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INTRODUCTION

We will first give some mathematical definitions.

For any graph G we denote the vertex-set and the

edge-set of G by V(G) and E(G), respectively. A subset

D of V(G) is called a k-dominating set, if for every ver-

tex y not in D, there is at least one vertex x in D, such

that the distance between them (d(x, y)) ≤ k. For conve-

nience, we also say that D k-dominates G.

The k-domination number gk is the cardinality of the

smallest k-dominating set. The l-domination number g is

also called a domination number.

A set S perfectly k-dominates a hexagonal grid if for

each v vertex there is exactly one vertex u ∈S, such that

d(u,v) ≤ k. The set of vertices k-dominated by u will be

denoted by Dk(u).

Dominating sets appear to have their origins in the

game of chess, where the goal is to cover or dominate

various squares of a chessboard by certain chess pieces.

The problem of determining domination numbers of

graphs first emerged in 1862 in the paper of de Jaenisch.1

He wanted to find the minimal number of queens on

a chessboard, such that every square is either occupied

by a queen or can be reached by a queen with a single

move. Domination as a theoretical area in graph theory

was formalized by Berge2 in 1958 and Ore3 in 1962.

Two edges in graph G are independent if they are

not adjacent in G. A set of pairwise independent edges

of G is called a matching in G, while a matching of maxi-

mum cardinality is a maximum matching in G. The num-

ber of edges in a maximal matching of G is b1.

If we have a graph G without isolated vertices, with

n vertices, then he following holds: g(G) ≤ min {b1(G),

n–b1(G)}. It follows that from the domination number

we can say something about a lower bound on the maxi-

mal matching.

* Dedicated to Professor Haruo Hosoya in happy celebration of his 70th birthday.

** Author to whom correspondence should be addressed. (E-mail: vukicevi@pmfst.hr)



Chemical structures are conveniently represented by

graphs, where atoms correspond to vertices and chemi-

cal bonds correspond to edges.4,5 However, this repre-

sentation does not only provide a visual insight into mo-

lecular structures, but inherits many useful information

about chemical properties of molecules. It has been shown

in QSAR and QSPR studies that many physical and che-

mical properties of molecules are well correlated with

graph theoretical invariants termed topological indices or

molecular descriptors.6

One of such graph theoretical invariants is the domi-

nation number.7 It has been shown that this number dis-

criminates well between even the slightest changes in trees

and hence it is very suitable for analyses of the RNA struc-

tures.8 From the above said it follows that the domina-

tion number is just the simplest variant of k-domination

numbers well known in mathematics.9

In this paper, we analyze k-domination of two well

known chemical structures: graphite and chain benzenoids.

Usage of topological indices for the analyses of graphite

samples has already shown to be useful10 and there is

quite a substantial amount of literature covering the con-

nection between benzenoids and topological indices (see,

for instance, Ref. 11 and references therein). In some pa-

pers,12,13 k-domination was investigated on the Cartesian

product of two paths, which is equivalent to a rectangular

square grid.

K-DOMINATING SETS ON THE LINEAR
BENZENOID

Let B(h) be a linear benzenoid chain with h hexagons

represented by the following figure:

Since the domination number of graphs is equal for

isomorphic graphs, we shall represent B(h) with the fol-

lowing figure and introduce the following coordinates:

Denote by a gk the k-domination number of B(h).

Proof: First, assume that k = 1. Note that the set Ph =
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B(h). Hence, g1(h) ≤ h + 1. On the other hand, each
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= h + 1. Hence, indeed g1(h) = h + 1.

Now, assume that k = 2. If h = 1,2, the claim is ob-
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subgraph of G = P∞ × P2 as illustrated in Figure 3.
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...

Figure 1. Linear benzenoid chain.

...
(0,1) (1,1) (2,1) (3,1) (4,1) (6,1) (2h-1,1) (2h-1,1) (2h,1)(5,1)

(0,0) (1,0) (2,0) (3,0) (4,0) (6,0) (2h-2,0) (2h-1,0) (2h,0)(5,0)

Figure 2. Coordinate system.
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hand, suppose that S has only one vertex in the first he-

xagon. That vertex 2-dominates both corners. Hence, it

cannot 2-dominate any vertex from the third hexagon on.

Hence, S has at least 1 +
( )h − +





2 2

2
=
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elements. This proves the claim.

It remains to assume that k ≥ 3. Note:

Set Sz,h is a k-dominating set of B(h) when z is the

smallest number, such that 2kz – k – 1 ≥ 2h – (k – 1), i.e.,

when z =
2 2

2

h

k

+
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(then all vertices on B(h) are k-domi-

nated and Sz,h is a subset of vertices of B(h)).

Examples for k = 5 and h = 9; for k = 3 and h = 9;

for k = 4 and h = 9 are given below:
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PERFECT K-DOMINATING SET ON THE INFINITE
HEXAGONAL GRID

Let us observe the subsets of an infinite hexagonal grid.

We shall see that perfect k-domination does not appear

very often. More precisely:

Theorem 1. – There is a set S that perfectly k-dominates

the hexagonal grid if and only if k = 1.

Proof: It can be easily seen that the set S represented in

the figure below by black squares and circles perfectly

1-dominates the hexagonal grid:

Let us introduce a coordinate system as in the fol-

lowing figure:
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Figure 3. Infinite benzenoid chain.
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Figure 4. Examples for: k = 5 and h = 9; for k = 3 and h = 9;
for k = 4 and h = 9.

Figure 5. 1-Domination of the hexagonal grid.
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Figure 6. Coordinate system on the hexagonal grid.



Now, let us prove that there is no perfect k-domina-

tion for k ≥ 2. Suppose in contrast that the set S which

perfectly k-dominates the hexagonal grid exists. Without

loss of generality, we may assume that s0 ∈S, where:

s0 = (0,0), if k mod 4 = 0, or 2

s0 = (0,–1), if k mod 4 = 1, or 3.

One can easily see that:

It can be easily seen that:

Claim A. – Vertex s' ∈S that k-dominates (i,  k / 2 ),

i∈{–  k / 2 + 1, –  k / 2 + 3,...,  k / 2 – 3,  k / 2 – 1}

has a y – coordinate equal to k.

Proof: Just note that s' does not dominate (i – 1,  k / 2 )

and (i + 1,  k / 2 ). (And this is then perfect k-domina-

tion.)�

Moreover, it can be seen that vertex s' from the last

claim is an element of the set {(i –  k / 2 , k), (i –  k / 2 +

2, k),..., (i +  k / 2 , k)}.

(Because the distance between such vertex s' and vertices

is ≤ k, and such s' is not k-dominated by s0 and k-domi-

nates at most other undominated vertices.)

Claim B. – Vertices

are k-dominated by the same vertex s.

Proof: Suppose the contrary. Let s1 and s2 be two do-

mination vertices that k-dominate the above vertices.

From the discussion above, follows set (2):

but then both of these vertices dominate (0, k), which is

a contradiction. �

It can be easily seen that the best »covering« is if s∈
{(–1, k), (1, k)}. Because of the symmetry, we may as-

sume that s = (–1, k). For k = 4, 5, 6, we have the situa-

tions represented in the following figures:

In Figure 7, vertex (0, 0) is denoted by a black circle;

vertices dominated by it by gray circles; vertex s by a gray

square; vertices dominated by it by gray squares; and ver-

tex ( k / 2 + 1,  k / 2 ) by a white circle.

The only vertex that can k-dominate ( k / 2 + 1,

 k / 2 ), without k-dominating any vertex already k-do-

minated by (0,0) and s, is s' = (k +  k / 2 + 1,  k / 2 ).

For k = 4, 5, 6, we have the situations represented in the

Figure 8. Vertex s' is represented by a black rhomb;

vertices k-dominated by it by gray rhombs; and vertex

( k / 2 + 1,  k / 2 + 1) by a white square.

Note that vertex ( k / 2 ,  k / 2 + 1) is k-domi-

nated by s and that vertices ( k / 2 + 2,  k / 2 + 1) and

( k / 2 + 1,  k / 2 ) are k-dominated by s'. Note that no
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Figure 7. Hexagonal grids and dominated vertices for k = 4, 5, 6.
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vertex can k-dominate ( k / 2 + 1,  k / 2 + 1) without

dominating at least one of its neighbors. Since vertex

( k / 2 + 1,  k / 2 + 1) is not k-dominated by either s

or s' , it is not k-dominated at all. This is a contradic-

tion. �
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K-dominacijski skupovi na linearnim benzenoidima i beskona~noj heksagonalnoj mre`i

Damir Vuki~evi} i Antoaneta Klobu~ar

U ovom se radu iznose rezultati koji se odnose na k-dominacijske brojeve na linearnim lan~astim benzeno-

idima i perfektne k-dominacijske skupove na beskona~noj heksagonalnoj mre`i.
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Figure 8. Hexagonal grids and dominated vertices for k = 4,5,6.




