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Abstract. The paper contains a description of four different block bootstrap methods, 
i.e., non-overlapping block bootstrap, overlapping block bootstrap (moving block 
bootstrap), stationary block bootstrap and subsampling. Furthermore, the basic goal of 
this paper is to quantify relative efficiency of each mentioned block bootstrap procedure 
and then to compare those methods. To achieve the goal, we measure mean square 
errors of estimation variance returns. The returns are calculated from 1250 daily 
observations of Serbian stock market index values BELEX15 from April 2009 to April 
2014. Thereby, considering the effects of potential changes in decisions according to 
variations in the sample length and purposes of the use, this paper introduces stability 
analysis which contains robustness testing of the different sample size and the different 
block length. Testing results indicate some changes in bootstrap method efficiencies 
when altering the sample size or the block length.  
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1. Introduction 
 
If one chooses an adequate bootstrap mechanism along with an appropriate 
sample, it could be plausible to achieve persuasive approximation of statistics of 
the whole population [8]. Every bootstrap procedure is derived from the original 
Efron’s bootstrap procedure [3], which was primarily assigned to independent 
and identically distributed data. Therefore, following the basic principles of the 
i.i.d. bootstrap, other types of procedures appear according to an increased 
number of statistical requirements.  

Although the created set of bootstrap procedures is successfully used in 
many applications, the comprehension of scientific society about bootstrap 
application power still remains unknown. Due to this fact and understanding 
the differences of empirical usability in particular scientific disciplines, the 
problem of acceptable bootstrap procedure selection remains opened. The 
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selection understatement affects the opinion among many econometrics 
researchers that bootstrap procedure selection is not an easy task [10].  

The paper encompasses four related sections. After the introduction, the 
second section of research provides a basic knowledge of the block bootstrap 
procedure and its four applied methodologies. The third section describes the 
comparison process of block bootstrap results derived from two topics: testing 
for dynamics in the conditional mean of variance returns and modeling volatility 
of returns. Finally, this paper ends by some recommendations as well as 
concluding remarks. 
 

2. Block bootstrap 
 
In case of lack of experience in econometric model specification, the block 
bootstrap procedure is proposed as one of the most widely used bootstrap 
methods in a domain of time series. The main reason for defining such method 
is maintaining the time series dependency structure within a pseudo-sample. 
The block bootstrap is developed separately by Hall [5] and Carlstain [2] and 
Künsch [7]. They all started from the criteria of creating blocks of consecutive 
data. The procedure divides the original time series into blocks of individual 
observation units or estimated residuals, where the bootstrap data inside each 
block are created using the classical i.i.d. bootstrap. At the beginning of block 
bootstrap development, two possible tendencies of forming blocks, the non-
overlapping and the overlapping block bootstrap, appear.  
 
2.1. Moving block bootstrap 
 
In separate research, Künsch [7] and Liu and Singh [9] have formulated a new 
scheme of creating pseudo-samples called the moving block bootstrap or the 
overlapping block bootstrap. Unlike the i.i.d. bootstrap process that forms new 
artificial samples by taking random observations from the initial sample, the 
moving block bootstrap performs the sampling procedure only within a row of 
formed blocks. As a result of such procedure, the time series structure of original 
data is preserved within each particular block of data. Also, the initial 
assumption is that the general block length will continue to increase with 
additional observations in the original sample.  

Based on random sample nXXX ,...,, 21 , the procedure defines estimation by 
using the moving block bootstrap process of )(ˆ

nn FT=θ , where nF  is an 
empirical function of random sample distribution. If one starts from the 
assumption that [ ]nll n ,1∈≡  is an integer, the example for dependent data 
usually requests that ∞→l  and 01 →− ln  when ∞→n . Anyway, a specific 
description of this method must start from the block length l constraint. If  
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( )1,..., −+= liii XXB  denotes an i-th block of time series, then the block length 
begins from iX  for Ni ≤≤1 , where 1+−= lnN  is presented as the number of 
blocks within the bootstrap sample. In order to form a sample from the moving 
block bootstrap method it is necessary to choose randomly a certain number of 
blocks from the set { }NBB ,...,1 . Therefore, **

1 ,..., kBB  represents a random sample 
with repetitions from the set { }NBB ,...,1 , where each block contains the same 
number of elements l. With respect to observations within block *

iB  presented 
as ( )**

1)1( ,..., illi XX +− , where ki ,...,1= , bootstrap observations construct a sample 
**

1 ,..., mXX  based on the moving block bootstrap with block size klm ≡ . Thus the 
version of the moving block bootstrap for parameter nθ̂  is denoted as *

,nmθ  and 
presented in the following form: 
 

( )*
,

*
, nmnm FT=θ ,                                            (1) 

 
where *

,nmF  shows the empirical distribution of moving block bootstrap samples 
**

1 ,..., mXX . 
As resampled blocks of observations ( ) ( ) ( )′′′

+−+
**

1)1(
*
2

*
)1(

**
1 ,...,,...,,...,,,..., kllklll XXXXXX  

are independent and identically distributed vectors with: 
 

1
*1

**
1* )()),...,(),...,(( −

−+ ===′=′ NjIPXXXXP jljjl ,                 (2) 
 

Nj ≤≤1 , where *P  represents a conditional probability. According to ∞→l  
with n, any finite-dimensional joint probability distribution can be revealed 
eventually from resampled observations. As a result, the moving block bootstrap 
is able to efficiently approximate features of the process within the whole 
population.  

Considered estimation )(ˆ
nn FT=θ  includes few common estimations that are 

not sufficient for application in terms of time series. The primary reason for 
such condition is that the estimation nθ̂  depends only on one-dimensional 
marginal empirical distribution nF , and thus it does not cover standard 
statistics. Hence, it is necessary to observe a more general version of the moving 
block bootstrap which envelopes those statistics: 
 

)(ˆ
,npn FT=θ ,                                            (3) 

 
where npF ,  is a p – dimensional empirical function, )(⋅T  represents a subset of 
all probability measures set ( ) p

lii RXX ∈−+ 1,..., . A dimension 1≥p  is given as a 
constant in the form of an integer or ∞→p  with n.  
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In contrast, this paper also recognizes a rule of forming blocks established 
by Carlstein [2]. For the simplicity of the procedure, one considers the 
estimation )(ˆ

,npn FT=θ , where p = 1. The main feature of the mentioned block 
forming procedure is non-overlapping of data segments contained in the 
sequence of blocks. Therefore, this procedure is called the non-overlapping block 
bootstrap. If one begins, with the assumption that [ ]nll n ,1∈≡  is an integer, then 
the number of blocks of observed time series 1≥b  is the largest integer that 
accomplishes the relation nlb ≤ . It allows forming of blocks as 

( )′=′ +− illii XXB ,...,1)1( , bi ,...,1= . After forming a series of non-overlapped blocks 
within original time series, the procedure of bootstrap implementation is the 
same as the one mentioned above. After random selection of blocks ′′ **

1 ,..., kBB  
with replacement from the set { }bBB ′′,...,1 , where klm = , the empirical 

distribution of bootstrap sample 
′*

,nmF  is formed. Thus the bootstrap version of 
estimation nθ̂  is given as: 
 







 ′

=
′ *

,
*

, nmnm FTθ .                                          (4) 

 
Although the definition of bootstrap estimation is very similar in both 

mentioned bootstrap procedures, the resulting estimations *
,nmθ  and 

′*
,nmθ  have 

different distribution properties. However, using a simple example for arithmetic 

mean )/()()( 2
2

*
,*

*
,* nlOEEE nmnm =







 ′

− θθ , the difference between these two bootstrap 

techniques  becomes negligible in case of a large sample [8].  
 
Except for direct application to original data, some versions of block 

bootstrap procedures are adopted in processing series of residuals formed from 
the set of estimation models. In that case, there is no need to create the best 
suitable finite-dimensional model, but the emphasis is on resampling of 
estimated residuals using previously formed blocks. According to the process of 
block replacement, it is possible that some randomly selected block of residuals 
is not used in a pseudo-sample, while another one is used several times. If the 
blocks of residuals are long enough, the autocorrelation structure of estimated 
model errors should be accurately reflected through the bootstrap errors and 
with forming of a bootstrap sample it offers a chance to make an adequate 
distribution approximation of required statistics from the original data sample 
[4]. Using the small length of block l would adversely affect procedure 
performances. 
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2.2. Subsampling  
 

The usage of different data subsets in approximation of bias and variance 
measures for statistics of interest is a common practice in application of 
independent and identically distributed observations. However, the subseries of 
dependent observations could be useful in creating valid variance estimations, 
bias measures and distributions of samples under weak assumptions [2] [6].  

In order to provide an appropriate explanation of the subsampling method, 
it is inevitable to indicate a few input assumptions. If ),...,,(ˆ

21 nnn XXXT=θ  is an 
estimation of the parameter θ , with adequate normalization of the parameter 

0>na , the probability distribution xaPxG nnn ≤−= )ˆ(()( θθ  weakly converges to 
the marginal distribution )(xG , or: 
 

)()( xGxGn →  when ∞→n .                               (5) 
 
For all continuous values Rx∈ .  
 

Let nl ≤≤1  be a given integer so that ( )1,..., −+= liii XXB  for Ni ≤≤1  in 
case of overlapping blocks. Then the estimation using subsampling nG  is given 
as: 
 

xaINxG nli

N

i
ln ≤−= ∑

=

− )ˆˆ(()(ˆ
,

1

1 θθ ,                             (6) 

 
where li,θ̂  is a copy of the estimation nθ̂  from the block ( )1,..., −+= liii XXB  
defined as )(ˆ

, illi BT=θ . It can be noticed that )(⋅lT  is a substitution for )(⋅nT  in 
order to estimate the statistics of subsample li,θ̂ , considering the fact that the 
block iB  contains only l observations.  
 
2.3. Stationary bootstrap 
 
Similarly to the block bootstrap, the stationary bootstrap, created by Politis 
and Romano [12], includes the resampling procedure of initial data in order to 
form new pseudo-samples of time series and reestimate statistics of interest, but 
with one significant difference related with time series stationarity. The 
stationary bootstrap is generally acceptable in application of weakly dependent 
stationary time series. In case of the block bootstrap, the new samples of time 
series are not stationary, so the involvement of the stationary bootstrap tries to 
remove this undesirable statistical characteristic. Therefore, according to the 
original data sample nXXX ,...,, 21 , the pseudo time series **

2
*
1 ,...,, nXXX  is 
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generated using an adequate scheme of creating new stationary samples. The 
defined procedure tries to mimic characteristics of the original sample by 
keeping a desirable feature of time series stationarity within pseudo time series 
samples. To achieve this, the bootstap time series occurs with resampling of 
different length blocks, where the length of each block is approximated by the 
geometric distribution.  

Starting from the assumption that the original sample nXXX ,...,, 21  is a 
strictly stationary and weakly dependent time series, the distribution of 
statistics of interest ),...,,()( 21 nnn XXXTXT =  is estimated. Let ),...,( 1−+= liiil XXB  
be the block which contains l repeatedly observations starting from iX . In order 
to ensure that all initial observations have the same drawing probability, the 
circular block scheme is suggested. Independently of nXXX ,...,, 21 , let ,..., 21 LL  be 
the series of independent and identically distributed random variables with 
geometric distribution: 
 

ppmLP m
i

1)1()( −−== ,                                     (7) 
 
where { }1,0∈p  and 0→p , ∞→np . Independently of iX  and iL , let ,..., 21 II  
be the sequence of independent and identically distributed variables with 
discrete uniform distribution from the set { }n,...,1 . Hence, pseudo time series 

**
2

*
1 ,...,, nXXX  are generated by the sequence of random length blocks 

,...,
2211 ,, LILI BB . First 1L  observations are determined using the first block 

11 ,LIB  
of observation series 1111

,..., −+LII XX  that are followed by the second 2L  number 
of observations in the block 

22 ,LIB  of series 1222
,..., −+LII XX . The defined process 

continues until it reaches n observations within the pseudo-sample, although it 
is clear that mentioned process leaves space to expand the pseudo-sample for an 
arbitrary number of observations.  

Other variants of the stationary bootstrap based on the pattern of forming 
random length blocks are also possible. Instead of the assumption of the 
geometric distribution for iL , and the discrete uniform distribution for iI , the 
bootstrap procedure considered other forms of data distribution. Considering the 
difficulty of bootstrap method application from the block length point of view, 
variance estimations using the stationary or the moving block bootstrap are 
similar to each other, since 1−p  is approximately equal to l [12]. The stationary 
bootstrap is basically represented by the weighted average of distributions of 
standard error estimates generated by the moving block bootstrap. Therefore, 
the stationary bootstrap of variance estimates is less sensitive when selecting a 
probability p than the moving block bootstrap when selecting the block length l. 
This leads to the fact that the selection of probability p in the stationary 
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bootstrap is less important than the selection of the block length l in the moving 
block bootstrap.  
 

3. Comparison of block bootstrap methods 
 
The next chapter serves to create an appropriate ground for a practical 
comparison of the mentioned bootstrap methods. There remains an open 
question about quantification of relative efficiency of respective block bootstrap 
methods. Lahiri introduces an empirical example where the moving block 
bootstrap surpasses all other versions of block bootstrap methods according to 
criteria of the mean squared error [8]. After all, the same author asks whether a 
similar situation will happen if there is any variation in the sample size or the 
application point. If the performances are measured for each method with 
different optimal block length, the comparison problem appears the as well.  

Similarly, for the purpose of examining efficient application, Figure 1 
illustrates a preliminary comparison of mean squared errors in estimation of the 
variance of BELEX15 returns using four most frequently used block bootstrap 
methods in the interval from April 2009 to April 2014, or 1,250 daily 
observations, whereby the number of repetitions is B = 1,000. 
 

 
Figure 1: Preliminary comparison of block bootstrap methods 

 
Figure 1 presents mean squared errors of four block bootstrap methods 

(MBB – Moving block bootstrap, NBB – Non-overlapping block bootstrap, SBB 
– Stationary block bootstrap and SS-Subsampling). This figure shows the 
dominance of the moving block bootstrap with an application of the small block 
length. When the block length increases, the errors in all four bootstrap 
methods are slowly equalizing. Although the obtained results stand with a big 
question mark from the aspect of the variation in the sample size or the 
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application area, this analysis, encouraged by similar research results of many 
authors, gives a certain assurance and motivates a further application of 
mentioned methods.  

From the theoretical point of view and according to the concept of the 
mean squared error, achieved stationarity using the stationary bootstrap does 
not contribute significantly to a decrease in estimation biases. Also, the usage of 
overlapping and non-overlapping blocks provides asymptotically the same degree 
of bias as long as the expected block length l is asymptotically equivalent. On 
the other hand, despite the differences in forming blocks, the methods have the 
same variance order of resulting estimations. This fact is interesting in case of 
the stationary bootstrap where an additional rate of stochastic in resampled 
blocks shows an asymptotic increase in variance comparing to the other block 
methods. The presented asymptotic approximation of this type serves as a 
benchmark for comparison of individual methods, especially in case of analysis 
of a different sample size and application area.  
 
3.1. Testing for dynamics in the conditional mean of variance 
returns 
 
Tests of dynamic characteristics are considered to be some kind of analytical 
performance verification of bootstrap methods. Therefore, testing for dynamics 
of the conditional mean represents the initial step in successful analysis and 
prediction of the stock returns movement. Although a serious number of authors 
emphasizes the inability to predict returns in the short term, one can not ignore 
the importance of stock return tracking in the long term.  

Market participants often use a trending strategy, considering that by 
keeping the momentum of a growing trend they will have greater odds to 
achieve positive financial results. Related to lack of ability to efficiently predict 
trends in the following periods, market participants predominantly used 
appropriate methodology to track serial correlation of returns. Numerous studies 
have found that daily stock returns reveal a positive low-serial correlation that 
is frequently recognized to non-synchronous trading effects, i.e., the efficiency 
market hypothesis [13]. Consequently, a strong need for testing autoregressive 
dynamics in returns emerges. Ruiz and Pascual propose asymptotic standard 
errors and bootstrap p – values for testing and conclude that the results are 
similar [13].  

If θ̂  is an estimated parameter, *
b̂θ  an appropriate estimation of the b-th 

bootstrap replication and *θ  an average of *
b̂θ , then the standard error using 

the bootstrap is calculated by the following form: 
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∑
=

−
−

=
B

b
bB

s
1

2*** )ˆ(
1

1)ˆ( θθθ                                        (8) 

 
The standard error in equation (8) can be used in the same way as every other 
asymptotically valid standard error used to estimate confidence intervals or 
perform some test statistics [10].  

The p – value presents the estimate of the marginal significance level, i.e., 
the probability of an event established by the null hypothesis. Through p – 
values it is possible to determine the empirical and the bootstrap distribution 
based on a certain data generating process. Therefore, the p – value is expressed 
by the binary indicator function presented in equation (9), in which the 
estimated and bootstrap values of variables are compared to original data as: 
 

)(1ˆ
1

** XXI
B

p
B

b
b ≤= ∑

=

.                                      (9) 

 
The indicator function takes value 1 if the claim is true or 0 otherwise. Equation 
(9) can also be presented as ** 1ˆ nFp −= , where *

nF  denotes the empirical 
distribution function from the bootstrap process, which alters the real 
distribution 0F . 

To illustrate the effect of conditional dynamics on bootstrap densities, B = 
1000 series have been bootstrapped by the following AR(1) – GARCH(1,1) 
model: 
 

2
1

2
110

2
11

−−

−

⋅+⋅+=

++=

ttt

ttt XX

σβεαασ

εφµ
,                              (10) 

 
where tX  represents the series of returns derived from stock prices 

( )1/log −= ttt ppX , tσ  is the volatility and tε  is a white noise. 
Table 1 presents statistics of dynamics in variance returns for four different 

block bootstrap methods in two sample sizes, i.e., 750 daily observations and 
1,250 daily observations. According to criteria of minimizing mean squared 
errors, the optimal block length is calculated in terms of statistics of interest 
and the sample size. At the first sight, Table 1 shows that all block bootstraps 
offer p – values closed to the original sample, i.e., all bootstrap techniques have 
density distributions of statistics of interest similar to the original data. 
Comparing standard errors and mean squared errors in the bootstrap and the 
empirical distribution indicates that the bootstrap procedures give better 
results. Also, changes in the sample size have less effect on bootstrap results 
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than on empirical results. In other words, the bootstrap procedures perform 
more robust results. The analysis of bootstrap results shows the dominance of 
the moving block and the stationary block bootstrap in both samples.  
 

Bootstrap 
method T p-value st.dev. MSE 

Empirical 750 0.51225 0.01658 0.000498 
1250 0.52456 0.01549 0.000452 

Block 750 0.52014 0.01655 0.000469 
1250 0.52414 0.01548 0.000427 

Moving block 750 0.52114 0.01628 0.000314 
1250 0.52874 0.01516 0.000284 

Stationary 
block 

750 0.52208 0.01633 0.000355 
1250 0.53042 0.01517 0.000406 

Subsampling 750 0.52027 0.01612 0.000506 
1250 0.52509 0.01449 0.000471 

Table 1: Testing the dynamics for conditional mean 
 
 
3.2. Modeling volatility of returns 
 
Volatility of returns represents the uncertainty in stock price movements of 
risky assets in a certain period of time. Volatility represents one of the most 
important concepts in the domain of finance [1]. Volatility, measured by the 
standard deviation or the variance of returns, is often used as an initial measure 
of the total asset risk. High-frequency financial time series of returns is featured 
by a leptokurtic distribution and autocorrelation in consecutive observations 
[11]. This fact emphasizes that volatility has a significant impact on variance 
fluctuation, i.e., heteroskedasticity.  

Furthermore, the expected volatility has one of the most important roles in 
modern financial theory. Since the conditional volatility is a very important 
segment in dynamic risk management, the best characteristics in modeling and 
forecasting of the future volatility have been shown by the models that contain 
information about lagged return values. High-frequency financial data are 
usually explained by the presence of conditional heteroskedasticity [11]. 
Therefore, one of the leading methods in dynamic volatility modeling is the 
general autoregressive conditional heteroskedasticity model (GARCH).  
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Bootstrap 
method T α0 

(t-test) 
α1 

(t-test) 
β 

(t-test) St.dev. MSE 

Empirical 
750 0.00001 

(5.6934) 
0.23265 
(7.1359) 

0.71765 
(23.454) 0.016420 0.000383 

1250 0.00001 
(6.3959) 

0.18102 
(8.7254) 

0.78669 
(41.684) 0.014951 0.000316 

Block 
750 0.00001 

(4.5022) 
0.24326 
(6.8841) 

0.75024 
(27.485) 0.014221 0.000360 

1250 0.00000 
(5.0155) 

0.20785 
(8.1144) 

0.78322 
(41.289) 0.013101 0.000301 

Moving 
block 

750 0.00001 
(4.8772) 

0.24255 
(7.3805) 

0.74632 
(30.959) 0.013956 0.000310 

1250 0.00001 
(6.9091) 

0.20392 
(9.5716) 

0.77644 
(48.576) 0.012593 0.000250 

Stationary 
block 

750 0.00001 
(6.6722) 

0.20140 
(6.1856) 

0.74168 
(31.053) 0.014470 0.000192 

1250 0.00001 
(7.9817) 

0.15493 
(8.1491) 

0.81020 
(53.904) 0.013755 0.000129 

Subsampling 
750 0.00001 

(5.4804) 
0.19961 
(7.8802) 

0.78546 
(41.414) 0.014217 0.000317 

1250 0.00001 
(6.6091) 

0.20392 
(9.5716) 

0.77644 
(48.576) 0.012676 0.000232 

Table 2: Estimation of parameters in the GARCH model 

 
Table 2 contains estimation of parameters in GARCH model specification. t 

– statistics of each parameter is presented in parenthese. Given results show 
that bootstrap methods are less sensitive to changes in the sample size. 
Estimated values from the original sample indicate the stationarity of the 
process in variance if 11 <+ βα . Thus the stationarity of the estimated GARCH 
model denotes convergence of the conditional variance predicted values to the 
mean with a change in time horizon, while that convergence is not expected if 

11 ≥+ βα . The aforementioned bootstrap methods mainly lead to reduction of 
estimation errors, i.e., increase in t – statistics compared to the initial sample. 
Besides, these methods are getting the sum of parameters βα +1  closer to 1 
without compromising quality forecasting assumptions. Calculated standard 
deviations mostly decrease with the use of some versions of the block bootstrap 
compared to the original data set and thus explain further growth in stability of 
estimating GARCH model parameters. Furthermore, prediction performances 
within the sample show smaller mean squared errors in case of the moving 
block, the stationary block bootstrap and subsampling. GARCH model 
estimations made by the mentioned methods are getting closer to the integrated 
process and increase the convergence of predicted values to the mean in the long 
term.   
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In terms of sample stability, this paper involves the measurement of 
parameter stability when changing the sample size. In order to keep basic 
features of the time series dynamic structure in and out of the sample by using 
the GARCH model, it is necessary to sustain parameter stability. Regarding 
this, the F – test is involved in variance analysis as follows: 
 

kn

nF
t

tt

−

′

′
−

=
∑

∑ ∑

1

2

2

22

*

ε

εε
,                                         (11) 

 
where ∑ 2

tε  is the sum of squared residuals of the GARCH model using a longer 

sample, ∑ ′2
tε  is the sum of squared residuals of a smaller sample, k is the 

number of estimated parameters,  1n  is the number of observations in a smaller 
sample and 2n  is the difference in observations between two observed samples.   
 

Bootstrap method F - test 
Empirical 0.4073 

Block 0.4098 
Moving block 0.3945 

Stationary block 0.4022 
Subsampling 0.3987 

Table 3: Testing parameter stability 

 
Table 3 shows the calculated results of F – statistics. These results are 

compared with a critical value and if ( )knnFF −< 12
* ,,α , the conclusion is that 

there is no statistically significant difference between estimated parameters in 
both samples with a different size, i.e., parameter stability is satisfied. The 
critical value in this case is ( ) 87.0747;500%;5 =F  with 5% of error. Thus, all F – 
statistics are below the critical value and indicate that there is statistically 
significant stability of estimated parameters. Nevertheless, there are no evident 
changes in the dynamic structure of volatility returns time series in case of 
BELEX15.   
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4. Conclusion 
 
Four different block bootstrap methods, i.e., non-overlapping block bootstrap, 
overlapping block bootstrap (moving block bootstrap), stationary block 
bootstrap and subsampling, were tested in this paper. Bootstrap methods could 
mostly give an approximation of the theoretical value with high accuracy. 
However, the conclusion does not imply that bootstrap methods can be used 
without any verification. Instead, bootstrap results are treated with caution. 
Consequently, every new situation caused by a certain financial problem and 
belonging statistics requires additional attention in order to obtain results that 
are closer to the actual distribution. Regarding this, the presented paper takes a 
closer look on each proposed bootstrap method and suggests the use of some of 
them in defined situations. In the case of testing the dynamic structure of time 
series, we propose the use of the moving block and the stationary block 
bootstrap, while in the case of modeling and forecasting volatility, each block 
bootstrap procedure except the block bootstrap gives reliable results. Overall, 
the moving block bootstrap procedure shows the lowest errors in estimation and 
prediction in and out of the sample. Finally, changing the block length affects 
overall results, but at the same time it does not make a different decision about 
the comparison among bootstrap relative performances.  
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