbol variable which represents an error
by communication between the primary and the sec-
ondary station.

ReqClas2GI – this variable represents a message by
which the primary station requests interrogation data

from the secondary station. This is an abstraction be-
cause the implementation does not distinguish sepa-
rated requests for class 2 in the interrogation process.
Upon a unique request for data of class 2 the secondary
station replies by ASDUs with COT (the cause of trans-
mission) field set to dec20 (active interrogation state)
or dec3 (interrogation not active). In our model, we
will assume that the secondary station does not send
the information about the data back, but only single
request ReqClas2GI defines what the primary station
requires. According to that, the received data will be
treated as the data from the interrogation table.

GIData - a variable representing part of the interroga-
tion table, which could be sent in one ASDU. (limitation
of the frame length is 255 bytes).

TI100 - a variable representing a command issued by
the primary station to the secondary station in order to
start the interrogation process

TI100GIEnd – by terminating the interrogation pro-
cess, the secondary station informs the primary station.

Every message is assigned two parameters type bit.
The first parameter is the ACD (access demand) bit. It is
set to 1 in the process SECstation in case the process de-
tects class 1 data. In all other cases, this bit is set to 0. The
second bit is FCB (frame count bit). In the implementation
model, the primary station changes this bit by every new
transmitted frame. The Promela model is slightly differ-
ent. By the Promela model, it is defined that the primary
station sends this bit to the secondary, which returns the
same bit. In the implementation model, the secondary
station does not return FCB but successively analyses all
values of this bit. If two successive bits are the same, the
secondary station assumes the error in command direc-
tion (from the primary to the secondary station), rejects
the frame and sends NACK. For simplicity reasons, the
Promela model will not take into account the error that
occurred in command direction, but it will only model
the error in monitoring direction. Therefore, the FCB in
the primary station is used to repeat the same message
as a last not replied message.

Secondary station application processes are repre-
sented by three channels. Channels eventClass1 and
eventClass2 use 1 and 2 as event sources of classes.
Channel G1 is used as a source of interrogation data.
In order for event channels to be ready (filled) before
the processes of primary and secondary stations start,
channels eventClass1, eventClass2, and G1 should be
initialized by the atomic sequence inside the initializa-
tion process init:

init {
atomic{ /* initialises the channels of class 1
and 2 with data for simulation */
eventClass1!DataClas (1);
eventClass1!DataClas (2);
eventClass1!DataClas (3);
eventClass1!DataClas (4);
eventClass2!DataClas (10);

7

eventClass2!DataClas (20);
eventClass2!DataClas (30);
GI!GIData(1);
GI!GIData(2);
}
}

Channel chan pogreska = [1] of {mtype} for the infor-
mation exchange between the command process and
the primary station process.

General variable count generates stochastic events
by simulation.

mtype = { ReStatLink, StaOfLink,ResRemLink,
ACK, ReqClas2, ReqClas1, NACK, DataClas, Data-
Clas1, DataClas2 ,error,ReqClas2GI, GIData, TI100 ,
TI100GIEnd};
chan to_sndr = [1] of { mtype, bit,bit };
chan to_rcvr = [1] of { mtype, bit,bit };
chan eventClass1 = [10] of {mtype};
chan eventClass2 = [10] of {mtype};
chan GI = [10] of {mtype};
chan error = [1] of {mtype};
bit ACD, LinkStatus;
int count;

5.2.	 PROCESSES

The model defines six processes:

•	 PRMstation specifies the primary station (control
center),

•	 SECstation specifies the secondary station (re-
mote terminal unit),

•	 EventMaker generates events of class 1 and 2,
•	 Watchdog detects timeouts in the model,
•	 RandGen generates a random number,
•	 Init is the basic initialization process.

PRMstation:

The primary station start by starting a procedure of lo-
cal initialization of primary station LinkStatus==0. After
that, a sequence starts in which the primary station polls
the secondary station by requesting the link status (to_
rcvr!ReStatLink). If the secondary station replies positively
(to_sndr?StaOfLink) the primary station, a procedure of
link reset starts (to_rcvr!ResRemLink). If the secondary
station replies positively, it connotes that the link is estab-
lished, LinkStatus==1. After finishing the link reset proce-
dure, the primary station requests general interrogation
(to_rcvr!TI100) from the secondary station. The secondary
station replies positively. If the primary station receives
an acknowledgement ready for general interrogation
(to_sndr?ACK), the primary station successively issues
requests for GI data and receives data (to_sndr?GIData).
After that, the interrogation table (in our model – channel
G1) is empty, the secondary station sends the message
end of interrogation, and the primary station receives
(to_sndr?TI100GIEnd). During the execution of this loop,
it is possible that the following condition is also fulfilled:

:: to_sndr?DataClas(0,FCBRtu);

:: pogreska?error -> LinkStatus = 0; goto progress

The first condition will be fulfilled if during the inter-
rogation procedure an event happens. The result is that
the interrogation procedure will be temporarily inter-
rupted while all events are sent. The second condition
will be fulfilled in case the control process (watchdog)
detects timeout. That results in stopping the interroga-
tion request and repeating the procedures for link sta-
tus and link reset.

If during interrogation all data are correctly trans-
mitted and LinkStatus==1, the primary station issues
requests of class 2 (to_rcvr!ReqClas2) until message
to_sndr?NACK(1,FCBRtu) is received, where the first pa-
rameter specifies the ACD bit. The next step specifies
ACD==1 and the primary station issues request class 1.
The requests are repeated until the secondary station
sends a message with ACD==0. After that, class 2 re-
quests will be repeated.

If an error occurs while the primary station requests
data class 2 (ACD==0) or class 1 (ACD==1) (secondary
to primary station direction), it is possible to make a
nondeterministic choice:

1)	 :: pogreska?error -> goto FindClass2

2)	 :: pogreska?error -> LinkStatus=0; goto progress

The first case assumes that after a preset number of
timeouts the primary station repeats a request of class
2 or class 1, until receiving a reply. After a certain num-
ber of unsuccessful requests, the primary station will
request the status of link. By simulation the choice can
be chosen randomly or by the user.

The secondary station process behaves as a serv-
er process, i.e., it sends back the requested data on
request. The process has one main loop (loop 1) in
which the process runs continuously. After receiv-
ing a request for general interrogation and a positive
reply, the process enters loop 2 in which it stays as
long as the data in channel G1 exist. After channel
G1 is empty, the control is returned to loop 1. Loop
2 could also be interrupted in case of error. The er-
ror is defined by a nondeterministic choice, e.g., if
during the interrogation process there exist data of
class 1, Promela could randomly read and send the
data from channel eventClass1 to the primary sta-
tion or do nothing but leaving the loop. In this way,
the message loss from the secondary to the primary
station is simulated, and the secondary station is set
to the state ready to receive new messages declared
in loop 1. Errors by requests of class 1 and 2 are simu-
lated similarly.

RandGen:

A generator of random numbers randomly increases
or decreases counter count for step 1. This process is
used only when we use the process of randomly gener-
ated events.

Volume 4, Number 1, 2013

8 International Journal of Electrical and Computer Engineering Systems

EventMaker:

This process on the base of global variable count,
This process that is based on global variable count,
which changes depending on process RandGen,
adds events in channels of class 1 and 2. The fol-
lowing form never terminates but waits indefinitely
while variable count coincides with the predefined

value. If we want to limit the number of generated
events, the process can terminate leaving the loop
by command break.

Watchdog:

This process generates the message about the er-
ror on channel pogreska in case any active process in
the model detects timeout.

Fig. 5. Message sequence chart by local initialization of primary station

9

5.3.	 MODEL SIMULATION

Simulation of the specified model could be per-
formed by one of three methods described in Section
3. Simulation enables detection of coarse design errors,
especially by models with size enough that a designer
could have a deep insight into the problem. During
simulation, it is possible to track all local and global
variables as well as the channel’s messages in the win-
dow showing the actual values. The simulation archive
is stored in three ways:

•	 Simulation output shows a chronological simula-
tion trace.

•	 Message sequence chart graphically describes
the simulation sequence written in simulation
output (Figure 5). Every process is assigned one
vertical thread. The transition between the states
is shown by a directed arrow, while every transi-
tion execution is shown by a sequence number
as the one in simulation output.

•	 Time sequence diagram shows a simulation run
similarly to thread execution [9][10][11].

5.4.	 MODEL VERIFICATION

Model verification is done by respecting the follow-
ing criteria:

•	 The secondary station process could be without
termination, progressive only if the primary sta-
tion is progressive. Therefore, we can expect that
the secondary station waits for demands in two
points: endSEC and endSEC2, i.e., at the begin-
ning of one of the two loops inside the process.
These points in the Promela model could be
treated as points of regular process termination.

•	 On the contrary, the primary station should be
constantly progressive, which is specified by the
main loop progress and the progress of loops for
finding class 1 and 2, progressFindClass1 and pro-
gressFindClass2. If the secondary station does not
reply to messages, proper process termination
could be treated a point in the primary station
process by which the primary station repeats the
requests for link status. As the model is done in a
way that this is not allowed, the primary station
should be verified only respecting the progress.

•	 Verification is done separately, on demand of the
progress (non-progress cycle) and on demand of
proper termination (invalid end state).

Verification results:
active verification on non-progress cycles

Full state space search for:
never claim 	 +
assertion violations	 + (if within scope of claim)
non-progress cycles 	 + (fairness disabled)
invalid end states	 - (disabled by never claim)

State-vector 100 byte, depth reached 297, errors: 0

2973 states, stored (3590 visited)
1127 states, matched
4717 transitions (= visited+matched)
352 atomic steps
hash conflicts: 6 (resolved)

Stats on memory usage (in Megabytes):

0.321 	equivalent memory usage for states
(stored*(State-vector + overhead))
0.491 	actual memory usage for states (unsuccessful
compression: 152.79%)

State-vector as stored = 157 byte + 8 byte overhead

2.097 	memory used for hash table (-w19)
0.320 	memory used for DFS stack (-m10000)
0.158 	other (proc and chan stacks)
0.081 	memory lost to fragmentation
2.827 	total actual memory usage

Verification results:
active verification on invalid end states

Full state space search for:

never claim		 - (not selected)
assertion violations	 - (disabled by -A flag)
cycle checks 	 - (disabled by -DSAFETY)
invalid end states	 +

State-vector 96 byte, depth reached 152, errors: 0

2201 states, stored
174 states, matched
2375 transitions (= stored+matched)
328 atomic steps
hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.229 	equivalent memory usage for states
(stored*(State-vector + overhead))
0.388 	actual memory usage for states (unsuccessful
compression: 169.58%)

State-vector as stored = 168 byte + 8 byte overhead

2.097 	memory used for hash table (-w19)
0.320 	memory used for DFS stack (-m10000)
0.158 	other (proc and chan stacks)
0.081 	memory lost to fragmentation
2.724 	total actual memory usage

Verification results prove that every label labeled by
prefix progress is infinite and all processes could “termi-
nate” in states labeled as label and prefix end (verifica-
tion result does not have any error).

By the first verification, the SPIN analyzed 3590 states,
1127 of which were reanalyzed, and the total number
of transitions is 4717. The longest executable sequence
was 297 steps long.

By the second verification, the SPIN analyzed 2201
states, 147 of which were reanalyzed, and the total
number of transitions is 2375. The longest executable
sequence was 152 steps long.

Volume 4, Number 1, 2013

10

By both verifications, reachability analyses of system
states were carried out, which was also the basic re-
quest. Unreachable states of the adjacent process are
expectable and could be explained.

The verification model could be executed based on
requirements defined by linear temporal logic (LTL).
For verification of this model, we used the following
requirements:

•	 at least once, it should happen that the prima-
ry station issuing the link status request does
not receive a reply. This presumes the error in
monitoring direction or the secondary station is
switched off or out of order. The request is written
as (<> !j), where #define j(to_sndr?[StaOfLink]).

•	 at least once, LinkStatus should be equal to
zero. This means that it could not happen that
the program is progressive while the process
of link establishment is bypassed and LinkSta-
tus is by definition equal to zero. The request is
written as (<> g) , where #define g(LinkStatus
==0).

•	 As the secondary station is basically a nondeter-
ministic model, a reply to the link status request
issued by the primary station is expected at least
once. The request is written as (<> j), where #de-
fine j (to_sndr?[StaOfLink]).

•	 After the link is established, it is expected that
the primary station will at least once receive an
NACK message, interrogation data and end of
interrogation message. The request is written as
(p-> (<> h)) && (p -> (<> dataGI)) && (p-> (<>
mTI100)), where #define p (LinkStatus==1), #de-
fine dataGI (to_sndr?[GIData]), #define mTI100
(to_sndr?[TI100GIEnd]).

•	 at least once, an error should happen while
LinkStatus==0. This presumes error possibility
in monitoring direction while the link is estab-
lished. The request is written as (<> (pog U g)),
where #define pog (pogreska?[error]).

Taking into consideration all requirements, the LTL
formula reads:

(<> !j) && (<> g) && (<> j) && (p-> (<> h)) && (p ->
(<> dataGI)) && (p-> (<> mTI100)) && (<> (pog U g))

During preprocessing of the Promela model by mac-
ro functions, logical variables will be assigned the fol-
lowing global variables:

#define p	 (LinkStatus==1)
#define h	 (to_sndr?[NACK])
#define g	 (LinkStatus ==0)
#define j	 (to_sndr?[StaOfLink])
#define pog (pogreska?[error])
#define dataGI (to_sndr?[GIData])
#define mTI100 (to_sndr?[TI100GIEnd])	

On the basis of the defined LTL formula, the SPIN cre-
ates a never claim process. Never claim could be built

in the basic Promela model and verified together with
other validity requirements or verification could be
performed only for the never claim request. If verifica-
tion of never claim is performed independently (by
LTL property mAnager), it is necessary to remove never
claim from the basic Promela model. From verification
results we can conclude that there is no violation of re-
quirements defined by the LTL formula.

6.	 CONCLUSION

An increased complexity of new mostly distributed
systems and new development trends show an in-
creased level of multidisciplinarity. A consequence is
that system development methods used in one dis-
cipline could be used in many others. The trends in
development of multidisciplinary systems show in-
creased complexity, integration level as well as time
to market pressure. All of these elements influence the
lower level of error tolerance.

A wide application of distributed systems, especially
communication protocols, requires some methods of
automatic verification. The system errors are usually a
consequence of an inconsistent protocol design. The
errors discovered in an early phase of system develop-
ment result in less time wasting and lower financial
cost implying a necessity for methodology of error de-
tection in an early design phase.

This paper describes formal methods for distributed
systems and SPIN/Promela tool for formal specification
and verification of logical consistency. The possible us-
age of formal methods in other disciplines is verified by
specification and verification of a protocol used in power
systems IEC60870-5-101. Formal specification, simulation
and verification of logical consistency have been success-
fully done by SPIN/Promela software. The case study re-
sults did not detect any termination process error or dead-
lock state error. The processes are effectively progressive
and verification proves that every label labeled by prefix
progress is infinite and all processes could “terminate” in
states labeled as label and prefix end (the verification re-
sult does not have any error). From verification results, we
can conclude that there is no violation of requirements
defined by the LTL formula that confirms compatibility
with specific requests of temporal logic. The processes did
not have any unexplainable and unreachable state.

7.	 REFERENCES

[1]	 N.C.W.M. Braspenning, Reducing the lead time of
developing multi-disciplinary embedded systems
by model-based integration, Technische Univer-
siteit Eindhoven, 2006.

[2]	 N. Trčka, Verifying Chi Models of Industrial Sys-
tems with SPIN, Proc. of International Conference
on Formal Engineering Methods, No8, LNCS 4 260
Macao, China, 2006.

International Journal of Electrical and Computer Engineering Systems

11

[3]	 A. Matta, et.al., FM for FMS: Lessons Learned While
Applying Formal Methods to the Study of Flexible
Manufacturing Systems, Proc. of 4th Internacional
Conference on Theoretical Aspects of Comput-
ing , LNCS 4711, Macau, China, September 26-28,
2007, pp. 366-380.

[4]	 Norwegian IEC 870-5-101 Approved version Revi-
sion no 2. Oslo, 1998.

[5]	 SINAUT LSA Control Center Interface Module IEC
60870-5-101 Telecontrol Profile – Manual. Sie-
mens, 1999.

[6]	 G. J. Holzmann, Design and Validation of Comput-
er Protocols, Murray Hill, New Jersey, USA, 1991.

[7]	 G. J. Holzmann, D. Peled, An Improvement in For-
mal Verification, Proc. of FORTE Conference, Bern,
Switzerland, October 4-7 1994, pp. 1-12.

[8]	 N. Guelfi, A. Mammar, A Formal Approach for the
Verification of E-Business Processes with PROME-
LA, Software Engineering Competence Center,
University of Luxembourg, Technical report, 2004.

[9]	 G.J. Holzmann, The Model Checker Spin, IEEE
Trans. on Software Engineering, Vol. 23, No. 5, May
1997, pp. 279-295.

[10]	 http://www.stateworks.com, accessed: May 2013.

[11]	 http://spinroot.com/, accessed: April 2013.

Volume 4, Number 1, 2013

