# Altered Wiener Indices of Thorn Trees* 

Damir Vukičević, ${ }^{\text {a,** }}$ Bo Zhou, ${ }^{\text {b }}$ and Nenad Trinajstićc ${ }^{\text {c }}$<br>${ }^{\text {a }}$ Department of Mathematics, University of Split, Nikole Tesle 12, HR-21000, Split, Croatia<br>${ }^{\mathrm{b}}$ Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China<br>${ }^{\text {c }}$ The Rugjer Bošković Institute, P. O. Box 180, HR-10002 Zagreb, Croatia

RECEIVED SEPTEMBER 14, 2006; REVISED APRIL 12, 2007; ACCEPTED APRIL 16, 2007


#### Abstract

Three modifications of the Wiener index $W(\mathrm{G})$ of a structure G have been recently proposed: the $\lambda$-modified Wiener index ${ }^{\lambda} W(\mathrm{G})=\sum_{w v \in(\mathrm{G})} n_{\mathrm{G}}(u, v)^{\lambda} n_{\mathrm{G}}(v, u)^{\lambda}$, the $\lambda$-variable Wiener in$\operatorname{dex}{ }_{\lambda} W(\mathrm{G})=\frac{1}{2} \sum_{u v \in \mathrm{E}(\mathrm{G})}\left(n(\mathrm{G})^{\lambda}-n_{\mathrm{G}}(u, v)^{\lambda}-n_{\mathrm{G}}(v, u)^{\lambda}\right)$ and the $\lambda$-altered Wiener index $W_{\text {min }, \lambda}(\mathrm{G})=$ $\frac{1}{2} \sum_{u v \in \mathrm{E}(\mathrm{G})}\left(n(\mathrm{G})^{\lambda} m_{\mathrm{G}}(u, v)^{\lambda}-m_{\mathrm{G}}(u, v)^{2 \lambda}\right)$ where $n(\mathrm{G})$ is the number of vertices of G , and $m_{\mathrm{G}}=$ min $\left\{n_{\mathrm{G}}(u, v), n_{\mathrm{G}}(v, u)\right\}$. For a given positive integer $k$, explicit formulae are available for calculating the $k$-modified Wiener index and the $k$-variable Wiener index of a thorn tree by means of the $i$-modified Wiener indices and the $i$-variable Wiener indices, respectively, of the parent tree for integers $i$ and $k$ with $0 \leq i \leq k$. It is pointed out in the present report that this is not the case of the $k$-altered Wiener index.


 KeywordsWiener index altered Wiener index modified Wiener index variable Wiener index thorn tree

## INTRODUCTION

The molecular-graph-based quantity, introduced by Wiener ${ }^{1}$ in 1947 and formalized via the distance matrix by Hosoya, ${ }^{2}$ nowadays known under the name Wiener index (e.g., Ref. 3) or Wiener number (e.g., Ref. 4), is one of the oldest and the most thoroughly studied topological indices, ${ }^{5}$ and it is still a topic of current research interest (e.g., Ref. 6). Its computational and mathematical properties and its usefulness in the structure-property-activity modeling are continuously discussed. ${ }^{7-13}$ In the present report, we discuss altered Wiener indices of thorn trees.

Let $G$ be a connected graph with vertex set $V(G)$ and edge set $\mathrm{E}(\mathrm{G})$. Recall that the Wiener index of $G$ is
defined as the sum of all distances in G. It was already known to Wiener that for a tree, the Wiener index can be also computed by summing up the edge contributions, where the contribution of each edge $u v$ is the product of the number of vertices closer to the vertex $u$ and the number of vertices closer to the vertex $v$. Formally:

$$
\begin{equation*}
W(\mathrm{G})=\sum_{u v \in \mathrm{E}(\mathrm{G})} n_{\mathrm{G}}(u, v) n_{\mathrm{G}}(v, u) \tag{1}
\end{equation*}
$$

where $n_{\mathrm{G}}(u, v)$ is the number of vertices closer to the vertex $u$ than vertex $v$ and $n_{\mathrm{G}}(v, u)$ is the number of vertices closer to the vertex $v$ than vertex $u$.

A large number of modifications and extensions of the Wiener index have been considered in the chemical

[^0]literature [e.g., Ref. 14]. Motivated by formula (1), the $\lambda$-modified Wiener indices ${ }^{\lambda} W,{ }^{15}$ the $\lambda$-variable Wiener indices ${ }_{\lambda} W,{ }^{16,17}$ and the $\lambda$-altered Wiener indices $W_{\text {min }, \lambda^{18}}$ are defined as:
\[

$$
\begin{gathered}
{ }^{\lambda} W(\mathrm{G})=\sum_{u v \in \mathrm{E}(\mathrm{G})} n_{\mathrm{G}}(u, v)^{\lambda} n_{\mathrm{G}}(v, u)^{\lambda} \\
{ }_{\lambda} W(\mathrm{G})=\frac{1}{2} \sum_{u v \in \mathrm{E}(\mathrm{G})}\left(n(\mathrm{G})^{\lambda}-n_{\mathrm{G}}(u, v)^{\lambda}-n_{\mathrm{G}}(v, u)^{\lambda}\right) \\
W_{\mathrm{min}, \lambda}(\mathrm{G})=\sum_{u v \in \mathrm{E}(\mathrm{G})}\left(n(\mathrm{G})^{\lambda} m_{\mathrm{G}}(u, v)^{\lambda}-m_{\mathrm{G}}(u, v)^{2 \lambda}\right)
\end{gathered}
$$
\]

where $n(\mathrm{G})$ is the number of vertices of G and $m_{\mathrm{G}}(u, v)=$ $\min \left\{n_{\mathrm{G}}(u, v), n_{\mathrm{G}}(v, u)\right\}$. All the three types of modifications of the Wiener index may be viewed as 'branching indices' and structural descriptors, suitable for modeling branching-dependent properties of organic compounds and applicable in the quantitative structure-property-activity studies. ${ }^{19}$

For a graph G with $n$ vertices $v_{1}, \ldots, v_{n}$, the thorn graph $\mathrm{G}^{*}=\mathrm{G}^{*}\left(p_{1}, \ldots, p_{n}\right)$ of G is obtained by attaching $p_{i}$ thorns (pendant edges) to each vertex $v_{i}$ for $i=1, \ldots, n$. If G is a tree, then $\mathrm{G}^{*}$ is called a thorn tree. In Refs. 20 and 21, formulae are reported for the Wiener index of several classes of thorn graphs. Let $\operatorname{deg}_{\mathrm{G}}(v)$ be the degree of the vertex $v$ in G. When $p_{i}=r \operatorname{deg}_{\mathrm{G}}\left(v_{i}\right)+s$ for $i=1, \ldots, n$, there is a closed formula for calculating the $k$-modified Wiener index (or the $k$-variable Wiener index) of the thorn tree $\mathrm{T}^{*}$ in terms of the $i$-modified Wiener indices (or the $i$-variable Wiener indices) of the tree T for integers $i$ and $k$ with $0 \leq i \leq k) .{ }^{22-24}$ In this report, we point out that such a relation does not hold for the $k$-altered Wiener index.

## RESULTS

Let $\mathrm{G}_{a, b, c, d, e}$ be graph depicted by the following figure:


It is easily seen that the number of vertices of $\mathrm{G}_{a, b, c, d, e}$ is equal to:

$$
\begin{equation*}
n=n\left(\mathrm{G}_{a, b, c, d, e}\right)=1+a+2 b+3 c+4 d+5 e \tag{2}
\end{equation*}
$$

and that if $n \geq 10$, then:

$$
\begin{aligned}
W_{\min , 1}\left(\mathrm{G}_{a, b, c, d, e}\right) & =1 \cdot(n-1) \cdot(a+b+2 c+3 d+4 e)+ \\
& +2 \cdot(n-2) \cdot b+3 \cdot(n-3) \cdot c+ \\
& +4 \cdot(n-4) \cdot d+5 \cdot(n-5) \cdot e
\end{aligned}
$$

and

$$
\begin{aligned}
W_{\min , 2}\left(\mathrm{G}_{a, b, c, d, e}\right) & =1 \cdot\left(n^{2}-1\right) \cdot(a+b+2 c+3 d+4 e)+ \\
& +4 \cdot\left(n^{2}-4\right) \cdot b+9 \cdot\left(n^{2}-9\right) \cdot c+ \\
& +16 \cdot\left(n^{2}-16\right) \cdot d+25 \cdot\left(n^{2}-25\right) \cdot e
\end{aligned}
$$

Let us consider graphs: $G_{7,0,36,0,5}$ and $G_{0,26,0,22,0}$. Note that:

$$
\begin{aligned}
& n\left(\mathrm{G}_{7,0,36,0,5}\right)=n\left(\mathrm{G}_{0,26,0,22,0}\right)=141 \\
& W_{\min , 1}\left(\mathrm{G}_{7,0,36,0,5}\right)=W_{\min , 1}\left(\mathrm{G}_{0,26,0,22,0}\right)=32164 \\
& W_{\min , 2}\left(\mathrm{G}_{7,0,36,0,5}\right)=W_{\min , 2}\left(\mathrm{G}_{0,26,0,22,0}\right)=10888648
\end{aligned}
$$

Denote by $\mathrm{G}_{a, b, c, d, e}^{*}$ the graph obtained from graph $\mathrm{G}_{a, b, c, d, e}$ by adding to each vertex the number of thorns equal to the degree of that vertex in graph $\mathrm{G}_{a, b, c, d, e}$. If $W_{\min , 2}\left(\mathrm{G}_{a, b, c, d, e}^{*}\right)$ can be expressed in terms of $n\left(\mathrm{G}_{a, b, c, d, e}\right)$, $W_{\min , 1}\left(\mathrm{G}_{a, b, c, d, e}\right)$ and $W_{\min , 2}\left(\mathrm{G}_{a, b, c, d, e}\right)$, then it necessarily follows that:

$$
\begin{equation*}
W_{\min , 2}\left(\mathrm{G}_{7,0,36,0,5}^{*}\right)=W_{\min , 2}\left(\mathrm{G}_{0,26,0,22,0}^{*}\right) \tag{3}
\end{equation*}
$$

Hence, it is sufficient to prove that relation (3) does not hold. Denote $m=n\left(\mathrm{G}_{a, b, c, d, e}^{*}\right)=3 \cdot n\left(\mathrm{G}_{a, b, c, d, e}\right)-2=$ $3 n-2$ and $n$ as in (2). Then, we have:

$$
\begin{align*}
& W_{\min , 2}\left(\mathrm{G}_{a, b, c, d, e}^{*}\right)=(2 n-2) \cdot 1^{2} \cdot\left(m^{2}-1^{2}\right)+ \\
& \quad+(a+b+2 c+3 d+4 e) \cdot 2^{2} \cdot\left(m^{2}-2^{2}\right)+ \\
& \quad+b \cdot 5^{2} \cdot\left(m^{2}-5^{2}\right)+c \cdot 8^{2} \cdot\left(m^{2}-8^{2}\right)+ \\
& \quad+d \cdot 11^{2}\left(m^{2}-11^{2}\right)+e \cdot 14^{2} \cdot\left(m^{2}-14^{2}\right) . \tag{4}
\end{align*}
$$

From (4), it follows that:

$$
\begin{align*}
& W_{\min , 2}\left(\mathrm{G}_{7,0,36,0,5}^{*}\right)=701532960 \\
& W_{\min , 2}\left(\mathrm{G}_{0,26,0,22,0}^{*}\right)=701534256 . \tag{5}
\end{align*}
$$

Obviously (5) contradicts (3). Therefore, there is indeed no formula for calculating $W_{\min , 2}\left(\mathrm{G}_{a, b, c, d, e}^{*}\right)$ in terms of $n\left(\mathrm{G}_{a, b, c, d, e}\right), W_{\min , 1}\left(\mathrm{G}_{a, b, c, d, e}\right)$ and $W_{\min , 2}\left(\mathrm{G}_{a, b, c, d, e}\right)$.

Remark 1. - Since $W_{\text {min,1 }}$ coincides with the standard Wiener index, it follows that $W_{\min , 1}\left(\mathrm{G}_{7,0,36,0,5}^{*}\right)=W_{\text {min }, 1}($ $\mathrm{G}_{0,26,0,22,0}^{*}$ ). Indeed, using formula:

$$
\begin{aligned}
& W_{\min , 1}\left(\mathrm{G}_{a, b, c, d, e}^{*}\right)=(2 n-2) \cdot 1 \cdot(m-1)+ \\
& \quad+(a+b+2 c+3 d+4 e) \cdot 2 \cdot(m-2)+ \\
& \quad+b \cdot 5 \cdot(m-5)+c \cdot 8 \cdot(m-8)+ \\
& \quad+d \cdot 11(m-11)+e \cdot 14 \cdot(m-14)
\end{aligned}
$$

one gets:

$$
W_{\min , 1}\left(\mathrm{G}_{7,0,36,0,5}^{*}\right)=W_{\min , 1}\left(\mathrm{G}_{0,26,0,22,0}^{*}\right)=347996
$$

Acknowledgements. - This work was supported by the Ministry of Science, Education and Sports of Croatia. The authors thank the reviewers for their constructive comments.

## REFERENCES

1. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17-20.
2. H. Hosoya, Bull. Chem. Soc. Japan 44 (1971) 2332-2339.
3. D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structures, Research Studies Press, Chichester, 1983, pp. 71-73.
4. N. Trinajstić, Chemical Graph Theory, $2^{\text {nd }}$ revised ed., CRC Press, Boca Raton, 1992, pp. 241-244.
5. D. H. Rouvray, The Rich Legacy of Half a Century of the Wiener Index, in: D. H. Rouvray and R. B. King (Eds.) Topology in Chemistry - Discrete Mathematics of Molecules, Horwood, Chichester, 2002, pp. 16-37.
6. L. Xu and X. Guo, MATCH Commun. Math. Comput. Chem. 55 (2006) 137-158.
7. I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986, pp. 124-127.
8. D. H. Rouvray, Sci. Am. 24 (1986) 40-47.
9. I. Gutman, Y. N. Yeh, S. L. Lee, and Y. L. Luo, Indian J. Chem. 32A (1993) 651-661.
10. S. Nikolić, N. Trinajstić, and Z. Mihalić, Croat. Chem. Acta 68 (1995) 105-129.
11. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
12. A. A. Dobrynin, R. Entringer, and I. Gutman, Acta Appl. Math. 66 (2001) 211-249.
13. A. A. Dobrynin, I. Gutman, S. Klavžar, and P. Žigert, Acta Appl. Math. 72 (2002) 247-294.
14. M. V. Diudea and I. Gutman, Croat. Chem. Acta 71 (1998) 21-51.
15. I. Gutman, D. Vukičević, and J. Žerovnik, Croat. Chem. Acta 77 (2004) 103-109.
16. B. Lučić, A. Miličević, S. Nikolić, and N. Trinajstić, Indian J. Chem. 42A (2003) 1279-1282.
17. D. Vukičević and J. Žerovnik, MATCH Commun. Math. Comput. Chem. 53 (2005) 385-402.
18. D. Vukičević and J. Žerovnik, Acta Chim. Slov. 52 (2005) 272-281.
19. e.g., M. V. Diudea (Ed.), QSPR/QSAR Studies by Molecular Descriptors, Nova, Huntington, NY, 2000.
20. I. Gutman, Publ. Inst. Math. 63 (1998) 31-36.
21. D. Bonchev and D. J. Klein, Croat. Chem. Acta 75 (2002) 613-620.
22. D. Vukičević and A. Graovac, MATCH Commun. Math. Comput. Chem. 50 (2004) 93-108.
23. B. Zhou, Kragujevac J. Math. 27 (2005) 5-9.
24. B. Zhou, A. Graovac, and D. Vukičević, Variable Wiener indices of thorn trees, to appear.

## SAŽETAK

## Izmijenjeni Wienerovi indeksi trnovitih stabala

Damir Vukičević, Bo Zhou i Nenad Trinajstić

Nedavno su predložene tri modifikacije Wienerovoga indeksa neke strukture G: $\lambda$-modificirani Wienerov indeks ${ }^{\lambda} W(\mathrm{G}), \lambda$-varijabilni Wienerov indeks $\lambda_{\lambda} W(\mathrm{G})$ i $\lambda$-izmijenjeni Wienerov indeks $W_{\min , \lambda}(\mathrm{G})$. Za bilo koji pozitivni cijeli broj $k$ postoje eksplicitne formule za računanje $k$-modificiranoga Wienerova indeksa i $k$-varijabilnoga Wienerova indeksa trnovitih stabala pomoću $i$-modificiranoga Wienerova indeksa $i$-varijabilnoga Wienerova indeksa matičnoga stabla za cijele brojeve $i$ s granicama $0 \leq i \leq k$. U ovome je članku pokazano da to ne vrijedi za $k$-izmijenjeni Wienerov indeks.


[^0]:    * Dedicated to Professor Haruo Hosoya in happy celebration of his $70^{\text {th }}$ birthday.
    ** Author to whom correspondence should be addressed. (E-mail: vukicevi@pmfst.hr)

