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ABSTRACT. Klein bottle weak solenoidal space ¥(p, q,r) is a contin-
uum obtained as the inverse limit of an inverse sequence, where each term
is Klein bottle and each bonding map is finite-sheeted covering map over
Klein bottle. In the present paper we determine and present all s-sheeted
covering maps (with connected total space) over ¥(p,q,r),s € N, both
pointed and unpointed case.

1. INTRODUCTION AND THE MAIN RESULT

Recently, finite-sheeted covering maps over 2-dimensional compact, con-
nected Abelian groups G were studied ([1]). It turned out that finite-sheeted
covering maps over G were determined using finite-index torsion free super-
groups of the Pontryagin dual G ([2]). Moreover, using finite index subgroups
of G there were also presented finite-sheeted covering maps from G to other
compact connected groups. The main step in the investigation was the re-
duction to the case of finite-sheeted covering homomorphisms f : G/ — G
between two compact connected 2-dimensional Abelian groups. Each such
group G is represented as the inverse limit of an inverse sequence, where each
term is 2-torus T? and each bonding map is a finite-sheeted covering homo-
morphism over T?. Since T? is a covering space for Klein bottle K, a natural
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question arises: Are compact connected Abelian 2-dimensional groups G, be-
sides groups, also covering spaces for 2-dimensional continua Y obtained as
limits of inverse sequences consisting of K? This question leads us to an in-
vestigation of finite-sheeted covering maps over Klein bottle weak solenoidal
continua (p,q,r), where p = (p;), ¢ = (¢;) and » = (r;) are sequences of
integers such that p; # 0 and r; is odd for each i. Weak solenoidal spaces
Y (p,q,r) were introduced and classified up to homeomorphism by C. Tezer in
his paper ”Shape classification of Klein bottle-like continua” ([7]). The aim
of the present paper is to determine and present all s-sheeted covering maps
with connected total space over X(p,q,r), s € N, both pointed and unpointed
case. Main results related to the pointed case are given in Theorem 6.2 and
Corollary 6.6, while main results related to the unpointed case are given in
Theorem 7.3 and Corollary 7.5. The results are achieved using classification
theorem of finite-sheeted covering maps over connected paracompact spaces
Y ([5]). It establishes a bijection between the set of all pointed equivalence
classes of s-sheeted pointed covering maps f : (X, %) — (Y,*) and the set
of all subprogroups of index s of the fundamental progroup 7 (Y, *). In the
unpointed case it establishes a bijection between the set of all equivalence
classes of s-sheeted maps f : X — Y and the set of all conjugacy classes of
subprogroups of index s of the fundamental progroup 71 (Y, *), where * is an
arbitrary chosen point of Y. It turned out that the investigation of s-sheeted
covering maps over %(p,q,r) was reduced to the studying of certain sequences
of positive integers, so called admissible sequences for X(p,q,r), and their
conjugacy classes.

2. SPACES X(p,q,r)

We shall follow notions introduced by Tezer in [7]. Klein bottle K can
be presented as the quotient manifold R?/G, where the group G = {(a, 3 |
aff = Ba~t) acts properly discontinuously on R? by the affine transformations
a,B:R? - R?

a(z,y)= (v +1,y)
B(z,y) = (—z,y+ 3).

Let yo € K be the image of (0,0) € R? under the quotient map. Then
m1 (K, y0) can be naturally identified with G. Each element of G can be pre-
sented as o™ 3™, n,m € Z. Note that G can be viewed as the group (Z?, *),
where the group operation x is given by (n,m)* (k,l) = (n + (=1)"k,m +1).
Namely, h : G — (Z2, %) defined by the rule h(a™3™) = (n,m) is an iso-
morphism of groups. Therefore we shall identify G' with (Z2, %) via h. In the



FINITE-SHEETED COVERING MAPS 21

sequel we shall need following relations:

akrgkm - m even
(a"pm)F =< phm, modd, k even, ke Z\ {0},
a3 m odd, k odd
(anﬂm)—l _ a(—l)’"+lnﬂ—m.
Also note that the subgroup (Z x 27, %) of (Z?, %) is isomorphic to (Z2,+).
Since G/ = (a, %) = (Z x 2Z, %), it follows that the the quotient manifold
R?/G" is the 2-torus T?. Let 79 € T? be the image of (0,0) € R? under the
quotient map. Then 7 (T?,29) = G’. Since G’ is a subgroup of index 2 of G,
the identity map idgz : R? — R? induces a pointed map § : (T?,z0) — (K, yo),
which is a 2-sheeted covering map, so called ”basic” 2-sheeted covering map
of T? over K.
Each endomorphism of G is of the form k¢, 4,y : G — G

h(p.q.r) (@) = o,
h(p,q,r) (6) = O‘qﬂr

where p,q,7 € Z and 7 is odd whenever p # 0. Moreover, h(, 4 ) is injective
if and only if p # 0 (and r is odd). Furthermore,

t=qr, 7 even
hip g P qr ) = Pippr t.rr), Where t=pq, r odd, r’ even .
t=pq¢ +q, rodd,r odd

For each integers p,q and r, r odd if p # 0, Tezer introduced maps f(, 4. :
(K,y0) — (K,yo) in the following way. Let O, 4.,) : (R,0)— (R, 0) be a map
such that O, ) (y + %) = —O(p.q,n)(y) + ¢ and define F, , ) : R* — R? by

_ (pCC + C—')(]o,q,’!‘) (y)a T.y)a r odd
Fpan(@y) = { (2qy,7y), reven, p=0"
Fip,q,r is the lifting of a map f, 4. @ (K,%0) — (K,y0) such that f, ¢ =
h(p,gr)* fip,qr) 18 @ covering map if and only if h(, 4, is injective or equiva-
lently p # 0. In that case number of sheets equals |pr|. Note that if ¢ = 0 and
p # 0, O 4. can be chosen to be the constant function O, 4,y = 0. Then
Fip,0,r) is represented by the diagonal integral matrix [g 2] € My (Z).

Let p = (pi), ¢ = (¢;) and » = (r;) be sequences of integers such that
each p; # 0 and r; is odd. Let Y = {K,, fiiy1,N} be an inverse sequence
such that each K; = K and each bonding map fiit1 = fp,,qr) * K — K
and let X(p, q,7) be the inverse limit of Y. ¥(p, g, r) is a Klein bottle weak
solenoidal space in the sense of McCord (see [6]). Recall the definition.

DEFINITION 2.1. A solenoidal (weak solenoidal) sequence is an inverse
sequence {X;, gii+1, N} such that each X; is connected, locally pathwise con-
nected and semilocally 1-connected, and each bonding map gii+1 @ Xiv1 — X;
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is a regular covering map (covering map). The limit space lim {Xi, giit1, N}
is called a solenoidal (weak solenoidal) space.

Tezer proved that Klein bottle weak solenoidal spaces ¥(p,q,r) and
Y(p',q',r") are homeomorphic if and only if the sequences p, r and p’, v’
respectively, have essentially the same prime profiles ([7, Proposition 2.5]). In
particular, X(p, q,7) and X(p, 0, r) are homeomorphic.

Let y = (y;) € 2(p,q,7) be a point where each y; = yo € K. When we
consider a pointed continuum (X(p, q,7), *) we will always assume * = y or
equivalently (X(p, q,7),*) = 11LHY* = lan {(Ka Yo), f(pq,,qq,,ri)a N} .

Recall that each compact connected 2-dimensional Abelian group A is
a solenoidal space obtained as the limit of a solenoidal sequence, where each
term is 2-torus T? and each bonding map is a covering homomorphism. That is
why we call compact connected 2-dimensional Abelian groups toroidal groups
for short.

3. SUBGROUPS OF FINITE INDEX OF G = (o, 3 | a8 = Ba~!) AND THEIR
CONJUGACY CLASSES

PROPOSITION 3.1. Let C be a cyclic subgroup of G. Then the index [G : C)|
of C in G is infinite.

ProOOF. Let C = {(a™@™). If m is even then C is a subgroup of G’ =
{a, 4%). Since G’ is isomorphic to (Z2, +), it follows that C' is of infinite index
in . Hence C is of infinite index in G. Let m be odd. Since (a™™)* = 52™
it follows that (3*™) < C and [C: (3*™)] is finite. On the other hand
(6°™) < G’ and thus the index [G : (8™)] is infinite. Now we conclude that
[G : C] is infinite. O

PRrROPOSITION 3.2. Let H be an arbitrary subgroup of G. Then there is
a unique integer ¢(H) € NU{0} such that pro(H) = c(H) € Z, where pra :
G — 7Z is the projection on the second coordinate. If H is non-cyclic then
c(H) > 0.

PRrROOF. First note that pro : G — Z is a homomorphism of groups.
Since prao(H) is a subgroup of Z there is a unique integer ¢(H) € NU {0},
such that pro(H) = ¢(H)Z. Let H be a non-cyclic group and let us assume
that ¢(H) = 0. Then H is a subgroup of (Z x {0}, *). The group (Z x {0}, *)
is isomorphic to (Z x {0} ,+). Thus H is cyclic, which is a contradiction. 0O

PROPOSITION 3.3. Let H be a non-cyclic subgroup of G. If (0,c(H)) € H,
then there is a unique a € N such that H = (a®, 3(1)).

PROOF. Since H is non-cyclic, there is an element (n,mc(H)) € H, n €
Z\ {0}, m € Z. Then (n,0) € H and ¢ = min{n € N: (n,0) € H} is a
well-defined natural number. We claim that H = (a®, 3H)). Tt is obvious
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that (a®, 3°)) C H, so it is enough to prove that H C (a® BU1). Let
(k,lc(H)) € H, k,l € Z. Then (k,lc(H)) (0,lc(H))"" = (k,0) € H, which
implies that a divides k. Let k' € Z be such that k = k’a. Then (k,lc(H)) =
(Ka,lc(H)) = (a®)¥ (5C<H>)l, which shows that (k,lc(H)) € (a®, ). Tt
remains to prove that a is unique. Let as assume that there is another a’ € N
such that H = (a®, 8¢, Then there are n/,n” € N such that a = n’a’ and
a’ = n' a. This implies n'n” =1, ie., a = d’. O

Let ko € Z be an arbitrary integer and let fi, : G — G be a map defined

by fr, (n,m) = (n + wko,m). fro is an automorphism of the group
G. Also note that fr, fi, = fro+io-

PROPOSITION 3.4. Let H be a non-cyclic subgroup of G. Then there are
unique integers a,b and ¢, a,c € N, b € NU{0}, 0 < b < a, such that
H = (a®,abB°). Furthermore, [G : H] = ac.

PROOF. Put ¢ = ¢(H). According to Proposition 3.2, ¢ > 0. We distin-
guish two cases.

(i) ¢ is even. If ¢ is even then H is a subgroup of (Z x 2Z, ), which is
isomorphic to (Z2, +). Thus there are unique numbers a € N and b € NU{0},
0 < b < a, such that H = (a®, a’3°).

(ii) ¢ is odd. H contains an element (k,c), k € Z. Let us consider the
automorphism f_i : G — G. Note that f_x(k,c) = (0,¢) and c(f_x(H)) =
¢(H) = c¢. Now, Proposition 3.3 implies that there is a unique a € N such
that f_x(H) = (a®,3°). Then H = f1.f_1(H) = {a®,a*3°). Let b € NU{0},
0 < b < a, be such that k = b (mod a). Then H = {a®, a®3°).

It remains to prove that [G : H] = ac. It is enough to prove that

G/H ={Ha"p™ :n,m e NU{0},0<n<a,0<m<c}.

Let us assume Hoa'B N Ha"B™ # 0, 0<in<a0<j4,m<ec
Then o'B (a"3™)"" € H, ie., o'tV ingi-m ¢ g which implies
Qi (DT I giom — gka(qbge)l for some k,l € Z. Since 0 < j, m < c
and ¢ divides j — m, it follows j = m. Then ai+(=1"""'n — qi—n — gka,
which implies i = n. Let o', k,1 € Z, be an arbitrary element of G and let
I=m (mod ¢), 0 <m < c. Then [ = loc +m, ly € Z, and of 3 = oFgloctm,
Note

ak‘—bl() (abﬁc)l"ﬁm, ¢ even

okl =< ak(abpe)opm, codd, Iy even .

ak=b(abpge)lopgm ¢ odd, Iy odd
If ¢ is even put k — blyg = n (mod a), 0 < n < a. If ¢ is odd and [y is even
put k =n (mod a), 0 < n < a. If ¢ and Iy are odd put b — k = n (mod a),
0 <n < a.In all cases a*B! € Ha™B™, which completes the proof. O

Proposition 3.1 and Proposition 3.4 imply the following corollary.
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COROLLARY 3.5. Let H be an arbitrary subgroup of G. [G : H] s finite if
and only if H is non-cyclic.

Note that all Abelian non-cyclic subgroups of GG are contained in the
subgroup G’ = (a, 3?).

Let H = (%, a3, a,b € N, b € Z, 0 < b < a, be a subgroup of G. We
want to determine a conjugacy class [H] of H. First note

(anﬂm)flaa (anﬂm) _ a(fl)ma’

(anﬂm)flabBQd (anﬂm) _ a(fl)mbBQd’
(anﬂm)flabﬂhl«kl (anﬂm) _ a(fl)m(b72n)62d+1’
(anﬁm)aa (anﬁm)fl _ a(—l)’”a7
(anﬂm)ab62d (anﬂm)—l _ a(fl)mbBQd’
(anﬂm)ab62d+l (anﬂm)*l _ a(—l)mb+2nﬂ2d+1'

PROPOSITION 3.6. Let a,a’,c,c/ € N, 0 <b<a, 0<V <ada, and let
H = (a%a’3°) and H' = (a“/,ablﬁc/) be conjugate subgroups of G. Then
a=a andc="c.

PROOF. Let ¢ = a”B™ € G be such that H = g 'Hg. Since
[G:H] = [G : H'], ac = a/¢. Let k be an integer such that o =
(a*B™)Lake(an ™) = o=k Tt follows that a divides a’. Analogously,
a® = (a”ﬁm)ala/ (anpm)~t = a(=D™a" for some integer [, which shows that
a’ divides a. Since a and a’ are positive it follows ¢ = o’ and consequently

c=c. O

PROPOSITION 3.7. Let a,c € N, 0 < b,b’ < a, both a and ¢ odd. Then
H = (a®,a’B°) and H' = (a®,a’ 3°) are conjugate subgroups of G.

PROOF. Let n be a unique solution of an equation 2n = b — b’ (mod a).
Then there is an integer k such that b — b’ — 2n = ka. Put ¢ = ™32
We claim H' = g~ 'Hg. Note that a® = (a"8?)"'a%(a"3?) and b ge =
ab=n—kapge — (qnp2)~lab=kape(qn3?), which shows that H' C g 'Hg.
On the other hand a® = (a"8%)a%(a"(32)~! and abfe = ot/ t2ntkage —
(o 32)al" tha ge (o 32) =1 which shows H C gH'g ™. O

PROPOSITION 3.8. Let a,c € N, 0 < b0’ < a, ¢ even. H = (a®,a’3°)
and H' = <a“,ablﬂc> are conjugate subgroups of G if and only if ¥ = b or
b =a-—0.

PROOF. Assume that H and H’ are conjugate subgroups of G. Let g =
a"B™ € G be such that H' = g~'Hg. Then there is an integer k such that

ab’ﬂc _ (anﬂm)flakaabﬂc(anﬂm)

_ (anﬂm)flakaerﬂc(anﬂm) _ a(fl)m(ka+b)6c.
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Hence b’ = (—1)"(ka 4+ b), which implies ¥’ = b (mod a) or &’ = -b=a—1b
(mod a). This shows b’ = b or ¥/ = a —b. Assume b’ = bor v/ = a—b. If
b="b" then H = H'. So let us consider the case b’ = a —b. Put g = 3. Then
B1HB = ﬁ_1<aa,0zbﬁc>ﬁ — <Oz_a,oz_bﬁc> — <aa,aa—bﬁc> — <aa7ab/ﬁc> —
H. 0

PROPOSITION 3.9. Let a,c € N, 0 < b,b < a, a even, ¢ odd. H =
(a®,a’B3°) and H' = (oﬂ,ab'ﬂc> are conjugate subgroups of G if and only if
b—1b is even.

PROOF. Assume that H and H' are conjugate subgroups of G. Let g =
a™ 3™ € G be such that H' = g~ Hg. Then there is an integer k such that

ablﬂc _ (anﬂm)flakaabﬂc(anﬂm)
_ (anﬂm)flakaerﬂc(anﬂm) _ a(fl)m(ka+b72n)ﬂc'
It follows b’ = ka+b—2nor b’ = —ka — b+ 2n. We get b — b’ = 2n (mod a)
or b+b' =2n (mod a). Let u be an integer such that 0 < u < § and 2n = 2u
(mod a). If b—b" = 2n (mod a) we conclude b—b" = 2u. If b+ = 2n (mod a)
then b — b = b+ b — 20 =2u — 2V’ = 2(u — V'). In both cases b — b’ is even.
Assume that b — b’ is even. Then there is a solution n of an equa-
tion 2n = b — b’ (mod a). Put g = a"B% Then (a"B%)"'H(a"B?) =
(Oénﬁ2)71<oéa7 abﬁc)(a”ﬁQ) — <a7a, ab72nﬁc> — <aa, Oéblﬁc>. O

4. FINITE-SHEETED COVERING MAPS OVER KLEIN BOTTLE

In Section 2 we introduced pointed covering maps f, 4. @ (K,y0) —
(K,90), p # 0, r odd. Now, we will consider covering maps f : (T?,z¢) —

(Ka yO)
Each monomorphism h4 : Z2 — G is of the form

hA (a) _ amBQn’
hA (ﬁ2) _ akﬁQl
or equivalently,
hA(Zl,ZQ) _ amz1+kzzﬁ2(nZ1+lz2) _ (mzl + k29,2 (’I’LZl 4 122))7

where A = {m k
n 1
m k

Let A:R? - R?2 A= [n l] € M3 (Z),det A # 0. Then Aa = a™3?" A

and AB? = ofB%A. Thus A : R? — R? is a lifting of a map f4 : T? — K
such that f(zo) = (yo) and fu = ha- fa is a pointed s-sheeted covering map
over K, where s = 2|det A|. Note that f; : T? — K, where I is the identity
matrix, is the basic 2-sheeted covering map of T? over K, i.e., fr = 6.

} € My (Z), det A # 0.
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m k

l
sheeted covering homomorphism f4 : (T? z¢) — (T2, z0), where s = |det A|
(see [3, §2]). Note that fa = §f4, i.e., each s-sheeted covering map fa :
(T?,20) — (K,90), s = 2|det A|, can be represented as the composition of
an 3-sheeted covering homomorphism A (T2, 20) — (T?,20) and the basic
2-sheeted covering map § : (T?,z0) — (K, yo)-

Let f: (X,z) — (K, yo0) be a pointed s-sheeted covering map. According
to the classical classification theorem of covering maps, H = fu(m (X, x)) is
an s-index subgroup of 71 (K, y0) = G. It follows from Proposition 3.4 that
there are integers a,b and ¢ such that a,c € N, 0 < b < a, ac = s, and
H = (a%,a’3°).

f is pointed equivalent to

(1) flape) : (K, 90) — (K, y0), if ¢ is odd,;
(2) fa:(T?,29) — (K,90), A= [8 2] , if ¢ is even.
2

In the unpointed case, according to the considerations about conjugacy

classes of (a®,a’3°) in Section 3, f is equivalent to
(1) fap,e: K — K,0<b <a,if a and c are odd;
(2) fap,e): K —K,0<b <a,b—10"is even, if a is even and ¢ is odd;

3) fA:TbK,A[“ v

Recall that each integral matrix A = , det A # 0, defines an s-

0o <

] , b’ equals b or a — b, if ¢ is even.
2

PROPOSITION 4.1. Let (X,z) be a pointed Klein bottle weak solenoidal
space. Then (X, x) is pointed homeomorphic to a (X(p,q,r),*), where p;,r;
are positive and 0 < q; < p; for each 1.

Proor. Let {(K,z;), gii+1, N} be a pointed Klein bottle weak solenoidal
sequence such that (X, z) = lim {(K,x;), gii+1,N}. Since K is homogenous
there is a homeomorphism hy : (K, z1) — (K, yo). By the induction for each
1 € N we will find integers p;, q;, 7, pi, 7 € N, r; odd, 0 < ¢; < p; and a home-
omorphism hi+1 : (K, 331'4_1) — (K, yo) such that higii-i-l = f(pi,qi,n)hi-f-l' Let
i = 1. Since hi1g12 : (K,22) — (K, yo) is a pointed covering map, there are
positive integers py,71, 71 odd, an integer ¢1, 0 < ¢1 < pi1, and a pointed
homeomorphism hy : (K,z2) — (K,yo) such that higia = fip, ,q1,r0) 02
Let us assume that homeomorphisms ho, ..., h, and integers p1,p2,...,Pn_1,
41,92, yqn—1, T1,72,...,"n—1 With required properties are defined. Since
hngnnt1 : (K, Znt11) — (K, 90) is a pointed covering map there are positive
integers py, ', T, 0odd, an integer ¢,, 0 < ¢, < p,, and a pointed homeomor-
phism Ayq 1 (K, 241) — (K, y0) such that hngnni1 = fip, qn,rn)Pnt1. This
completes the inductive step. Now, pointed homeomorphisms h,, : (K, x,) —
(K, yo) induce a desired pointed homeomorphism & : (X, z) — (X(p, g, ), *).

O
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In the sequel we will consider only pointed Klein bottle weak solenoidal
spaces (X(p,q,r),*), where the sequences p = (p;), and r = (r;) consist of
positive integers.

5. PULL-BACK DIAGRAMS

The proof of the following proposition is very simple, so we omit it.

PROPOSITION 5.1. Let L be an arbitrary group, let M, N be subgroups of
L andlet h : L — L be a homomorphism. A function ¢ : L/M — L/N defined
by ¢ (Mg) = Nh(g) is a well-defined injection if and only if M = h=! (N).

PROPOSITION 5.2. Let h(p q.r) : G — G be a monomorphism and let H; =
(a% o’ B%), a;,¢c; € N, by € Z, i = 1,2, be subgroups of G, ca even. A
function ¢ : G/H, — G/Hs defined by ¢ (Hig) = Hah, g (9) is a well-
defined bijection if and only if

(1) GCD(p7 a2arb2) = 13 GCD (027T) = 1;
(il) ¢1 = dea, a2 = day, where d = GCD (p,as);
(iii) p'by = rbe (mod aq), where p = dp'.

PRroOF. First note that p # 0, r odd and ¢(H;) = ¢;, i = 1,2. Let ¢ :
G/Hy — G/H3, ¢ (H19) = Hah(p g (9), be a well-defined bijection. Then
aic1 = agcy. There are integers m,n € Z such that ¢ (H1a™g"™) = Haf, i.e.,
h(p,qr) (@™B™) Bt € Hy. Hence pro(aP™ (a?8™)" 71) = nr—1 € ¢27Z, which
implies GCD (c2,7) = 1. hg g (H1) € Ho implies h(p,q,,.)(ablﬂcl) =
aP?t (a9B7)" € Hy and consequently re; € caZ. Since GCD (ca,7) = 1, ¢o di-
vides ¢1 and ¢; is also even. Let d’ € Z be such that ¢; = d’co. Then as = d'ay.
There are integers k,l € Z, 0 < k < a1, 0 <[ < ¢y, such that ¢p(H,a*3!) =
Ha, ie., hgpgn(@B8)a™t € H Hence pro(a?* (a987) a™l) = 7l €
coZ, which implies I = 0 (mod ¢3). Let | = e, I! € Z. We get
$(Hyak ) = (Hy b pel') = Hya?* (a967)?" = Hya?* " = Hyo, which
implies a?*~1 3" € H,. Since aPk—1ge2rl’ = oz”’“_b”"ll_l(ozb2 ﬁ”)”l it follows
aPk=b2r'=1 ¢ Hy and thus GCD(p,az, rby) = 1. This proves (i).

Put GCD(p,as) = d, az = da’ and p = dp’. Note GCD(p',d’) = 1.
Since h(pqr (@) = aP® € Hy and hp g0 (ab1pe) = aPh (a1f7) =
aPb13mer € Hy, there are integers w,u,v such that aP% = a2, oPb1gre1 =
vz (ab2 3°2)V ie., pa; = wasg, pby = uaz + vby and rc; = cyv. This implies
ay = dd’ | p'day, i.e., @’ | a; and consequently d’ | d. On the other hand
pb1 = uag + rd'ba, ie., d | ua’d + rd'by. Since GCD(rbs,d) = 1 we conclude
d|d'. Hence d =d' and as = day, a’ = a1, ¢c1 = dea, which proves (ii).

Now we get p'db; =ua’d 4 rdbs or p'by =rbs (mod a'), which proves (iii).
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Let us assume that the conditions (i), (ii) and (iii) are fulfilled and
let us prove that ¢ : G/Hy — G/Ha, ¢ (Hig) = Hahp g (9), is a well-
defined bijection. Since [G : Hi] = a1c1 = agea = [G : Hs], accord-

ing to Proposition 5.1 it is enough to prove h(_]jqﬂ,) (H2) = H;. Note that

hpar (@) = aP = a?% € Hy and hg, 40 (@ f%) = aP?t (a987)7 =
aPbLgren = b grdez — ap’db17b2rd(abzﬂc2)rd. Since d(p'by — bad) = ask for
some integer k it follows that h(p,q,,.)(ablﬂcl) € Hy. Thus h, gy (Hy) C Ho

and H; C h(_z:q,r) (Hz). Let us prove h(_z:q,r) (Hy) C H;. Let a"pg™ €

h(_p%qm) (Hz). Then h, . (a"8™) = aP™ (a?87)™ € Hy. Since ¢z | rm and
GCD(r,cy) = 1it follows m = cam/ for some integer m’. Then a?" (a487)™ =
aP (@)™ = qpngearm’ — gpn—barm’ (b2 gesyrm’ ¢ ) Hence ap = day |
p'dn — barm/, which implies d | m’. Let m’ = dm” for some integer m”. We
get ™ = qngedm’ — gngam’ — gn=bh (ablﬁcl)m”. Let pn —borm’ = ask
for some integer k. We get p'n + p’bym” — barm” — p’bym” = a1k and there
exists an integer k' such that p'(n — bym”) = a1k’. Thus a1 | p’'(n — bym”)
and since GCD(aq1,p’) = 1, it follows a1 | n — bym”. Now we conclude that
anfm = an—blm” (Ozbl Ber )m” c H. O

It follows from Proposition 5.2(ii) that ¢; is also even.

PROPOSITION 5.3. Let h(p q.r) : G — G be a monomorphism and let H; =
(a% abB%), aj,c; €N, by € Z, i = 1,2, be subgroups of G, c1,co odd. A
function ¢ : G/H, — G/Hs defined by ¢ (Hig) = Hah, g (g) is a well-
defined bijection if and only if

(i) GCD(p,a2) =1, GCD (cg,r) =1;

(ii) Cl1 = C2, G2 = a1,
(iil) pby = —q+ b2 (mod as).

PRrOOF. Let ¢ : G/Hy — G/Hz, ¢(Hig) = Hahgp g, (g9), be a
well-defined bijection. Then aijc; = asce. There are integers m,n € 7Z
such that ¢ (Hia™B"™) = Hf, ie., hggrn (@™B") 31 € H,. Hence
pra(aP™ (4™ B7) = nr — 1 € ¢2Z, which implies GOD (ca,r) = 1.
h(p.qry(H1) € Ho implies hg, 40y (a®) = aP® € Hy and h(p’q’r)(ablﬁcl) =
Pt (qpm)t = aPhrtagres ¢ Hy. Thus pa; = nagp for some n € Z and
rcy € coZ. Since GCD (co,r) = 1, co divides ¢;. Let d € Z be such
that ¢; = dco. Then as = da; and d divides p. There are integers u and
v such that aPh1tigrer = (a)“(ab23°2)V. First note that v is odd and
aPhitagren — gaaugb: geav — qe2utbzgeav and consequently v = rd and
pb1 + ¢=agu + by, which implies pby =—¢q + b2 (mod az). This proves (iii).

Note that GCD(p,az) divides by — g. On the other hand there are in-
tegers k.l € Z, 0 < k < a1, 0 < I < ¢, such that ¢(H1akﬂl) =

Hyar, ie., hgpgrn(@®8Ya™t € H,. Hence pro(af® (18" a”l) = 1l €
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coZ, which implies I = 0 (mod c2). Let | = cl’, I! € Z. We con-
sider two cases: [ is even and [ is odd. Let I be even. Then I’ is
even and of* (a187) ol = apk-lgrel’ — opk=l(gb2ge2)rl’ ¢ H, Thus
GCD(p,az) = 1. Let | be odd. Then I’ is odd and aP* (a?87) o=t =
aPkaaprlal = gpktatlgrel’ — gphtatl=bs(gb2 geayrl’ ¢ Hy which implies
GCD (p,a2,ba —q) = 1. Since GCD(p, az) divides by — ¢, it follows that
GCD(p,az) = 1. This proves (i).

GCD(p,az)=1 implies d=1. Hence as =a; and ¢y =c¢1, which proves (ii).

Let us assume that the conditions (i), (ii) and (iii) are fulfilled and let
us prove that ¢ : G/Hy — G/Ha, ¢ (H1g) = Hah(p g (9), is a well-defined

bijection. Since [G : Hi] = ajc; = asca = |G : Ha], according to Proposi-
tion 5.1 it is enough to prove h(_p}qm) (Hs) = Hy. Note that h, g0 (@) =
ar = P € Hy and hi g (ah07) = ot (1F) = arhtegre =
apbrgrez = qpbita=bz(qbz3e2) Since pb; = —q + by (mod ag) it follows

h(p.q,r) (ab18°1) € Hy. Thus h(p,q,ry (H1) € Hy and Hy C h(_]jqﬂ,) (Hs3) . Let us
prove h(_]:q,'r') (Hg) C Hy. Let a"pg™ € h(_ziq,r) (Ha). Then hg, g (@"8™) =
aP™ (a137)™ € Hy. Since ¢z | rm and GCD(r,c) = 1 it follows m = com’ =
cym’ for some even integer m’. We consider two cases: m is even and m is
odd. Let m be even. Then m/ is even and h, 4.y (™) = o™ (") =
apn gream’ — ap”(al”ﬂc?)’”m’ € Hs. Thus pn = asn’ = a1n’, for some integer
n'. Since GCD(p,a2) = GCD(p,aq1) = 1 it follows n = a;n” for some integer
n'. Hence o™ = aaln”ﬁ@ml = qun”’ (ab2ﬁc2)m' = qun”’ (Ozbl ﬁcl)m/ € H,.
Let m be odd. Then m’ is odd and h(, g (@"™) = o (a1p")™ =
apn-f—qﬁrczm’ — qPnta—b2 (abzﬁcz)rm/ € Hy. Thus pn + q — by = agn’ for some
integer n’, i.e., pn = —q + be (mod az). Since pby = —q + ba (mod asz) and
GCD(p,as2) =1, it follows n = by (mod ag). Thus, n = by +asn” = by +a1n”
for some integer n”. We get o™ 3™ = gbrtan” geam’ — gain” (gb1gerym’ o p

which completes the proof. 0
Let
(X', z") & (X, z)
(%) 1l L
Yy - (V)

be a commutative diagram, where f and f’ are pointed covering maps and
all four spaces are pathwise connected. Let L = 71 (Y,y), L' = m(Y',y'),
M = fu(m(X,z)), M" = fi(m(X',2)) and let ¢ : L/M — L'/M' be a
function defined by ¢(Mu) = Mg}, (u). According to [4, Lemma 10] diagram
(%) is a pull-back diagram if and only if ¢ is a bijection. This fact together
with Propositions 5.2 and 5.3 implies two following corollaries.
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COROLLARY 5.4. Let p,r,a,d be positive integers, r odd, and let f, q.r):
(KayO) - (KayO); fA : (T2a1’0) - (KayO)a fB : (TQ,LL‘()) - (KayO) be
a b _la b _
0 d} and B = {0 d] . IfGCD(p,a) =
GCD (d,r) =1 and pby = rby (mod a), then fB, fp qr), fa can be completed
to a pull-back diagram

pointed covering maps, where A =

(T%,20) <L (T2 20)
sl 1 ra
(K,y0)  «— (K,y0)

(p,q,7)

Furthermore, f: (T?,z0) — (T?,x0) is a covering map and fy is represented
pbl—b27‘:|

by an integral matriz [8 ;{

Note that f : (T?,z0) — (T?,z0) from Corollary 5.4 is a covering homo-
pb1—bar
morphism (represented by the matrix [Z(; ; } ) if and only if ¢ = 0.

COROLLARY 5.5. Let p,r,a,c be positive integers, v and c¢ odd, and let
f(a,bl,c) : (Ka yO) - (Ka yO)a f(a,bz,CQ) : (Ka yO) - (Ka yO)a f(p,q,r) : (Ka yO) -
(K, yo0) be pointed covering maps. If GCD(p,a) = GCD (¢,r) =1 and pby =
by —q (mod a), then f(aby.ca)> fp.gr),> flaba,co) Can be completed to a pull-back
diagram

(K.yo) < (K.p)
Fa,bg,e) 1 1 faby.e)

(K,90) <+«  (K,%0)

(p.a,m)

Furthermore, f : (K,yo) — (K,yo0) s a covering map and fz =

h b1 —b .
mmfmw)

6. POINTED FINITE-SHEETED COVERING MAPS OVER (X(p, g, T), *)
Let Ny, denote a set {i € N:4i > k}.
DEFINITION 6.1. Let a,c € N. We say that
Bae) = (ks bty vy bnyen) € (0,1, a — 1}
is an admissible sequence for X(p, q,r) if for each i € Ny,
(i) GCD (a,p;) = GCD (c,r;) =1;

(il) pibit1 = bi — ¢; (mod a), if ¢ is odd;
(iil) pibit1 = mib; (mod a), if ¢ is even.
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We consider two admissible sequences b, € {0,1,...,a— 1}N’“ ,
b'(a,’c,) €{0,1,...,a" — 1}N"’ for X(p, q,r) as equal, provided a = a’, ¢ = ¢
and there is an index ¢* > k, k' such that b; = b} for i > i*.

THEOREM 6.2. Let (X(p, g, r),*) be a pointed Klein bottle weak solenoidal
space and let s € N. Then there is a bijection F between the set of all admissi-
ble sequences b, ¢y for X(p, q,r), where ac = s, and the set of all equivalence
classes of pointed s-sheeted covering maps f. : (X,x) — (X(p, q,7),*) with a
connected total space. Moreover, if Fi(ba,c)) = [f+], then X is homeomorphic

to a toroidal group if ¢ is even, while X is homeomorphic to X(p, q,r) if c is
odd.

PROOF. Let b, € {0,1,...,a — 1}N’“ be an admissible sequence for

Y(p,q,7), ac = s. Depending on ¢ we will associate to b(4,c) a pointed s-
sheeted covering map f. : (X,z) — (X(p, g, r), *) with connected total space
X in the following manner.
a bl
0
(K,yo) be an s-sheeted covering map obtained by A;. According to Proposi-
tion 5.4, fa,, f(pi.qi,rs)» fA., can be completed to a pull-back diagram

1. cis even. For each i € N, put A; = and let fa, : (T?%, 20) —

(T%,00) 2 (T2,20)
fa; J, l faizs
(K, o) M (K, y0)

(Pirai:mi)

- pbig1—bir
for each ¢ > k, where f;;41 is a covering map and fi+14 = Pi a }

0 T
Let x; = x¢ for each i, * = (x;) and let (X, x) be the inverse limit of a
pointed inverse sequence X, = {(T?,z0), fii+1,Nxg}. Note that X is a torus

solenoidal space, which is pointed homeomorphic to a pointed toroidal group
~ pbig1—bir
(A, x) obtained by matrices [%1 B } Let f, = {fa, : (T?,20) —
i

(K,y0) | i € N} + X = Y, = {(K,%0), f(ps,qs,r+), N} be a mapping of
pointed inverse sequences and let f, = limf, : (X,2) — (X(p,q,7),*).

2. cisodd. Foreachi € Ny let f(q,.0) : (K,y0) — (K, yo) be an s-sheeted
covering map. According to Corollary 5.5, f(a.t..c)s f(pi,qi,ri)> flapiir,e) a0 be
completed to a pull-back diagram

+1,

(Ka yO) — (Ka yO)
fab; .0 l ! Flabiqq.e)
(Ka yO) — (Ka yO)

(Piraq,73)
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for each ¢ > k, where f; is a covering map and fix = h(pi’pibi+1—bi+qi’ri).
Let (X, z), © = *, be the inverse limit of a pointed inverse sequenace X, =
{(K, o), fi»Ng}. Note that X is a Klein bottle weak solenoidal space. Ac-
cording to Proposition 4.1, (X, %) is pointed homeomorphic to (X(p’, ¢, '), *),
where sequences p’ and 7’ consist of positive integers. Moreover, there are
homeomorphisms h; : (K, y9) — (K, o) such that f(pqu;m;), fis hi, hixq form

a commutative diagram

f /7 ’ ’
(P az.m;)
(Ka yO) A (Ka yO)

hi ] 1} higa

(Ka yO) T (Ka yO)

i

for each . Since h;x are isomorphisms, i.e., hix = h(y, v;,w;), Where u; and

w; are 1 or —1, and h(ui,vq,7wq,)h(p;,q;,T;) = h(pi,“bw—l*bﬁqi,7.7)h(ui+17vi+17wq,+1)
[ 2a) Ty - ;

we get u;p; = piui+1 and w;r; = ryw;y1, which implies p; = p} and r; = 7}
for each ¢, which implies that X is homeomorphic to X(p,q,r). Let f, =
{f(a,bi,c) : (Kvyo) - (K,yo) | (S Nk} X =Y, = {(K7y0)’f(pngi,Ti)’N}
be a mapping of pointed inverse sequences and let f, = lim o X2) —
(E(pa q7 T)? *)

In both cases f. is a pointed s -sheeted covering map (see [5, Theorem 6
and Remark 1]). Now put Fi(b(,,)) = [f+]. We claim that F is a bijection.

CLAIM 1. Fi is an injection.

Let F. (b(a#)) = F*(b(a/,cl)), b(a/,c’) € {0, 1,... ,CL/ - ].}Nk/ , ac = a'd =
s. Then [f*] = F, (b(a,c)) = F*(b(a’,2c’)) - [fi]a f/ : (Xlax/) - (E(pvqar)a*)'
Let @, be a bijection between the set of all pointed equivalence classes
of s-sheeted covering maps f : (X,z) — (X(p,q,7),*) and the set of all
subprogroups of index s of the fundamental progroup m1(X(p,q,),*) (see
[5, Theorems 5 and 6]). Then O.([fi]) = {Hi, fp;.q0ri)pesi =01 =k} =
{(aa,ab*ﬂC},h(p“q“,«i),i > 41 > k}, where each H; = Im fa,5 = <aa,abiﬂc>

if ¢ is even or each H; = Im f(4 4,004 = (a®, ab3°) if ¢ is odd. Analo-
gously, @.([f1]) = {HZ’, Ji,qiri) s>t >0 > k’} , where each H] = Im fary =
<a“/,ab;ﬂc/> if ¢ is even or each H] = Imfp oy = (a“',ab;[?d} if

c is odd. Since D.([f«]) = P.([f.]) there is an i* > i1,4] such that
(a®, abiBe) = (a“',ab;[?d} for i > *. According to Proposition 3.4, a = a/,
c=c, b; =] for i > i* and consequently b, ) = b ).

CLAIM 2. F, is a surjection.

Let ¢g. : (X,2) — (X(p,q,7),*) be a pointed s-sheeted covering
map. Then there is a pointed inverse sequence X, = {(X;, ), giit+1, Ni }
and a mapping g, = {g, : (X,z:) — (K,p) | i € Np} : X —
Y. = {(K, yo),f(p“q“,.%),N} of pointed inverse sequences such that each



FINITE-SHEETED COVERING MAPS 33

g, : (X,z;) — (K,yo0) is a pointed s-sheeted covering map with a connected
total space, each

9Gii
(X, x3) s (Xit1, Tit1)
gi l l gi+1

(K, yo0) ;T (K, y0)
(pg

293577

is a pull-back diagram, (X,z) = limX, and g, = limg,.

Since each g, : (X,x;) — (K,yo) is a pointed s-sheeted covering map
it follows that H; = Img;x = gix(m(X;,2;)) is a subprogroup of index
s of GG. Hence there are integers a;,¢; € N and 0 < b; < a; such that
H; = (a%,a’ (%), a;c; = s. Moreover, ¢; : G/H;11 — G/H,; defined by
¢i (Hiz1v) = Hihp, 4, r,) (v) is a well-defined bijection for each i. We distinct
two cases:

a) There is i* > k such that ¢;+ is even. According to Proposition 5.2, for
each i > i*, ¢; is even, GCD(p;, a;,m:b;) = GCD (¢ci,13) = 1, ¢i41 = dici, a; =
diait1, and p'biy1 = rb; (mod a;y1), where d; = GCD (p;, az) and p; = d;p}.
Note that for each i > i*, a;41 divides a; if d; = GCD (p;,a;) > 1 or a;1 = a;
if d; = GCD (p;,a;) = 1. Since each positive number has only finite many di-
visors there are k* > ¢* and positive numbers a and ¢, ¢ even, such that for
each i > k*, a; = a, ¢;, = ¢, GCD(p;,a) = GCD (¢,r;) = 1 and p;biy1 = rib;
(mod a). Put b(a o = (g bpegty oy bpy o) € {0,1,...,a — 1} . Obvi-
ously, b, ) is admissible for (X(p, q,r), ). Let F.(b(a,c)) = [f«], where f.
is obtalned as in 1. Then ®.([f.]) = {{(a®, a B°), hip.gir)st = i1 = k*} =
{{a®, 0¥ B), hipi qir)»t = i1 > k} = <I>*([g*])7 which implies [f.] = [g«] and
Fi (b(a,c)) [g*]

b) Each ¢; is odd, ¢ > k. According to Proposition 5.3, for each i > k,
GCD(pi,ai) = GCD (Ci,’l“i) = 1,Ci+1 = Cj, Q341 = Q4 and pibi-i-l = bz — q;
(mod a;). Hence there are positive integers a and ¢, ¢ odd, such that
GCD(pi,a) = GCD (¢,r;) = 1 and pibiy1 = by — ¢; (mod a). Put b,y =
(bk, b1y -y bny...) €{0,1,...,a— 1}N’“ . Obviously b, ) is admissible for
( (p,q,7),%). Let Fi(by,) = [f«], where f,. is obtained as in 2. Then
([ L)) = {<aavabiﬂc>’h(pi,qq,,n)vi >y > k} = {<O‘aaabiﬂc>ah(pi,qi,ri)ai 2
1 > k} = ®.([g9«]), which implies [f.] = [g.] and F*(b(a,c)) = [9:

In both cases a) and b) we find an admissible sequence b, ) such that
F.(b(a,c)) = [g+], which proves that F, is a surjection. O

REMARK 6.3. Each Klein bottle weak solenoidal space X(p, g, r) admits
a pointed double-sheeted covering map with total space homeomorphic to the
product X(p) x X(r) of solenoids ¥(p) and X(7), obtained by sequences p and
7 respectively.
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THEOREM 6.4. Let n(, ) denote the total number of different admissible
sequences bq ) for X(p,q,r), (a,c) € NxN fived. If a = di"d3*---dom, d;
different primes, «; positive integers, let {d;,,diy,...,d; } C {d1,...,dmn} be
the set (possibly empty) of all prime divisors of a which divide infinitely many
terms in the sequence v = (r;). Then

a
n(a,C) = 1 () Tp .
k)

c odd

PROOF. Let k € N be an integer such that GCD(a,p;) = GCD(e,r;) =
GCD(d,r;) = 1foreachi > kandeachd € {d1,dz...,dn}\{diy,dis,-..,di, }.
We will define sequences

bl =l by by ) € {0,1,...,a—1}"* j=0,1,...,a—1,
in the following way. If ¢ is even, let z; € {0,1,...,a — 1} be a unique solu-
tion of a linear congruence p;z; = r; (mod a), ¢ > k. If ¢ is odd, let x;,y; €
{0,1,...,a — 1} be unique solutions of linear congruences p;z; = 1 (mod a)

and p;y; = —¢; (mod a), i > k. If a = 1, we put b(lc) (0,0,...,0,...) €
{O}N’“. If a > 2, we put b(a’c): (],bkﬂ,...,b;,...), where bzﬂ = xlbi
(mod a), i > k, if ¢ is even or bgH = xlbi +y; (mod a), i > k, if ¢ is odd.
We claim that bfa,c) are admissible for X(p, q, 7). If ¢ is even, we get pib{H =
piacibg = ribg (mod a). If ¢ is odd, we get pibg+1 = piacibg + piy; = bg —q;
(mod a). Hence, in both cases b{ayc) are admissible for X(p, g, r).

CrLam 1. If c is even, then n(qc) = W

tn

k+n—1
Note that GCD(a,r;) = GCD (a,z;), © > k, and bi_m =( [I =z)j
i=k
(mod a) for an arbitrary n € N.
If {di, diy, ..., di, } = (0, then 1 = GCD (a,r;) = GCD (a,z;), i > k. In

this case bk+n = ba_n (mod a) implies j = j (mod a), which shows that all

b{a o J =0,1,...,a — 1, are different admissible sequences for X(p, q, ).
Let {di,,di,,...,d;,} # 0. We claim that b}, = b,  if and only if
j = j" (mod %) Let b(a o = bz; ¢~ Then there is ng € N such

;. o
1 2

that bi = b{c;n for n > ng. On the other hand we can choose large enough
k+ni—1

ny > ng such that [ x; = )\dﬁ diz . dl ", where A € N and [; > «;; for
i=k

j =1,...,n. Note that d t A for each d ¢ {d;,,d;,,...,d;,}. Now, bk+n =

ben (mod a) implies )\dlldl2 : dl (—4") = 0 (mod a) and we conclude

ji—17 (mod —=—=; —). Let now j — 3 = 0 (mod %)

ig in i1 g% n
d; " dy) d d; M2 d,
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Then dzildziQ c--di (j = j') = 0 (mod a). Choose large enough n such that
k+n—1
[1 @ =Add?--dr
i=k

1112 in’

where A € N, and I; > «y; for j = 1,...,n. Then
Ve — Vg = A diz - di7 (j— ) = 0 (mod a). Hence b, = b, and
also b%a,c) = bga’c). It remains to prove that any admissible sequence b, oy =
(b1, bit1,...) €{0,1,...,a — 1}Nl is equal to some bza,c). It is obvious if | <
k. So, let us assume that [ > k. Since p;b;11 = 7;b; (mod a) for i > I,

we claim that b;y1 = x;b; (mod a) for ¢ > [. Assume the contrary. Then

pibit1 is not congruent to p;z;b; (mod a), which implies that p;b;11 is not
n—1

congruent to r;b; (mod a) and we get a contradiction. Thus b, = ([] ;)b
i=l

(mod a) for n > . If {d;y,di,,-..,d;, } = 0, let j be a unique solution of a

-1 . -1

congruence (][] #;)j = b (mod a). Then b = ([] #;)j = b (mod a) and
i=k i=k

b(a,c) = bza co)” If {d;,,d;,,...,d;, } # 0, choose large enough n > [ > k such

n—1
that 1:[1 T; = )\dﬁdéi---déz, where A € N, I > o, for j=1,...,nand d{ A

for each d ¢ {d;,,ds,,...,d;, }. Then b, = Ad}d? ---di"b; (mod a). Let j be

-1
a unique solution of a linear congruence ( [ x;)j = b (mod W).
1=k iy %ig %,

Then dial”cli;2 woody ™ (b = (IT #4)j) = 0 (mod a) and we get b, —b), =

i=k
. -1
AR - din (b—b]) = A2 di2 - dit (b—(]] 24)j) = 0 (mod a) . This proves
) i=k

— 1B —
b(a,e) = by - Hence na,e) = —arm—= -
i ig iy

CLam 2. If c is odd, then n(, ) = a.

Note that GCD(x;,a) = 1 for ¢ > k and biJrn = (Il =i+

k+n—1 k+n—1 k+n—1 )
( IT z)ye+(C II x)ypsr+ - Fyren—1=( [] :Ei)]erg_,_n (mod a) for
i=k+1 i=k+2 i=k
an arbitrary n € N. We claim that all sequences bza ¢y 7=0,1,...,a—1, are

different. Assume the contrary. Then there are j, 5 € {0,1,...,a — 1},j # j/,

My k+n—1
= bgc+n' Then ( [[ =:)(j—34) =0 (mod a). Since

i=k

and n € N such that b]

k+n—1
GCD( [] zi,a)=1,it follows j = j’, which is a contradiction. It remains to
i=k
prove that any admissible sequence b, ¢y = (bi, bi41,...) € {0,1,...,a — 1}Nl
is equal to some bg ) It is obvious if [ < k. So, let us assume that [ > k.

a,c



36 V. MATIJEVIC

Since p;biy1 = b; — q; (mod a) for i > k, we claim that b1 = z;ib; + y;
(mod a) for ¢ > k. Assume the contrary. Then p;b;11 is not congruent to
pix;b; + piy; (mod a) and consequently p;b;11 is not congruent to b; — g;
(mod a), which is a contradiction. Let j be a unique solution of a linear con-

-1 , -1

gruence ([] z;)j = by — b) (mod a). Then b — b = b — (][] 2;)j —b) =0
i=k i=k

(mod a), which implies b; = b]. This proves b(, ) = b{ajc). Hence nq,) = a.

O
Note that n(, ) is even if and only if a is even.

REMARK 6.5. Each admissible sequence b, ) for ¥X(p, q,r), c even, is a
super-admissible sequence for the product 3X(p) x X(7) of solenoids 3(p) and
Y(r) (see [1, Appendix A] and [2]). The proof of Theorem 6.4 related to the
case ¢ even is the same as one done for super-admissible sequences in [2].

For s € N and sequences p = (p;),r = (r;) let F, denote the set of all
ordered pairs (a, c¢) € Nx N satisfying ac = s and GCD(a, p;) = GCD(c,r;) =
1 for almost all <.

COROLLARY 6.6. Let (X(p,q,r),*) be a pointed Klein bottle weak sole-

noidal space and let s € N. Then there are ) n(q,) different equivalence
(a,c)EF;

classes of pointed s-sheeted covering maps over (X(p, q,r),*) with connected

total space.

7. UNPOINTED FINITE-SHEETED COVERING MAPS OVER X(p, q,T)

DEFINITION 7.1. Let b(a7c),b’(a,7c/) be admissible sequences for X(p,q,T).
We say that bza/7c,) is congugate to b, ) provided
(i) d=¢,d =q
(ii) b, =b; or b, =a—b; for almost all i, if c is even;
(iil) b, — b; is even for almost all i if ¢ is odd and a is even.

Note that conjugacy is an equivalence relation on admissible sequences
for X(p,q, 7). If both a and ¢ are odd then any two admissible sequence
b(a,c), bza ¢) are conjugate.

PROPOSITION 7.2. Let b, and b'( ) be admissible sequences for

a,c
%(p,q,7). b,y and b'(a ¢ are conjugate if and only if there is a sequence
(g:) € GNvo such that (aa,ab;ﬁc> = g; Y, ab % g; and P(piqs,r) (giv1) €
(a®, ab 3%)g; for each i > ko > k*.
PRrROOF. Let b, and b’( ,c) be conjugate admissible sequences for

¥(p,q,7). Then there is ko > k, k" such that for each i > ko, b, is either
b; or a —b; if ¢ is even or b} — b; is even if @ is even and c¢ is odd. Without loss
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of generality we assume kg = 1. We will construct the desired sequence (g;)
by the induction.

Let ¢ be even. Since b, ) and b?m are conjugate, b, is either b; or
a —b;. The only non-trivial case is b, = a — b; # b; for all i. Put g; = . Then
B~ Ha®, a5 = (a®, a1 %) = (a®, a1 3°). Since GCD(ry,c) = 1 there
are integers vs, ko such that ryvs —cks = 1. Since r1 is odd v is also odd. Since
GCD(p1,a) = 1 there are integers ug and Iy such that pyus—aly = koby —q1va.
Put go = a%23"2. vy is odd and therefore (a*23v2)~!(a%, a’2(%) a2 3% =
(a®, a™23°) = (a?, a®~b23°). Furthermore,

h(anum)(gQ) = h(pl,Q1,T1)(QU2ﬂﬂ2) = aP1u2+q1v2ﬂr1v2

Oéplu2+Q1’U2ﬂCk2+1 _ ap1u2+Q1U2—k2b1 (ab1 ﬂC)l@ﬂ

a2 (a” )26 € (a%, " B)g.

Let us assume that for each i = 1,...,n we have constructed g; = " 3%,
v; odd, such that (a® a®%3%) = g '(a%abB%g, i = 1,...,n and
Pprgir) (git1) € (a®,abi3%g;, i =1,...,n — 1. Since GCD(ry,c) = 1 there
are integers vy,41, kn41 such that rpv, 11 — ckp41 = v,. Since r, and v,, are
odd, vy,41 is also odd. Since GCD(py,,a) = 1 there are integers u,,4+1 and 1,11
such that ppup+1 — alp+1 = knt1bn — @nnt+1 + upn. Put gp41 = a¥nt1gvntrs,
Un41 is odd and therefore

(aun+1 /6”n+1)_1<aa7 abnﬂc>aun+l fUntt = <aa’ a—bn50> — <aa’ aa—bn50>.
Moreover,

— Un4+1 QAVUn+1
Riprgn i) (Gn1) = R qn ey (@ GUF)
= apnun+1+QWUn+1ﬁ'f’nUn+1 _ Ozp"u"+1+%”n+1ﬁckn+1+vn

= abe(abn ) g, € (o, ot ) g,

—  PrUnt1tdnvnia —bnknt1—un (abn /Bc)kn+l atn 6%

Let ¢ be odd. Since b(q ) and b/(a,c) are admissible for X(p, q, ), pib;, =
b; — q; (mod a) and p;b;y1 = b; — ¢; (mod a). This implies p;(biy1 — biyq) =
b; — b; (mod a). Furthermore, b, — b; is even if a is even. By the induction
we will construct a sequence (u;) of integers such that 2u; = b; — b} (mod a)
and p;u;+1 = u; (mod a). Let uy be a solution of an equation 2u; = by — b}
(mod a). Assume that w;, ¢ = 1,...,n, have desired properties. Let w41
be a unique solution of an equation ppun+1 = u, (mod a). Then p,2u,11 =
2up = by — by, = pp(bpy1—b;, ;) (mod a), which implies 2w, 41 = b1 — by,
(mod a). This proves wu,41 has both required properties. Put g; = o for
every i. We get (a¥)~H{a®, ali3)a% = (a® a2 3°) = (a® o’ 3°). Since
piti+1 = u; (mod a) for each i there is an integer I; such that p;i1u;y1 —
u; = Lia. Then Ay, g r)(Gi41) = Ppygir) (@Uit?) = aPititt = gliatui ¢
(a®, ab 3¢)ats.



38 V. MATIJEVIC

Conversely, let (g; = a 8) € GNro be a sequence such that (a2, ab;5c> _
g; (o, ¥ 3%)g; and Pipisairs) (gir1) € (a®,a 3)g; for each i. We claim that
b4, and b'(a’c) are conjugate.

First let ¢ be even. By the assumption,

h(pi7Qi7Ti)(gi+1) = h(pi7Qi,Ti)(QUi+l ﬁU7,+1)
aPiti+1 (thi 6Ti)71i+1 c <aa’ abi 6C>OCUiﬂ7ji.
Since all r; are odd and r;v;41 = ck; + v; for some integer k; it follows that

all v; are odd or all v; are even. On the other hand (a%i 3%)~ta® (a% Vi) =
al=D" e and (o pvi)~tabi B¢ (atifv) = al~D"b 3¢ Thus either
(aa7ab;ﬁc> _ gi_l(a“,ab*ﬁc)gi _ <Oza,abiﬁc>
or
(aa, abiﬁc> = gi—1<aa, abiﬁc>gi = <aa7 aaibiﬁcy
Now we conclude that b} is either b; or a — b;, which proves that b(q,) and

b’(a ¢) are conjugate.
Let ¢ be odd. First note that

(Ozui ﬁvi)—labiﬁc (auiﬁvq,) _ a(_l)vq, (b7’_2ui)ﬁc c <aa, ab;5c>.

Thus (—1)¥(b; — 2u;) = b} (mod a). This shows that an equation 2z = b; — b
(mod @) or 2z = b; +b; (mod a) has a solution. If @ is even this means b; — b}
is even. This proves b(, ) and b'(a ¢ are conjugate. O

THEOREM 7.3. Let ¥(p, q,r) be a Klein bottle weak solenoidal space and
let s € N. Then there is a bijection F' between the set of all conjugacy classes
of admissible sequences b, ) for X(p,q,r), where ac = s, and the set of
all equivalence classes of s-sheeted covering maps f : X — X(p,q,r) with a
connected total space X .

PRrOOF. Put F([b(s,c)]) = [Fi(b(a,))]. First we prove that F' is well-
defined. Let b'(a’c) be conjugate to b(.). Let Fi(bg,) = f+ and
Fu(by0) = fi- Then @ (fs) = {(a”, a"*5°), hipquri) @ 2 do} and @u(f) =
{(aa,ab;ﬁﬂ, h(pigsr)>@ = o). According to Proposition 7.2, there is
a sequence (g;) € GVro such that (aa,ab;ﬁc> = g;1<a“,ab7ﬂc)gi and
Ppgir) (git1) € (a®,ab3%)g; for each i > ko > ig,ip. This means that
D, (f+) and ®,(f]) are conjugate subprogroups of index ac of 71 (3(p, g, 7), *).
According to [5, Theorems 5 and 7] f and f’ are equivalent covering maps,

which proves that F is well-defined. Let F([b(,q)]) = F([b{,,]). Then
Fi(b(,)) = f« and F*(bza,c)) = fI are equivalent covering maps. So,

(I)*(f*) = {<aaa abiﬂc>7 h(p%aqi,r%)’i > Z‘0} and @, (f»/«) = {<aaa ab;ﬂc>7 h(;vq,,(h,'rq,)a
i > iy} are conjugate subprogroups of index ac of 71 (X(p,q,r),*), which

means that there is a sequence (g;) € G such that (a®,ai3°)
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g;l(aa,abiﬁcgi) and h(p, q..r)(9i11) € (a®, b 3%)g, for each i > k* > ig,if.
This means that @, (f.) and ®.(f.) are conjugate subprogroups of index ac of
m1(X(p, g, ), *). According to Proposition 7.2, b, ) and bl(a,c) are conjugate,
[ba,e)] = [P, ] and F is an injection.

Let f : X — 3(p,q,r) be an s-sheeted covering map with a connected
total space X. Let x € f~!(x) C X be an arbitrary point. According to
Theorem 6.2, there is an admissible sequence b, ) for X(p, g, r) such that
Fi(ba,e)) = fs- Then F([b(a,¢)]) = [Fi(b(,e)] = [f]- O

THEOREM 7.4. Let N4 ) denote the total number of different conjugacy
classes of admissible sequences b, ¢y for X(p, q,7), (a,c) € N x N fized. Then

1, a odd, ¢ odd

2, a even, ¢ odd
Nae) = Moo 1, a even, ¢ even

n(%')ﬂ, a odd, c even

PROOF. (i) @ odd, c odd. Each two admissible sequences b, ) and bl(a,c)
for X(p, q,r) are conjugate and N, ) = 1.

(ii) @ even, ¢ odd. Let b, and bl(a,c) be admissible sequences for
Y(p,q,r) such that there is ¢ with b; — b} even. Put b; — b, = 2k. Then
pibiy1 = bi — ¢ = b + 2k — ¢; (mod a), pibj,; = V' — ¢ (mod a) and
pi(biy1 — bi, 1) = 2k (mod a). Since a is even and GCD(a,p;) = 1 it fol-
lows bit1 — iy = 2k". By the induction we show that b; — b’ is even for all
J > i, which shows that b(, ) and an,@ are conjugate. Let b(, ) and an,@
be admissible sequences for ¥(p, q,r) such that there is ¢ with b; — b} odd.
Let b; — b = 2k 4 1. Then p;(bi+1 — b, 1) = 2k + 1 (mod a). Since p; is odd,
it follows that b;41 — b}, is odd. By the induction we prove that b; — b/ is
odd for all j > i and b,y and bz a,c) ar€ not conjugate. Consider admissible
sequences b{a,c), 7 =0,...,a—1, which represent all different admissible se-
quences b, . for ¥(p,q,r). b{ayc) and bg:m) are conjugate if and only if 7 — 5’
is even. It is now clear that there are exactly two different conjugacy classes
b0, ] = (bl ) blaeyr-- > Pl A} and [bl, )] = {b{, ,.bl, s DL LT,
i.e., N(a,c) = 2.

(iii) c even. Consider admissible sequences b(, ) and b’( ,c) such that there
is i with 0] = a—b;. Then p;b; |, = r;b; = ria—r;b = —r;b (mod a) and p;(a—
biy1) = —rib; (mod a), which implies b, ; = a—b;1. Thus b; = a—b; for each
J = i. Let n(, ) be the total number of all different admissible sequences b,
for X(p, q, 7). Recall that bl = bf;,c) if and only if j — 5" =0 (mod n(q,))

' (a,c)
and let bza o) J=0,...,n,)—1, be representatives of all different admissible

sequences. Note that a—j = n(,,)—j (mod n(,,)). Hence b{aw) and b?a(:‘g)ﬂ
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are conjugate. If n(, . is even there are 222 +1 conjugacy classes [bly.o) =

0 1 — Ipl N(a,c)—1 Mo Mao) )
{b(a,c)}a [b(a,c)] - {b(a’c)ib(a,c) }; ""[b(a,i) ] = {b(a,i) } If n(a,c) 1S
odd then there are % conjugacy classes [b?a C)] = {b?a C)}7 [b%a C)] _

N (a,e)—1 Ma.0) L "a, )Tl a0 .

{b%a7c),b(;7é)> } ...,[b(a7c)2n | = {b(a,c)2 ,b((w? }. If a is even, then
N(a,e) is even and N, = =52 + 1. If a is odd, then n(,.) is odd and
N(a c) = n(a_,5)+1 . 0

COROLLARY 7.5. Let X(p,q,r) be a Klein bottle weak solenoidal space

and let s € N. Then there are ), Nq.) different equivalence classes of
(a,c)EF,
s-sheeted covering maps over X(p, q,r) with connected total space.

EXAMPLE 7.6. Let X(p,q,r) be a Klein bottle weak solenoidal space,
where p; = 3, r; = 5 for each i. First note that X(p,q,r) admits an s-
sheeted covering map with a connected total space for each s € N. We will
examine 15-sheeted and 20-sheeted covering maps over X(p, q,r). If s = 15,
then Fi5 = {(5,3)}, n(s,3 = 5 and N5 3y = 1. ¥(p,q,r) admits 5 different
equivalence classes of pointed 15-sheeted covering maps and all total spaces
are homeomorphic to the base space. On the other hand there is only one
equivalence class of 15-sheeted covering maps over X(p, g, r). If s = 20, then
Fy = {(574)7 (10’2)? (20’ 1)}7 N(5,4) = % =1, n(10,2) = % =2, n(20,1) = 20,
N(574) = % =1, N(10,2) = % +1 =2 N(20,1) = 2. Z(p, q,’l“) admits 23
different equivalence classes of pointed 20-sheeted covering maps. Among
them there are 3 equivalence classes with total space homeomorphic to toroidal
groups and 20 equivalence classes with total spaces homeomorphic to the base
space. On the other hand there are 5 different equivalence classes of 20-sheeted
covering maps over X(p, g, r), 3 with total spaces homeomorphic to toroidal
groups and 2 with total spaces homeomorphic to the base space.
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