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 This paper considers a multi-degree-of-freedom 

mechanical system with local cubic nonlinearities. 

A major concern is placed on nonlinear dynamic 

behaviors of the system subjected to a soft 

harmonic excitation under primary resonance 

condition. The classical model reduction method 

associated with the single modal resonance theory 

is employed to investigate the system and obtain a 

reduced dynamic model with only a single DOF 

(degree of freedom) under resonance condition. In 

the case of the soft excitation, the analytical 

expression of dynamic response and the frequency 

response characteristic equation can be derived 

from the reduced model of the system using the 

harmonic balance method. Some qualitative and 

quantitative results are then obtained. An example 

of ten-story nonlinear shear structure is included. 

Results from the reduction method of the system 

are in good agreements with those obtained from 

the numerical integration of the dynamic equation 

of the original system. This paper demonstrates an 

effective way in fast analysis of the multi-DOFs 

nonlinear system qualitatively and quantitatively, 

especially large scale multi-DOFs system at 

primary resonance state. 
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1 Introduction  

 

Dynamic systems with local cubic nonlinearities are 

employed as models of various physical and 

engineering situations, such as Josephson junctions, 

a rotating flexible blade, buckled beams, ship 

dynamics, moored structures in the ocean, electrical 

circuits, fluid-film bearings in rotating machinery, 

dry friction and backlash phenomena in certain 

connections of mechanical systems, non-linear 

spring and damper supports in piping or vehicle 

systems, etc. Even though nonlinearities may 

constitute only a small part of the system, the 

dynamic behavior of the system is wholly nonlinear. 

Great interests are focused on nonlinear dynamic 
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phenomena of these systems, such as bifurcations of 

nonlinear resonances (primary, subharmonic, 

superharmonic, and narrow band random 

resonances), and even transition to chaos, when 

forced by harmonic excitations. Research papers on 

these topics are in Refs. [1-5].  

Brennan used the harmonic balance method (HBM) 

to determine the jump-up and jump-down 

frequencies of a softening and hardening lightly 

damped Duffing oscillator with linear viscous 

damping [1]. The analytical results are validated for 

a range of parameters by comparing the predictions 

with calculations from direct numerical integration 

of the equation of motion. In Ref. [2], the harmonic 

balance method was employed to analyze super or 

sub harmonic response of torsional system with two 

DOFs. Elnaggar studied harmonic, subharmonic, 

superharmonic and combination resonances of the 

additive type of self-excited two coupled-second 

order systems subjected to multi-frequency 

excitation. The theoretical results are obtained by 

the multiple-scales method [3]. Rajan studied the 

response of a Duffing oscillator to narrow-band 

random excitation by both multiple time scaling and 

stochastic averaging approaches [4]. Random jumps 

were observed to occur if the excitation bandwidth 

is sufficiently small. The random vibration was also 

involved in Ref. [5]. These analytical methods 

mentioned above have the advantage of producing a 

steady state solution without using artificial 

damping and by providing an analytical (as opposed 

to numerical) representation. However, they 

confined their performances to the system with low 

degree of freedom. 

Quite often characteristic dynamic model for 

complex mechanical systems contains many degrees 

of freedom. For example, finite element analysis 

often results in the discrete models of continuous 

structural system, usually with hundreds of DOF. A 

direct analytical analysis of such multiple degrees 

of freedom nonlinear systems is generally quite 

difficult. In this case, the numerical methods are 

available and can give their solutions with enough 

numerical precision. However, only quantitative but 

not qualitative results are often obtained. Moreover, 

the time consumption of numerical computation in 

these problems is usually huge. Some serious 

numerical problems of stiff integration may/ might 

occur, especially for large scale multi-DOF 

nonlinear system. Additional criteria or algorithms 

in computation are required. 

The aim of this paper is to fast investigate the 

nonlinear behavior of multi-DOF system with local 

cubic nonlinearities under harmonic excitation, both 

quantitatively and qualitatively. The major concern 

of this paper is focused on the nonlinear frequency-

response dynamics of such a system under primary 

resonance condition. For the system with cubic 

nonlinearity, there are frequencies at which the 

vibration suddenly jumps up or down when it is 

excited harmonically with slowly changing 

excitation frequency. The frequencies at which 

these jumps occur depend upon whether the 

frequency is increasing or decreasing and whether 

the nonlinearity is hardening or softening. Between 

these frequencies, multiple solutions exist for a 

given frequency of excitation, and the initial 

conditions determine which of these solutions 

represents the response of the system. According to 

the author’s knowledge, little previous studies are 

involved in this problem. The difficulty of this 

problem lies on solving high dimensional 

differential equations in quality and quantity. In this 

paper, the classical model reduction method is first 

employed to reduce the size of the equations and an 

approximate reduced order equation is then 

obtained [6, 7]. Unfortunately, this reduced 

equation is not often analytically solved. It means 

that only quantitative but qualitative solutions are 

often obtained from the reduced model. To obtain 

the quantitative and qualitative solution of the 

reduced equation, the single mode resonance theory 

proposed by Zheng is applied in this paper [8]. The 

outline of this paper is as follows. The application 

of the reduction method associated with the single 

natural mode resonance theory in investigating 

nonlinear dynamic system with large DOFs is 

briefly introduced in section two. An illustratable 

example is examined and some significant results 

are obtained in the subsequent section. The results 

obtained from the presented method will be verified 

by numerically solving the original system and they 

are all in good agreement. Some important 

conclusions are drawn in the last section. 

 

2 Mathematic fundamentals and 

formulations 
 

The motion equations of the n-DOFs system with 

local cubic nonlinearities can be expressed in matrix 

form as: 
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               N dM x C x K x F x F t    , (1) 

 

where  x  is the n-vector of physical coordinates, 

[M], [C] and [K] are the(n×n) mass, damping and 

stiffness matrices respectively, {FN (x)} is the n -

vector of cubic nonlinear applied force, and {Fd (t)} 

is the vector of time dependent external excitations.  

In this paper, the mass matrix [M] and the stiffness 

[K] are symmetric, the external excitations {Fd (t)} 

are harmonic, and the damping matrix [C] in Eq. (1) 

is proportional to the mass and/or stiffness matrices 

for system, that is, 

   

      C a M b K  , (2) 

 

where the parameters a and b are constants. 

The homogeneous undamped equation 

   

       0M x K x   (3) 

 

leads to eigenvalue or spectral matrix [Λ] and 

eigenvector matrix [Φ]. 

The spectral matrix is expressed by 

   

     1 2 ndiag     (4) 

 

and the eigenvector matrix is defined by 

   

    1 2 n    . (5) 

 

The eigenpairs ( ii  , ) denote the i-th modal 

frequency and modal shape, i = 1, 2, …, n.  

Introduce the transformation 

   

     x q , (6) 

 

where {q} is the n-vector of normal mode 

coordinates. 

Substituting Eq. (6) into Eq. (1) yields 

   

 
           

       N d

M q C q K q

F q F t

  



 

 
 (7) 

 

Multiplying Eq. (7) by the transpose [Φ
T
], one 

obtains 

   

 
              

           

T T T

T T
N d

M q C q K q

F q F t

     

  

 

 

  (8) 

 

The eigenvector matrix satisfies the following 

orthogonality properites with respect to the mass 

and stiffness matrix 

   

      T M I   ,      T K   , (9) 

 

where [I] is unit matrix. 

In the case of Rayleigh damping, the damping term 

[Φ
T
], [C], [Φ] in Eq. (8) can be written as follows 

   

         1 1 2 22 2 2T
n nC C diag        

  
(10) 

 

where ξi is the i-th modal damping coefficient. 

Using Eq. (9) and Eq. (10), Eq. (8) is then 

transformed into  

   

                  T T
N dq C q q F q F t        

  (11) 

 

or 

   

 

 

 

2
1 2

1

1

2
n

i i i i i i ji Nj n

j

n

ji dj

j

q q q F q q q

F t

   







  






(12) 

 

Compared Eq. (1) with Eq. (11) or Eq. (12), one 

will find that they are equivalent in mathematics. 

Unlike Eq. (1), the terms in Eq. (11) or Eq. (12) 

expect the nonlinear force are uncouple.  

The system with multiple degrees of freedom often 

has multiple eigenmodes. As forced by the 

excitation, the total response of the system is a sum 

of the response of full modes. In these modes, some 

modes take up a large proportion of the total time 

response, whereas other modes contribute much less 

toward the total response. Generally, the higher 

modes have a small portion in the total response of 

engineering system. It implies that the total 

response can be expressed by retaining only a few 

leading modes while ignoring the contribution of 

higher modes. That is, Eq. (6) can be written to 



52 J. Luo, X. Liu: An approximate response of the large system… 
______________________________________________________________________________________________________________________

 

 

  
1

l

i i

i

x q


 , (13) 

 

where l  denotes the number of leading modes. 

Usually, the number l is no more than to the number 

n – the degree of freedom of system. Using Eq. (12) 

and Eq. (13), one can obtain the solutions with less 

effort. This is the key of the classical model 

reduction method. More details are found in Refs. 

[6, 7]. 

Quite often analytical solutions of the reduced 

equations (seen in Eq. (12) and Eq. (13)) are not 

available. In many situations, one will care for the 

system under resonance state. For example, the 

vibration amplitude of the rotor system will reach 

the maximum as the spinning speed of its shaft 

passes through the critical natural frequency. Now, 

the case of primary resonance is discussed. When 

the system enters into the resonance state, for 

example the primary resonance of the j-th mode, the 

response of the j-th mode is observed to take up 

large proportion of total response and other modes 

contribute less toward the total response. Hence, 

Eq. (13) can be further reduced to  

   

    j jx q . (14) 

 

This phenomenon is called “single natural mode 

resonance theory”. 

Substituting Eq. (14) into Eq. (11) or Eq. (12), one 

can obtain the dynamic equation of the resonance 

mode qj 
   

   2

1 1

2
n n

j j j j j j kj Nk j kj dk

k k

q q q F q F t    
 

      (15) 

 

and the dynamic equations of the non-resonance 

modes (for i ≠ j) 

  

   2

1 1

2
n n

i i i i i i ki Nk j ki dk

k k

q q q F q F t    
 

     . (16) 

  

Considering cubic nonlinearities and harmonic 

excitation (for instance cosine excitation), Eq. (15) 

can be expressed compactly as 

   

  2 3
02 cosj j j j jq q q q F t      , (17) 

   

where the parameters μ, β, F0 and Ω are constants. 

Noting that Eq. (17) is the normal Duffing oscillator 

with a single DOF, its solution can be easily 

obtained by analytic methods [1-5] or numerical 

methods. Then, the approximate response of the 

system Eq. (1) can be determined in terms of Eq. 

(14) and Eq. (17). The qualitative and quantitative 

conclusions can also be drawn from Eq. (14) and 

Eq. (17). 

In this paper, the excitation is assumed to be soft. In 

a weak vibration, the HBM method is employed to 

derive the analytical solution of Eq. (17). An 

approximate solution of first order can be expressed 

as 

 

 cos( )jq a t   , (18) 

 

where a is the amplitude of response, Ω and φ are 

frequency and phase. 

Substituting Eq. (18) into Eq. (17) yields  

   

  2 2 3
0

3
cos

4
j a a F     , (19) 

   

 02 sina F  . (20) 

 

Using Eq. (19) and Eq. (20), the approximate 

frequency response curve for system Eq. (1) is 

determined by 

   

    
2

22 2 3 2
0

3
2

4
j a a a F   

 
     

. (21) 

 

The method based on the single mode resonance 

theory provides a new way to investigate the 

nonlinear system with multi-DOFs. However, this 

method is valid under some conditions. Here, we 

discuss and summarize these conditions. 

Generally, Eq. (14) is usually satisfied under the 

following conditions:  

1) The response of resonance mode is leading in the 

total response, while the non resonance modes 

contribute less toward the total response. 

2) The resonance mode does not interact with other 

non-resonance modes. It implies the 

phenomenon internal resonance does not occur. 

3) For multi-frequency excitation, combination 

resonance may/might arise, but the response of 

combination resonance is not preponderant 

compared with that resonance mode of interest. 
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3 Numerical Examples   
 

 
 

Figure 1. Ten-story building model. 

 

The ten-story shear building is shown in Fig. 1. The 

structure has cubic stiffness. The stiffness of the j-th 

story in building is described by linear component 

with coefficient kj and nonlinear component with 

coefficient αj in which j = 1, 2, 3, …, 10. The mass 

of the corresponding story is mj. xj denotes the 

transverse displacement of the j-th story of the 

building. The harmonic excitation induced by wind 

load is assumed to be applied at the top story of the 

building. F0 is the amplitude of excitation. The 

parameters Ω and θ are the frequency and phase of 

excitation, respectively.  

The dynamic equations of motion for the building 

can be written in matrix form as  

   

            ( ) ( )NM X C X K X F t F X    . (22) 

 

In Eq. (22),  X ,  X  and  X  denote 

displacement, velocity and acceleration vector of 

the structure and are expressed as 

   

  

1

2

n

x

x
X

x

 
 
 
 
 
 

, 

1

2

n

x

x
X

x

 
 
 
 
 
 

,  

1

2

n

x

x
X

x

 
 
 
 
 
 

 (23) 

 

and the mass [M], stiffness [K] matrices are equal to  

   

  

1

2

9

10

m

m

M diag

m

m

  
  
  
  
  
  
  
  

, 

 

1 2 2

2 2 3 3

9 9 10 10

10 10

k k k

k k k k

K

k k k k

k k

  
 
  

 
 
 

   
  

 , (24) 

 

and the damping [C] is in proportion to the mass 

[M] and the stiffness [K], and then defined by 

   

      C a M b K  , (25) 

 

where the parameters a and b are constant. 

The excitation force {F(t)} and the nonlinear 

component of the restoring force {FN(X)} are equal 

to 

   

   

 
0

0

0

0

cos

F t

F t

 
 
 
 
 
 
  

, 

 

3 3
2 2 1 1 1

3 3
3 3 2 2 2 1

3 3
10 10 9 9 9 8

3
10 10 9

( )

( ) ( )

( )

( ) ( )

( )

N

x x x

x x x x

F X

x x x x

x x

 

 

 



  
 

   
 
 

   
   

 . (26) 

 

In this section, the parameters are:  

k = 100000,   mi = 1000 kg,    

αi = 20 k
2
,   i = 1, 2, …, 10, 

k1 = k2 = 5k N/m,  k3 = k4 = 4k N/m,  

k5 = k6 = 3k N/m, k7 = k8 = 2k N/m, 

k9 = k10 = k N/m,  F0 = 1.5 N, θ = 0,  

a = 0.0171,   b = 0.0016. 

 

3.1 Linear system analysis 
 

Let the coefficients αi in Eq. (22) be equal to zeros 

for i = 1, 2, …, 10, the dynamic equation of the 

linear system for the structure shown in Fig. 1 is 

then obtained. 
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A computer program based on the Householder QR 

method was used to calculate the natural 

frequencies and modes of vibration for the linear 

system. Table 1 shows the first five natural 

frequencies in rad/s, and modal damping for the 

structure shown in Fig. 1. The modes of vibration 

normalized with respect to the mass matrix are 

listed in Table 2. 

 

Table 1. The First Five Natural Frequencies and 

Modal damping. 

 

Mode Freq. [rad/s] Modal Damping [ξi]  

1 2.7502 5.3‰ 

2 6.6523 6.6‰ 

3 10.8492 9.5‰ 

4 15.0825 12.6‰ 

5 17.5917 14.6‰ 

 

The frequency response characteristic curve for the 

transverse displacement of the tenth story in 

building is plotted in Fig. 2.   

 

 
 

Figure 2. The frequency response curve of 

coordinate x10. 

 

As shown in Fig. 2, the first peak amplitude appears 

at frequency Ω equaling to 2.76 rad/s. When the 

excitation frequency is turned to approach the 

second natural frequency, the other peak amplitude 

appears. The value of the first peak amplitude is 5.1 

mm, and the second peak amplitude is about one 

eighth of the first peak amplitude. Fig. 2 also shows 

that the vibration of higher frequencies is very 

weak. 

 

3.2 Nonlinear system analysis 
 

According to the results in linear system analysis, 

we focus on the dynamic behavior of the system at 

excitation frequency Ω ≈ ω1 and Ω ≈ ω2. In this 

section, the excitation is assumed to be soft. 

 

3.2.1 The case of excitation frequency Ω ≈ ω1 

 

First, Eq. (22) is written to the equivalent equations 

in form of mode coordinates like Eq. (12) by 

transforming Eq. (6). At given excitation frequency 

and initial integral condition 0 0 0i iq q   
for i = 1, 

2, …, 10, the dynamical response for mode 

coordinates can be obtained from the numerical 

integration of the mode equations. In this paper, the 

RKF45 method with adaptive step size was 

employed to calculate integral problems. Numerical 

results are plotted in Fig. 3. Fig. 3 illustrates the 

response of the first four modes with regard to time. 

Fig. 3a, Fig. 3b, Fig. 3c and Fig. 3d are for 

excitation frequency 2.76 rad/s, 2.8 rad/s, 2.84 rad/s 

and 2.9 rad/s, respectively. From the data curve 

plotted in Fig. 3, the response of the first mode is 

leading compared with that of other modes.  

 

Table 2. Normal Modes of Vibration. 

 

Level Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

10 0.0166 -0.0173 0.0134 0.0128 0.0090 

9 0.0153 -0.0096 -0.0024 -0.0163 -0.0189 

8 0.0129 0.0023 -0.0153 -0.0083 0.0117 

7 0.0112 0.0077 -0.0128 0.0051 0.0089 

6 0.0091 0.0115 -0.0027 0.0127 -0.0076 

5 0.0075 0.0123 0.0051 0.0081 -0.0108 

4 0.0056 0.0113 0.0109 -0.0026 -0.0028 

3 0.0042 0.0093 0.0120 -0.0092 0.0054 

2 0.0026 0.0062 0.0096 -0.0105 0.0094 

1 0.0013 0.0033 0.0055 -0.0068 0.0068 
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a) 
 

b) 

 

c) 

 

 

d) 

 

Figure 3. the time response of the first four modes for excitation frequency Ω ≈ ω1: a) Ω = 2.76, b) Ω = 2.8, 

c) Ω = 2.84, d) Ω = 2.9, unit: rad/s. 

 

Secondly, we examine the dynamical response of 

different reduction models at different given 

excitation frequencies. Two interested reduced 

models include the ones governed by the leading 

mode q1, and the leading mode q1 with the minor 

mode q2, respectively. By comparison, the original 

model with full modes is also examined. All 

dynamic models are solved numerically by the 

RKF45 method. The results are shown in Fig. 4. 

In Fig. 4, the solid line plus circle denotes the 

results from the model for one mode; the dashed 

line is for the results from the model for two modes; 

the dash point line is for the results from the 

original model for full modes. Fig. 4 shows that the 

total response of system is approximately controlled 

by the leading mode q1 at different frequencies in 

range of the first natural frequency. Fig. 4b and Fig. 

4c are for the same excitation frequency but 

different initial conditions. The plot in Fig. 4b and 

Fig. 4c implies that there are multiple steady period 

solutions in the region of excitation frequency 2.82 

rad/s. 

In order to determine the frequency region for 

coexistence of multiple steady state solutions, the 

approximate frequency response characteristic 

equation was derived based on the reduced model 

controlled by the leading mode q1.  

This reduced model for the leading mode q1 
is 

expressed as 

   

  2 3
1 1 1 1 1 1 1 12 cosq q q q F t      .  (27) 

 

In Eq. (27), the parameters are: μ1 = 0.0146, β1 = 

0.0146 and F1 = 0.0249. Using these parameters, the 

frequency response curve is depicted by the dash 

line in Fig. 5. As shown in Fig. 5, the vibration 

suddenly jumps down at frequency 2.8685 rad/s 

when the excitation slowly increases. 
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a) 

 

c) 

 

 

b) 

 

 

d) 

 

Figure 4. Comparison of response of coordinate x10 from variable types of models at different given 

excitation frequency Ω: solid line plus circle for one mode; dashed line for two modes; dash point 

line for full modes: a) Ω = 2.76, b) Ω = 2.82, c) Ω = 2.82, d) Ω = 2.9, unit: rad/s. 

 

 
 

Figure 5. Frequency response of x10 for the first 

primary resonance. 

 

While the excitation frequency slowly decreases, 

the vibration suddenly jumps down at frequency 

2.803 rad/s. There are two steady period solutions 

in the frequency range from 2.803 rad/s to 2.8685 

rad/s. The information gives a qualitative prediction 

for nonlinear dynamic behavior of the system. To 

validate the prediction results, the frequency 

response relation is also obtained from the response 

of system Eq. (22) solved numerically. The 

corresponding results are plotted by the solid line 

plus triangle in Fig. 5. Obviously, the prediction 

results match well with numerical results. 

 

3.2.2 The case of excitation frequency Ω ≈ ω2 

 

Similarly, we examined the dynamic behavior of the 

structure as excitation frequency approaching the 

second natural frequency in the same way as used in 
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the previous section. Fig. 6 shows the first six mode 

responses at different given excitation frequencies. 

Fig. 6a–d are for Ω equaling to 6.7 rad/s, 6.79 rad/s, 

6.82 rad/s and 6.9 rad/s, respectively. In Fig. 6, the 

black line denotes the time response of the second 

mode at given conditions. Clearly, the second mode 

is leading as excitation frequency being in the 

domain of the second mode resonance. 

Fig. 7 shows the response of the vibration 

transverse displacement of the tenth story of the 

building for different excitation frequencies in the 

domain of the second natural frequency. The results 

are obtained from three types of equivalent models: 

the reduction model governed by the leading mode 

q2, the reduction model controlled by the two modes 

q1 and q2, the original model. The plots in Fig. 7 

indicate both and the two reduction dynamic models 

generate a satisfied solution for the original 

dynamic system. There is only little difference 

between them being mainly determined by the 

second mode in the domain of second resonance. In 

Fig. 7, Fig. 7a, Fig. 7b– c, and Fig. 7d are for Ω = 

6.7 rad/s, Ω = 6.82 rad/s and Ω = 6.94 rad/s, 

respectively. Fig. 7(b) and Fig. 7 c) are both for Ω = 

6.82 rad/s but under different initial conditions. 

An approximate dynamic equation for the building 

shown in Fig. 1 can be defined by the leading mode 

q2 under second primary resonance as: 

 

   

 
 

   

2 3
2 2 2 1 2 2 2 2

2 2

2 cosq q q q F t

x q

  



    



 (28) 

 

The parameters in Eq. (28) are: μ2 = 0.044, β2 = 

2488.1 and F2 = 0.0259. The frequency response 

curve obtained from Eq. (28) is plotted in Fig. 8.   

 

 

a)  

b) 
 

 

c) 

 

 

d) 

  

Figure 6. The time response of the first six modes for excitation frequency Ω ≈ ω2: a) Ω = 6.7, b) Ω = 6.79, 

c) Ω = 6.82, d) Ω = 6.94, unit: rad/s.
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a) 

 
c) 

 

 
b) 

 

 
d) 

 

Figure 7. Comparison of response of coordinate x10  from variable types of dynamic models at different 

given excitation frequency Ω: solid line plus circle for one mode; dashed line for two modes; dash 

point line for full modes: a) Ω = 6.7, b) and c) Ω = 6.82, d) Ω = 6.94, unit: rad/s. 

 

 
 

Figure 8. Frequency response curve for Ω ≈ ω2. 

 

The solid line in frequency response curve denotes 

the stable solutions, while the dashed line is for the 

unstable solutions. By comparison, the frequency 

response relation obtained from the numerical 

response is also plotted in Fig. 8, seen for the solid 

line plus circle. 

As shown in Fig. 8, the jump in frequency response 

curve appears at Ω = 6.79 rad/s or Ω = 6.83 rad/s 

according to numerical results. The presented 

method in this paper predicts that the jump 

frequencies are 6.79 rad/s and 6.852 rad/s. Clearly, 

there is only a slight difference between the 

numerical results and the prediction results. 

 

4 Conclusion  
 

In this paper an application of the classical model 

reduction method associated with the single modal 

resonance theory is introduced to investigate the 

MDOF system with local cubic nonlinearities under 

soft harmonic excitation. An illustrative example of 

a ten-story nonlinear shear structure is also 
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considered. The analytical solutions of nonlinear 

response and frequency-response behaviors of the 

system are derived from the reduction model with 

only a single DOF at primary resonance, which 

generates the qualitative and quantitative results for 

the original system. These results are validated by 

comparing with calculations from direct numerical 

integration of the equation of motion for original 

system and good agreements are obtained. This 

paper gives a new way for making a fast analysis in 

quality and quantity of the nonlinear dynamic 

behaviors of the MDOF system, especially large 

scale multi-DOF system. 
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