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Abstract. In this paper, we explain the relations between combinatorial optimization and
real algebraic geometry with a special focus to the quadratic assignment problem. We
demonstrate how to write a quadratic optimization problem over discrete feasible set as
a linear optimization problem over the cone of completely positive matrices. The latter
formulation enables a hierarchy of approximations which rely on results from polynomial
optimization, a sub-field of real algebraic geometry.
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1. Introduction

In combinatorial optimization, the main task is to find an optimum of given the
objective function over a subset of a finite combinatorial set, which is usually the set
of all subsets of the given universal set, the set of all permutations, combinations, etc.
Solving the most interesting problems usually requires complete enumeration, i.e.,
checking all feasible solutions, which might be time-consuming. A typical approach
to overcome the complexity obstacles is to reformulate the problem in such a way
that the cost function becomes linear and the feasible set becomes some discrete
subset of R2. The next step usually consists of embedding the feasible set into a
convex subset of R2 which enables the application of efficient methods from convex
optimization. We may always choose the convex superset in such a way that it is
an intersection of a convex cone and a linear subspace. If the cone is well-equipped
(i.e., we can find a self-concordant barrier function for the cone), then the resulting
conic program can be solved to a precision ε in polynomially many iterations, where
the number of iteration is also a polynomial function of log ε [37]. This approach
usually gives only lower or upper bounds for the optimum of the original problem
but these bounds may be used to reduce the initial feasible set significantly or to
reduce the branching tree at Branch and Bound method.
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Relaxations, which result in linear programming problems, were intensively stud-
ied in the past decades because many efficient algorithms exist for their solution.
For several problems, e. g., quadratic 0 − 1 problems, there is no reasonable linear
approximation of the feasible set and if we want to get tight bounds, we have to use
methods from nonlinear programming. These methods are widely considered much
harder to implement and the size of instances that we can solve by using them is
much more limited.

In the last two decades, significant progress has been made in the optimization
over the cone of positive semidefinite matrices. The results about this topic are
gathered under the name semidefinite programming (SDP). Now we share a good
understanding of the geometry in SDP [8, 48, 1] and have a variety of efficient SDP
solvers based on the interior point concept [8, 16, 37, 48] or on other concepts such
us the bundle method [17, 15] and the Augmented Lagrangian method [34, 25].

Semidefinite programming has attained an important role in combinatorial op-
timization. We point out two reasons for that. The first is the efficiency of the
methods for solving semidefinite programs. The second reason is the strong evi-
dence that many semidefinite models are significantly stronger than purely linear
ones, justifying the additional computational costs for their solutions.

Optimization of the linear function over the cone of copositive or completely
positive matrices is called copositive programming. Several authors have recently
highlighted the importance of copositive programming in combinatorial optimization
[9, 32, 3, 13, 5]. It has been shown that feasible sets for some hard combinatorial
problems (like the stability number problem, the quadratic assignment problem, the
graph partitioning problem) may be represented as the intersection of a linear space
and the cone of copositive or completely positive matrices. This does not make the
problems tractable since the separation problem for the copositive cone is NP hard
[6], but it opens many new possibilities to construct approximation schemes for the
problems.

When we try to find advanced approximation of copositive programming prob-
lems, we naturally meet real algebraic geometry. This is a very rich field within
algebra which mainly studies solution sets of a given finite set of polynomial equal-
ities and inequalities, so-called semi-algebraic sets. Basic questions studied within
this area are if the given semialgebraic set is empty, bounded, connected, etc. Poly-
nomial optimization is a subfield of real algebraic geometry and it is focused on
optimization problems where one wants to find an optimum of a real polynomial
f(x) over the feasible set defined by polynomial inequalities:

f inf
K = inf{f(x) : x ∈ K}, where K = {x ∈ Rn : gi(x) ≥ 0 for i = 1, . . . , k}. (1)

Problem (1) covers all well-known combinatorial problems; hence, it is in general
hard to solve. In the last two decades, an approach based on sum-of-squares (SOS)
and the dual moment idea became very promising. The SOS approach relies on
the fact that if f can be written as s0 +

∑
i sigi where si are non-negative on K,

then f is non-negative on K. The largest ε such that f − ε = s0 +
∑

i sigi is a
lower bound for the optimum of (1). If we consider si that are SOS, we obtain SDP
approximations for (1); if we consider si, which are polynomials with a non-negative
coefficient (this is sufficient if K is a subset of a non-negative orthant), then we get



From combinatorial optimization to real algebraic geometry and back 107

LP approximations for (1).
Results that relate positivity of polynomial functions to algebraic representations

of these functions are known as Positivstellensatz [24]. In real algebraic geometry,
people also use the term Nichtnegativestellensatz for results about algebraic cer-
tificates for non-negative polynomials. Some people use these two names only for
theorems that are “if and only if”, see e.g. Scheiderer [46]. In this paper, we call a
Positivstellensatz any result which provides algebraic certificates for positivity (or
non-negativity) for positive polynomials.

As the most famous Positivstellensätze we consider the results of Pólya [29, 18],
Schmüdgen [43] and Putinar [35]. Pólya proved (see Theorem 1 below) that if the
given real homogeneous polynomial f is positive on Rn

+ \{0}, then multiplying it by
(
∑

i xi)
r , where r is sufficiently large, gives a polynomial with non-negative coeffi-

cients, i.e., a certificate that the original polynomial is non-negative on Rn
+. There

also exists a “positive” version of the Pólya’s theorem stating that all coefficients of
(
∑

i xi)
rf are positive for r sufficiently large [31].

Theorems of Schmüdgen [43] and Putinar [35] show that (i) if the semialgebraic
set K is compact, then f belongs to the preordering generated by {gi} (Schmüdgen)
and (ii) if the quadratic module generated by {gi} is Archimedean, then f belongs
to this module (Putinar). For definitions and details about these results we refer
the reader to [22]. In both cases, we do not have “if and only if”, i.e., we only have
certificates for non-negativity. For complexity issues related with Schmüdgen and
Putinar Positivstellensätze see [44, 26], while a comprehensive overview of this type
of results can be found in [46, 24].

The Pólya’s Positivstellensatz therefore implies a non-negativity certificate based
on polynomials with non-negative coefficients, while Schmüdgen’s and Putinar’s the-
orems guaranty non-negativity certificates based on polynomials which are SOS.

1.1. Notation

We denote the vector of all ones by en ∈ Rn (or e if the dimension n is obvious). The
square matrix of all ones is Jn (or J), the identity matrix is I. When we consider
matrix A ∈ Rm×n as a vector from Rmn obtained from A column-wise, we write this
vector as vec(A).

In this paper, we consider the following sets of matrices:

• the vector space of real symmetric n × n matrices: Sn = {X ∈ Rn×n : X =
XT },

• the cone of n × n symmetric nonnegative matrices: Nn = {X ∈ Sn : xij ≥
0,∀i, j},

• the cone of n × n positive semidefinite matrices: S+
n = {X ∈ Sn : y

TXy ≥
0,∀y ∈ Rn}.

• the cone of n × n copositive matrices: COPn = {X ∈ Sn : x
TXx ≥ 0,∀x ∈

Rn
+},

• the cone of n × n completely positive matrices: CPn = conv{xxT : x ∈ Rn
+},

where conv(A) stands for the convex hull of A.
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We also use X ≽ 0 for X ∈ S+
n and X ≥ 0 for X ∈ N . Linear optimiza-

tion problem over Nn is a linear programming problem, while a linear optimization
problem over S+

n is called a semidefinite programming problem. Linear optimization
problem over the cone of copositive or completely positive matrices is a copositive
programming problem.

The sign ⊗ stands for the Kronecker product. If a ∈ Rn, then Diag(a) is an n×n
diagonal matrix with a on the main diagonal and diag(X) is a vector containing the
main diagonal of a square matrix X.

For a matrix Z ∈ Sk2 , with k ≥ 1, we often use the following block notation:

Z =

Z11 · · · Z1k

...
. . .

...
Zk1 · · · Zkk

 , (2)

where Zij ∈ Rk×k.

When P or Psubscript is the name of the optimization problem, then OPTP and
OPTsubscript, respectively, denote their optimal values.

If f ∈ R[x] is a polynomial with real coefficients, we say that f is a sum of
squares (SOS) if there exist polynomials si ∈ R[x] such that f(x) =

∑
i s

2
i (x).

1.2. Contribution

In this paper, we

• clearly explain how combinatorial optimization naturally meets with real al-
gebraic geometry via copositive programming;

• list the results from real algebraic geometry that have straightforward impli-
cations for combinatorial optimization;

• demonstrate contributions to approximate solving of the combinatorial opti-
mization problem (QAP) by results from real algebraic geometry.

2. Combinatorial optimization

Following [45], one of the first combinatorial optimization problems studied is an
assignment problem. It was studied as a continuous optimization problem under
the name transportation problem as early as in 1784 by G. Monge [45]. The original
version, now known as a linear assignment problem (LAP), asks how to assign e.g.
workers to tasks such that the total time (or cost) for all tasks is minimum. Suppose
we have n workers and n tasks and we construct a matrix C ∈ Rn×n such that cij is
the cost of doing task j by worker i. With this notation the (LAP) can be written
as

OPTLAP = min{
∑
i,j

ci,φ(i) : φ a parmutation}. (LAP)
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We can describe each permutation φ of order n by 0 − 1 matrix Xφ of order n
(we call such matrix a permutation matrix ):

Xφ
ij = 1 ⇐⇒ φ(i) = j.

Every permutation matrix is a 0 − 1 matrix which has in each row and column
exactly one non-zero (equal to 1). Therefore, (LAP) can be rewritten as

OPTLAP = min{trace(CTX) : X a parmutation matrix}.

Note that the set of all permutation matrices Π can be described in different
ways:

Π = {X : Xij ∈ {0, 1}, Xe = XTe = e}
= {X : X ≥ 0, XTX = I}.

Indeed, if the row and column sums of a 0 − 1 matrix are equal to 1, then in
every row and column there must be exactly one nonzero (equal to 1). This explains
the first representation. For the second representation, note that if X ≥ 0 has
orthogonal columns and rows, this means that in every row and column there is at
most one nonzero (positive) element. It must be equal to 1 since the (Euclidean)
norm of each row and column must be 1.

Using the first representation of permutation matrices we can formulate (LAP)
as follows:

OPTLAP = min{⟨C,X⟩ : Xij ∈ {0, 1}, Xe = XTe = e}, (LAP’)

where ⟨·, ·⟩ stands for the standard inner product, i.e., ⟨X, Y ⟩ = trace(XTY ) for
X,Y ∈ Rm×n.

We can solve the (LAP) very efficiently (theoretically and practically) by using
several optimization methods. The most efficient ones are so-called primal-dual
methods. They are based on the fact that replacing the 0 − 1 constraint in the
(LAP’) by X ≥ 0 does not change the optimal solution of the (LAP), since the
convex set spanned by all permutation matrices is exactly the convex hull of a
feasible set from the (LAP’) after the replacement.

The most famous primal-dual method to solve the (LAP) is the Hungarian
method, which was introduced in 1955 by Harold Kuhn [20] and at that time it
was the first method with known polynomial complexity to solve the (LAP). Kuhn
named the method after two Hungarian mathematicians Egerváry and König, whose
results he used to construct the method. Currently, the Shortest augmenting path
method is considered the most efficient method to solve the (LAP). We can also solve
the (LAP) by using any method for solving linear programming since the (LAP’)
becomes a linear programming problem if we replace Xij ∈ {0, 1} by Xij ≥ 0. See
also [30].

The quadratic assignment problem (QAP) is a generalization of the linear as-
signment problem. It was introduced to model location problems which take into
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account the costs of placing new facilities on certain places and the interaction be-
tween all facilities. It became a standard problem in location theory and is very
famous because of its hardness. Koopmans and Beckmann [19] introduced it in 1957
in the following form:

OPTQAP = min {
∑
i,j

aijbπ(i)π(j) +
∑
i

ci,π(i) : π a permutation}, (QAP)

where A,B,C are n× n matrices. We assume (this is a standard assumption) that
A and B are symmetric. Using a similar approach as above (we use the second
representation for permutation matrices), we can rewrite

OPTQAP = min {⟨X, AXB + C⟩ : X ≥ 0, XTX = I}. (QAP’)

The (QAP) is known to be very hard from a theoretical and practical point of
view. Problems of size n ≥ 25 are currently still considered as difficult. Sahni and
Gonzales [47] showed that even finding an ε-approximate solution for the (QAP)
is NP-hard. Solving the (QAP) in practice is usually based on the Branch and
Bound (B&B) algorithm. The performance of B&B algorithms depends on the
computational quality and efficiency of lower bounds (see [2] for a summary of recent
advances in the solution of the (QAP) by the B&B). The study of lower bounds for
the (QAP) is therefore very important for the development of B&B algorithms. We
propose the following surveys about the (QAP) [4, 38, 23].

The most recent and promising trends of research for the bounding methods
for the (QAP) are based on semidefinite programming. Zhao et al., Sotirov and
Rendl [41, 49] lifted the problem from the vector space Rn×n to the cone of positive
semidefinite matrices of order n2+1 and formulated several semidefinite relaxations
which give increasingly tight lower bounds for the (QAP). They used interior point
methods [49] and the bundle method [42] to solve these programs. The compu-
tational results show that these lower bounds are among the strongest known but
also the most expensive to compute (state-of-the-art computers could compute the
strongest of these bounds only for n ≤ 35).

Recently De Klerk and Sotirov [10] exploited the symmetries in some special
instances of the (QAP) and solve these instances for a size up to 128.

A new direction in solving the (QAP) started when it was shown that the (QAP)
can be formulated as a linear programming problem over the cone of copositive or
completely positive matrices. More precisely, starting with the (QAP’), where few
initially redundant constraints were added

OPTQAP = min {⟨X, AXB + C⟩ : X ≥ 0, XTX = XXT = I, ⟨X,JXJ⟩ = n2}
(QAP”)

Povh and Rendl showed that the Lagrangian dual of the (QAP”) is a copositive
programming problem with a zero duality gap. The conic dual of this Lagrangian
dual has the following formulation
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min ⟨B ⊗A+Diag(c), Y ⟩
s. t.

∑
i Y

ii = I,
⟨I, Y ij⟩ = δij , ∀i, j,
⟨Jn2 , Y ⟩ = n2,

Y ∈ CPn2 ,

(QAPCP)

where c = vec(C).

In this formulation, we introduced the cone of completely positive matrices CP.
Its dual is the cone of copositive matrices. Both cones are defined in the Intro-
duction. Formulation (QAPCP) means that the (QAP) can be restated as a linear
programming problem over the cone of completely positive matrices. We call such
a problem a copositive program (we use the same name for a linear programming
problem over COP).

The copositive programming formulation (QAPCP) together with the copositive
formulation of the stability number problem [9] inspired several generalizations. Bu-
rer [3] proved that every quadratic optimization problem over the non-negativity or-
thant with linear and binary constraints can be formulated as a copositive program.
Dickinson et al. [5] generalized this result to hold for every quadratic optimization
problem over the closed set subject to linear and binary constraints if this closed set
satisfies some technical assumption (like being bounded or being convex).

Although the strong membership problem for the cones CP and COP is NP-hard
[6], the reformulation (QAPCP) is important since any reasonable an approximation
for the cone CP yields approximation for OPTQAP .

The definition of COP is strongly related to positivity of certain real polynomials,
hence we can use the real algebraic tools to get approximations for CP and COP.

3. Real algebraic geometry

Checking whether the given real symmetric matrix A is copositive is directly linked to
a question if the corresponding polynomial fA(x) =

∑
i,j aijxixj has a non-negative

infimum the on non-negative orthant. The question can be restated as a constrained
or an unconstrained optimization problem:

A ∈ COP ⇐⇒ inf
x∈Rn

+

∑
i,j

aijxixj ≥ 0 ⇐⇒ inf
z∈Rn

∑
i,j

aijz
2
i z

2
j ≥ 0. (3)

Indeed, if A is copositive, then
∑

i,j aijxixj is non-negative on the non-negative

orthant, hence infz∈Rn

∑
i,j aijz

2
i z

2
j ≥ 0. To see the reverse direction, we use the

trivial fact that every x ≥ 0 can be represented by xi = z2i for some z ∈ Rn.

Any sufficient and tractable condition that guaranties a non-negative infimum
of the constrained or unconstrained problem in (3) can lead to an efficient inner
approximation of COP. Similarly, necessary conditions yield outer approximations
of COP.

One of the very first results from real algebraic geometry yielding sufficient con-
ditions for copositivity (now regarded as Positivstellensatz) is due to Pólya.
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Theorem 1. (Pólya, 1929, Hardy, Littlewood, Pólya, 1988) Let f ∈ R[x] be a
homogeneous polynomial on Rn such that f(x) > 0 for all x ∈ Rn

+ \ {0}. Then for
some r ∈ N, we have that all coefficients of (eTx)rf(x) are non-negative.

Powers and Reznick [31] proved a stronger result. If r is larger than a certain
number which depends only on the degree of f and its minimum on the standard
simplex, then all coefficients of (eTx)rf(x) are positive, hence the Pólya’s theorem
is actually “if and only if”.

This theorem motivated Parrilo [27, 28] to introduce the following hierarchy of
inner approximations for COP:

C0 ⊂ C1 ⊂ · · · ⊂ COP, (4)

where Cr is defined as follows

Cr = {A ∈ Sn : (
∑
i

x2
i )

r(
∑
i,j

aijx
2
ix

2
j ) has non-negative coefficients}.

Another well-known Positivstellensatz is the following theorem from Reznick.

Theorem 2. [40] Let f ∈ R[x] be a homogeneous polynomial of even degree on Rn

such that f(x) > 0 for all x ∈ Rn \ {0}. Then for some r ∈ N+, we have that
(xTx)rf(x) is SOS.

Faybusovich [14, Theorem 1] provided an explicit bound for the exponent r in
the theorem above. This theorem probably motivated Parrilo [27] to also introduce
the following hierarchy

K0 ⊂ K1 ⊂ · · · ⊂ COP, (5)

where Kr is defined as follows

Kr = {A ∈ Sn : (
∑
i

x2
i )

r(
∑
i,j

aijx
2
ix

2
j ) is SOS}.

The dual cones Kr∗ form a decreasing hierarchy approximating CP from the
outside.

Hierarchies (4) and (5) are important because separation problems over the cones
in these hierarchies can be done with linear and semidefinite programming, respec-
tively. Indeed, the cone C0 is the set of symmetric matrices which are non-negative
component-wise. Similarly, the cone K0 consists of symmetric matrices which are
the sum of a non-negative and a positive semidefinite matrix, while K0∗ contains
exactly the matrices which are positive semidefinite and non-negative [27, 9]. For
higher members in the hierarchies above, we again obtain descriptions which rely on
positive semidefinitness and component-wise non-negativity. Note that if we consider
matrices of order ≤ 4, then K0 = COP [7].

Several results about certificates for non-negativity of polynomials over feasi-
ble sets defined by polynomial equalities and inequalities (like K from (1)) have
been published in last two decades. We mention the famous Positivstellensatz from
Putinar and Vasilescu.
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Theorem 3. [35, Theorem 1] Let m ∈ N, m ≥ 1 and f0, . . . , fm ∈ R[x] be ho-
mogeneous polynomials of even degree on Rn such that f0(x) > 0 for all non-zero
x ∈ {x : f1(x) = 1, fi(x) ≥ 0 ∀i ≥ 1}. Then for some r ∈ N, there exist homoge-
neous SOS polynomials g1, . . . , gm ∈ R[x] such that (xTx)rf0(x) =

∑m
i=1 fi(x)gi(x).

This result was recently extended by Dickinson and Povh [12].

Theorem 4. Let m ∈ N, m ≥ 1 and f0, . . . , fm ∈ R[x] be homogeneous poly-
nomials on Rn such that f0(x) > 0 for all non-zero x ∈ {x : x ≥ 0, f1(x) =
1, fi(x) ≥ 0 ∀i ≥ 1}. Then for some r ∈ N, there exist homogeneous poly-
nomials g1, . . . , gm ∈ R[x] such that all of their coefficients are non-negative and
(eTx)rf0(x) =

∑m
i=1 fi(x)gi(x).

Dickinson and Povh proved in [11] that this Positivstellensatz implies in a natural
way linear and semidefinite programming bounds for (QAP) which are comparable
to the strongest bounds from the literature.

4. Sum of squares and semidefinite programming

We can check whether polynomial f ∈ R[x] of degree 2d is SOS by semidefinite
programming. Indeed, f is SOS if and only if there exists a Q ≽ 0 such that
f(x) = V T

d QVd, where Vd is the vector of all monomials of degree ≤ d. Checking
if f is SOS is therefore a semidefinite programming feasibility problem. We can
use objective function trace (Q) as a heuristic for rank minimization of Q. If in Vd

we include all monomials up to degree d, then Vd is of length
(
n+d
d

)
. We can find

examples where we indeed need all these monomials. If n = 4 and d = 10, we obtain(
n+d
d

)
= 1001, hence the resulting SDPs are already on the boundary of the set of

instances, solvable by interior point methods.

Nevertheless, very often, especially if the polynomial is sparse (has only few
monomials), it is possible to considerably decrease the number of monomials in Vd.
We can use a result, first formulated in [39], that characterizes the monomials that
can appear in a sum of squares representation. Define the Newton polytope Newp

of a given polynomial p of degree 2d as the integer lattice points in the convex hull
of the degrees α, which appear in p. Then, it can be shown that the only monomials
xβ that can appear in a sum of squares representation are those such that 2β is
in the Newp (or equivalently β ∈ 1

2 Newp). The package SOStools, Yalmip and
some other packages for SOS decompositions are essentially based on the Newton
polytope algorithm.

Finding a certificate that follows from Putinar Vasilescu Positivstellensatz (Theo-
rem 3) can be done again by SDP, but here we are looking for m positive semidefinite
matrices that will yield polynomials gi. Since the bounds for these polynomials (and
therefore the sizes of SDP matrices) are not determined in advance, we typically put
a uniform bound (i.e., we demand that the degree of figi must be equal to degree
2s). This yields a hierarchy of lower bounds for the infimum of f0 over the given
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semialgebraic set via

OPTf0 = inf{f0(x) : f1(x) = 1, fi(x) ≥ 0 ∀i ≥ 1}

≥ εs = sup{ε : f0 − ε =
m∑
i=1

sifi, deg(sifi) = 2s, si are SOS}.

Computing εs is therefore an SDP in m SDP variables. When s increases, the
bounds εs are getting tighter and tighter. In some cases (e.g., when the semialgebraic
set is compact), these bounds converge to OPTf0 [21].

5. Approximating combinatorial optimization problems

In this section, we show how to use results from the previous section to obtain
tractable relaxations for (QAP). The starting point is a formulation (QAPCP).
A simple relaxation is obtained by changing Y ∈ CPn2 to the weaker condition
Y ∈ K0∗

n2 .
We obtain the model:

min ⟨B ⊗A+Diag(c), Y ⟩
s. t.

∑
i Y

ii = I,
⟨I, Y ij⟩ = δij , ∀i, j,
⟨Jn2 , Y ⟩ = n2,

Y ∈ Nn2 ∩ S+
n2 ,

(QAPK0∗
n
)

We have to emphasize that this is already a computationally expensive model since
the constraint Y ∈ Nn2 implies O(n4) linear inequalities, but yields a very strong
lower bound for the optimal value of (QAP). In fact, (QAPK0∗

n
) is equivalent to the

strongest approximation models from the literature, see [33, Theorem 8].
Trading quality of the relaxation for more computational efficiency, we can follow

the approach from Zhao et al. [49], and observe the following zero pattern for
matrices feasible for QAPK0∗

n
:

Y ii
jk = 0, Y jk

ii = 0 ∀j ̸= k, ∀i.

Collecting all these O(n3) equations symbolically in the map G(Y ) = 0, we can
consider a weaker but also a simpler relaxation:

min ⟨B ⊗A+Diag(c), Y ⟩
s. t.

∑
i Y

ii
jj = 1, ⟨I, Y jj⟩ = 1, ∀j,

⟨Jn2 , Y ⟩ = n2, G(Y ) = 0
Y ∈ S+

n2

(QAPZKRW1)

We use the acronym ZKRW1 to emphasize that this model is inspired by Zhao et
al. [49]. In [33], it was shown that this model is in fact equivalent to the ’gangster-
model’ from [49], see [33, Theorem 7].

The relaxation (QAPZKRW1) has ’only’ O(n3) constraints, but solving it is still
a computational challenge. More details about this can be found in [33].
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6. Conclusions

In this paper, we demonstrated that combinatorial optimization naturally poses
optimization problems that are very hard to solve and therefore need an input from
other area of mathematics. Via so-called Positivstellensätze, real algebraic geometry
contributes to a hierarchical approach, i.e., a hierarchy of easier problems whose
optimal solutions converge under some condition to the optimal solution of the
original hard problem. These easier problems are typically linear or semidefinite
programming problems which can be solved to optimality (at least ε optimality)
efficiently in theory and in practice. However, the size of these simpler problems
grows very fast so in practice we are able to use only the members from the beginning
of the hierarchy.
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