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Abstract. Let G be a compact Lie group. We prove that if each point
x ∈ X of a G-space X admits a Gx-invariant neighborhood U which is a
Gx-ANE then X is a G-ANE, where Gx stands for the stabilizer of x. This
result is further applied to give two equivariant homotopy characterizations
of G-ANR’s. One of them sounds as follows: a metrizable G-space Y is a
G-ANR iff Y is locally G-contractible and every metrizable closed G-pair
(X,A) has the G-equivariant homotopy extension property with respect
to Y . In the same terms we also characterize G-ANR subsets of a given
G-ANR space.

1. Introduction

This paper is devoted to homotopy characterization of equivariant abso-
lute neighborhood retracts or G-ANR’s under the assumption that the acting
group G is compact Lie. The non-equivariant analogs of the results presented
here are well known (see Borsuk [6], Hu [10] and van Mill [12]).

It was proved in Jaworowski [11] that a finite-dimensional metrizable G-
space is a G-ANR iff it is locally G-contractible. Local G-contractibility alone
is not sufficient to characterize the G-ANR’s of arbitrary dimension even if
G is the trivial group (see [6, Chapter V, §11] for a counterexample). It
turns out (see Theorem 5.3(b)) that local G-contractibility together with the
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G-homotopy extension property (short: G-HEP) characterizes the G-ANR’s
among metrizable G-spaces of abitrary dimension. We prove in Theorem 5.1
a “controlled” equivariant version of Borsuk’s homotopy extension theorem.
In Section 4 we define the property P(G,V) - a stronger property than the G-
HEP, which alone characterizes the G-ANR’s among all metrizable G-spaces
(Theorem 4.4). We should mention here that all these characterizations are
based on the following local characterization of G-ANE’s obtained in Theo-
rem 3.2: a G-space X is a G-ANE if and only if each point x ∈ X admits a
Gx-invariant neighborhood U which is a Gx-ANE, where Gx stands for the
stabilizer of x. In last Theorem 5.4 we prove that a closed invariant subset
A of a G-ANR space X is a G-ANR iff the pair (X , A) satisfies the G-HEP
with respect to any G-space.

2. Preliminaries

Throughout the paper the letter “G” will always denote a compact Lie
group (though some of the results presented here are valid also in the case of
an arbitrary compact acting group G).

“A space” will mean a completely regular Hausdorff topological space.
The monographs [7, 13] are our main references for the basic notions of

the theory of transformation groups. For the equivariant theory of retracts
the reader can see, for instance, [1, 2, 4].

For the convenience of the reader we recall, however, some more special
definitions and facts below.

By an action of the group G on a space X we mean a continuous map
(g, x) 7→ gx of the product G×X into X such that (gh)x = g(hx) and ex = x
whenever x ∈ X , g, h ∈ G and e is the unity of G. A space X together with
a fixed action of the group G is called a G-space.

By a normed linear G-space we shall mean a real normed linear space L
on which G acts by means of linear isometries, i.e., g(λx+µy) = λ(gx)+µ(gy)
and ‖gx‖ = ‖x‖ for all g ∈ G, x, y ∈ L and λ, µ ∈ R.

A continuous map f : X → Y of G-spaces is called an equivariant map
or, for short, a G-map, if f(gx) = gf(x) for every x ∈ X and g ∈ G. If G acts
trivially on Y then we use the term “invariant map” instead of “equivariant
map”. By a G-embedding we shall mean a topological embedding X ↪→ Y
which is a G-map.

Let X be a G-space. For any x ∈ X , we denote by Gx the stabilizer of
x defined by Gx = {g ∈ G | gx = x}. A G-fixed point is a point x ∈ X with
Gx = G.

For a subset S ⊂ X and for a subgroup H ⊂ G, the H-hull (or H-
saturation) of S is defined as follows: H(S)= {hs |h ∈ H, s ∈ S}. If S is the
one point set {x}, then the H-hull H(S) is usually denoted byH(x) and called
the H-orbit of x. The set X/H of all H-orbits endowed with the quotient
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topology is called the H-orbit space. A subset A ⊂ X is called H-invariant,
or simply, an H-subset if it coincides with its H-hull, i.e., A = H(A). We
shall often use the term “invariant subset” for a “G-invariant subset”.

A subset S ⊂ X is called an H-slice in X , if: (1) S is H-invariant, (2) the
G-hull G(S) is open in X , (3) if g ∈ G \H , then gS ∩ S = ∅, (4) S is closed
in G(S).

If, in addition, G(S) = X , then S is called a global H-slice of X .
For each H-slice S, the G-hull G(S) is G-homeomorphic to the twisted

product G ×H S (see [7, Chapter II, Theorem 4.2]); we will use this fact in
what follows without a specific reference.

Recall that, for an H-space Y , the twisted product G ×H Y is defined
to be the H-orbit space of the H-space G × Y , where H acts on G × Y by
h(g, y) = (gh−1, hy). Furthermore, there is a natural action of G on G×H Y
given by g′[g, y] = [g′g, y], where [g, y] denotes the H-orbit of (g, y) ∈ G × Y
and g′ ∈ G. We shall identify Y , as an H-space, with the H-invariant subset
{[e, y] | y ∈ Y } of G×H Y .

The following result plays a central rule in the theory of topological trans-
formation groups (see [7, Chapter II, Theorem 5.4]):

Theorem 2.1 (Slice theorem). Let X be a G-space, x ∈ X and U a
neighborhood of x. Then there exists a Gx-slice Sx ⊂ X such that x ∈ Sx ⊂ U .

A G-space Y is called an absolute neighborhood G-extensor (notation:
Y ∈ G-ANE) if, for any closed invariant subset A of a metrizable G-space
X and any G-map f : A → Y , there exist an invariant neighborhood U of
A in X and a G-map ψ : U → Y that extends f . If, in addition, one can
always take U = X , then we say that Y is an absolute G-extensor (notation:
Y ∈ G-AE). The map ψ is called a G-extension of f .

A metrizable G-space Y is called an absolute neighborhood G-retract (no-
tation: Y ∈ G-ANR), provided that for any closed G-embedding of Y in a
metrizable G-space X , there exists a G-retraction r : U → Y , where U is an
invariant neighborhood of Y in X . If, in addition, one can always take U = X ,
then we say that Y is an absolute G-retract (notation: Y ∈ G-AR).

It is known [2] that a metrizable G-space is a G-ANR (resp., a G-AR) iff
it is a G-ANE (resp., a G-AE); we shall often use this fact throughout the
paper without an additional reference.

As usual, the letter I will stand for the closed interval [0, 1].
Let X and Y be G-spaces. A homotopy Ft : X → Y , t ∈ I , is called a G-

homotopy, if Ft(gx) = gFt(x) for every x ∈ X , g ∈ G and t ∈ I . Two G-maps
f , ϕ : X → Y are G-homotopic, if there exists a G-homotopy Ft : X → Y such
that F0 = f and F1 = ϕ.

Let γ be an open covering of the G-space Y . Then a G-homotopy Ft :
X → Y , t ∈ I , is said to be limited by γ, or simply, a γ-G-homotopy provided
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for any x ∈ X , there exists Γ ∈ γ such that Ft(x) ∈ Γ for all t ∈ I . In such a
case F0 and F1 are called γ-G-homotopic G-maps.

A G-subset A of a G-space X is called G-contractible in X if the identity
inclusion A ↪→ X is G-homotopic to a constant map A→ {x0}, where x0 ∈ X
is a G-fixed point. Respectively, X is called locally G-contractible at the
point x ∈ X if for every Gx-invariant neighborhood U of x there exists a
Gx-invariant neighborhood V of x such that V is Gx-contractible in U . A
G-space X is called locally G-contractible if it is locally Gx-contractible at
each point x ∈ X .

In the sequel we will need the following known results:

Proposition 2.2. Let K be a closed subgroup of G, and S a K-space.
Then S is a neighborhood K-retract of the twisted product G×K S.

Proof. See [5, Proposition 4.1].

Proposition 2.3. If a G-space Y is the union of a family of invariant
open G-ANE subsets Yµ ⊂ Y , µ ∈ M, then Y is a G-ANE as well.

Proof. See [4, Corollary 5.7].

Proposition 2.4. Let K be a closed subgroup of G, and S a K-space.
Then every K-map f : S → Y in a G-space Y induces a G-map f ′ : G×KS →
Y according to the formula: f ′([g, s]) = gf(s) for any [g, s] ∈ G× KS.

Proof. See [8, Chapter I, Proposition 4.3].

Proposition 2.5. Let K be a closed subgroup of G, and S a global K-slice
of the G-space X. If S is a K-ANE then X is a G-ANE.

Proof. See [13, Corollary 1.7.16].

3. Local G-ANE’s

Definition 3.1. A G-space X is called a local G-ANE if each point x ∈ X
admits a Gx-invariant neighborhood U which is a Gx-ANE.

The following local characterization of G-ANE’s plays a fundamental role
in the paper:

Theorem 3.2. A G-space X is a G-ANE if and only if X is a local
G-ANE.

Proof. If X is a G-ANE then X is also an H-ANE for any closed sub-
group H ⊂ G (see [14, Corollary 4.5]). In particular, X is a Gx-ANE for any
x ∈ X .

Now assume that X is a local G-ANE. For any x ∈ X , let U be a Gx-
invariant neighborhood of x which is a Gx-ANE. By Theorem 2.1, one can
choose a Gx-slice Sx such that x ∈ Sx ⊂ U . Since the G-hull G(Sx) is G-
homeomorphic to the twisted product G ×Gx

Sx, by Proposition 2.2, Sx is



HOMOTOPY CHARACTERIZATION OF G-ANR’S 73

a Gx-retract of some Gx-invariant neighborhood W of Sx in G(Sx). Since
U is Gx-invariant, without loss of generality one can assume that W ⊂ U .
Then, being a Gx-invariant open subset of the Gx-ANE space U , the set W
is itself a Gx-ANE. This yields that Sx is a Gx-ANE too. Next, by virtue of
Proposition 2.5, the G-hull G(Sx) is a G-ANE.

Now, since X is the union of its open invariant G-ANE subsets G(Sx),
x ∈ X , then it follows from Proposition 2.3 that X is a G-ANE.

4. Homotopy characterization of G-ANR’s

Recall that a covering U of a G-space Y is called a G-covering if gU ∈ U
for every U ∈ U and g ∈ G. Two continuous maps f, ϕ : X → Y are called
U-near, if for every x ∈ X there exists U ∈ U such that {f(x), ϕ(x)} ⊂ U .

Definition 4.1. Let Y be a G-space and let U and V be open G-coverings
of Y such that V is a refinement of U . We say that Y satisfies the property
P(G,U ,V) if for any two V-near G-maps f, ϕ : X → Y defined on a metrizable
G-space X and any V-G-homotopy jt : A → Y , t ∈ I, defined on a closed
G-subset A of X with j0 = f |A and j1 = ϕ|A, there exists a U-G-homotopy
Jt : X → Y , t ∈ I, with J0 = f , J1 = ϕ and Jt|A = jt for every t ∈ I.

If U = {Y } is the one element covering, then we shall write P(G,V)
instead of P(G,U ,V)

Theorem 4.2. If Y is a G-ANR and U a given open G-covering of Y ,
then there exists an open G-covering V of Y which is a refinement of U such
that Y satisfies the property P(G,U ,V) from Definition 4.1.

Proof. By [2, Corollary 5], we can assume that Y is an invariant closed
subset of a normed linear G-space L. Since Y is a G-ANR, there exists an
invariant neighborhood M of Y in L and an equivariant retraction r : M →
Y . Consider the open covering r−1(U) = {r−1(U) | U ∈ U} of M . Let W
consist of all open balls of L each of which is contained in an element of
r−1(U). Clearly, W is an open G-covering of M which refines r−1(U). Put
V = {W ∩ Y | W ∈ W}. We claim that V is the required G-covering of Y .

Indeed, let X be a metrizable G-space and A a closed G-subset of X .
Assume further that f , ϕ : X → Y are any two V-near G-maps defined on X
and jt : A → Y , t ∈ I , is a given V-G-homotopy defined on A with j0 = f |A
and j1 = ϕ|A.

We construct a W-G-homotopy ψt : X →M , t ∈ I , by putting

ψt(x) = (1− t)f(x) + tϕ(x)

for every x ∈ X and every t ∈ I .
Consider the closed G-subset

T = (X × {0}) ∪ (A× I) ∪ (X × {1})
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of the topological product P = X × I endowed with the G-action: g(x, t) =
(gx, t). Define a G-map Φ : T × I → Y by the rule:

Φ(x, t) =





f(x), if x ∈ X and t = 0

jt(x), if x ∈ A and t ∈ I
ϕ(x), if x ∈ X and t = 1

.

Since Y is a G-ANR, it follows that Φ has a G-extension Ψ : N → Y over
a G-neighborhood N of T in P .

By means of compactness of the unit interval I, one can easily prove the
existence of an open neighborhood C ′ of A in X , such that C ′×I is contained
in N and that the homotopy ξ′t : C ′ → Y , t ∈ I , defined by

ξ′t(x) = Ψ(x, t), x ∈ C ′, t ∈ I
is a V-homotopy. Since G is compact, one can choose an invariant neighbor-
hood C of A in X such that C ⊂ C ′. Then the restriction ξt = ξ′t|C , t ∈ I , is
a V-G-homotopy.

Further, choose an open invariant set B in X such that

A ⊂ B ⊂ B ⊂ C.
Then, by the equivariant Urysohn lemma, there exists an invariant map

s : X → I such that

s(x) =

{
0, if x ∈ X \B
1, if x ∈ A.

Define a G-homotopy θt : X →M , t ∈ I , by the rule:

θt(x) =

{(
1− s(x)

)
ψt(x) + s(x)ξt(x), if x ∈ C

ψt(x), if x ∈ X \B.
Each θt is a G-map since ψt and ξt are so and G acts linearly on L.
Let us prove that θt is a W-homotopy. For this purpose, let x be an

arbitrary point of X . We will prove the existence of a Wµ ∈ W such that

θt(x) ∈Wµ for every t ∈ I.
Consider two cases.

Case I. s(x) = 0. In this case, we have θt(x) = ψt(x) for every t ∈ I .
Since ψt is a W-homotopy, there is a Wµ ∈ W such that θt(x) = ψt(x) ∈Wµ

for every t ∈ I .
Case II. s(x) > 0. In this case, we have x ∈ B ⊂ C. Since ξt is a

W-homotopy, there exists a Wµ ∈ W such that ξt(x) ∈ Wµ for every t ∈ I .
In particular, Wµ contains both points

ξ0(x) = f(x) and ξ1(x) = ϕ(x).
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Since Wµ is a convex set, it follows that ψt(x) ∈ Wµ for every t ∈ I . Now,
since the convex set Wµ contains both points ψt(x) and ξt(x), it must also
contain θt(x) for every t ∈ I . Thus, we have proved that

θt : X →M, t ∈ I
is a W-homotopy.

Finally, define a G-homotopy Jt : X → Y , t ∈ I , by taking

Jt(x) = r
(
θt(x)

)
, x ∈ X and t ∈ I.

Since θt is a W-homotopy and W is a refinement of r−1(U), it follows
that Jt is a U-homotopy. On the other hand, since r is a retraction, it is easy
to verify that J0 = f , J1 = ϕ, and Jt|A = jt for every t ∈ I .

Proposition 4.3. Let Y be a G-space and V an open G-covering of Y .
If Y satisfies the property P(G,V) then it also satisfies the property P(K,V)
for every closed subgroup K ⊂ G.

Proof. LetX be a metrizableK-space andA a closedK-invariant subset
of X . Assume that f, ϕ : X → Y are two V-near K-maps and jt : A → Y ,
t ∈ I , is a V-K-homotopy with j0 = f |A and j1 = ϕ|A. Then the twisted
product X ′ = G ×K X is a metrizable G-space and A′ = G ×K A is a G-
invariant closed subset of X ′.

Now, by Proposition 2.4, the K-maps f , ϕ and the K-homotopy jt induce
G-maps f ′, ϕ′ : X ′ → Y and a G-homotopy j ′t : A′ → Y, t ∈ I , respectively.

Let us check first that f ′ and ϕ′ are V-near. Indeed, f ′([g, x]) = gf(x)
and ϕ′([g, x]) = gϕ(x) for any [g, x] ∈ G ×K X . Since f and ϕ are V-near,
then there exists an element V ∈ V which contains both points f(x) and ϕ(x).
Consequently, gf(x), gϕ(x) ∈ gV , and since gV ∈ V (remember that V is a
G-covering), we conclude that the G-maps f ′ and ϕ′ are V-near.

Next, let us check that j ′t : A′ → Y , t ∈ I , is a V-homotopy. Indeed,
j′t([g, a]) = gjt(a) for any [g, a] ∈ G ×K A and t ∈ I . Since jt : A → Y, t ∈ I ,
is a V-homotopy, there exists an element W ∈ V such that jt(a) ∈ W for all
t ∈ I . Consequently, j′t([g, a]) = gjt(a) ∈ gW for all t ∈ I , and since gW ∈ V ,
we infer that j′t : A′ → Y, t ∈ I , is a V-homotopy.

Now, since the G-space Y satisfies the property P(G,V), there must exist
a G-homotopy J ′t : X ′ → Y , t ∈ I , with J ′0 = f ′, J ′1 = ϕ′ and J ′t|A′ = j′t
for every t ∈ I . Evidently, the restriction Jt = J ′t|X : X → Y , t ∈ I , is a
K-equivariant homotopy with J0 = f , J1 = ϕ and Jt|A = jt for every t ∈ I ,
as required. This completes the proof.

It turns out that in the class of all metrizable G-spaces the property
P(G,V) characterizes the G-ANR’s. In fact, we have the following

Theorem 4.4. A necessary and sufficient condition for a metrizable G-
space Y to be a G-ANR is the existence of an open G-covering V of Y such
that Y satisfies the property P(G,V).
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Proof. The necessity condition follows from Theorem 4.2 by taking U =
{Y } – the covering consisting of a single open set Y .

To prove the sufficiency of the condition P(G,V), by virtue of Theo-
rem 3.2, it suffices to show that Y is local G-ANE.

For, let y ∈ Y and let V ∈ V be an element that contains y. By compact-
ness of the group Gy, we can and do choose a Gy-invariant neighborhood S
of y such that S ⊂ V . Define two Gy-maps φ, ψ : S → Y and a Gy-homotopy
θt : {y} → Y , t ∈ I , by putting





φ(s) = y, if s ∈ S
ψ(s) = s, if s ∈ S
θt(y) = y, if t ∈ I.

Obviously, φ and ψ are V-near Gy-maps, and θt, t ∈ I , is a V-Gy-
homotopy. According to Proposition 4.3, Y considered as a Gy-space satisfies
the condition P(Gy,V).

Now, since S is a metrizable Gy-space and {y} is a closed Gy-subset of S,
it follows from P(Gy,V) that there exists a Gy-homotopy jt : S → Y , t ∈ I ,
with j0 = φ, j1 = ψ, and jt(y) = y for every t ∈ I .

Since the unit interval I is compact and since jt(y) = y ∈ V for every
t ∈ I , there exists an open Gy-invariant neighborhood U of y such that U ⊂ S
and jt(U) ⊂ V for every t ∈ I . We will prove that U is a Gy-ANE.

To this end, let f : A → U be any Gy-map defined on a closed Gy-
subspace A of a metrizable Gy-space X . Define two Gy-maps ξ, η : X → Y
and a Gy- homotopy Jt : A→ Y , t ∈ I , by taking

ξ(x) = y = η(x), x ∈ X
and

Jt(x) =

{
j2t

(
f(x)

)
, if x ∈ A, 0 ≤ t ≤ 1

2

j2−2t

(
f(x)

)
, if x ∈ A, 1

2 ≤ t ≤ 1.

Obviously, ξ and η are V-near Gy-maps and Jt is a V-Gy-homotopy.
Hence, by the condition P(Gy,V), there exists a Gy-homotopy Rt : X → Y ,
t ∈ I , with R0 = ξ, R1 = η, and Rt|A = Jt for every t ∈ I .

Consider the Gy-map r = R 1
2

: X → Y . By the construction of r, one

can clearly see that r|A = f . Let W = r−1(U). Then, W is an open Gy-
neighborhood of A in X and the restriction r|W : W → U is a Gy-extension
of f overW . This proves that U is a Gy-ANE, and hence, Y is a local G-ANE,
as required.

5. Equivariant homotopy extension property

By a G-pair we shall mean a couple (X,A) where X is a metrizable G-
space and A a closed G-subset of X .
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A G-pair (X,A) is said to have the equivariant homotopy extension prop-
erty (abbreviated: G-HEP) with respect to a G-space Y iff every partial
G-homotopy

ht : A→ Y, t ∈ I
of an arbitrary G-map f : X → Y has a G-extension

ft : X → Y, t ∈ I such that f0 = f.

The G-pair (X,A) is said to have the absolute equivariant homotopy extension
property (abbreviated: G-AHEP) iff it has the G-HEP with respect to every
G-space Y . In this case one says also that the inclusion A ↪→ X is a G-
cofibration (see [8, p. 96]).

An immediate consequence of the G-HEP of (X,A) with respect to Y
is that the equivariant extension problem of a G-map f : A → Y over X
depends only on the G-homotopy class of f . In other words, if f, φ : A → Y
are G-homotopic G-maps and if f is G-extendable over X , then so is φ.

Equivariant version of the well known Borsuk homotopy extension theo-
rem states that if Y is a G-ANR, then every G-pair (X,A) has the G-HEP
with respect to Y (see [1, Theorem 5]). Our next theorem establishes a “con-
trolled” version of this result:

Theorem 5.1. Let Y be a G-ANR and U an open G-covering of Y .
Assume that A is a closed G-subset of a metrizable G-space X and jt : A→ Y ,
t ∈ I, a partial U-G-homotopy. If j0 can be extended to a G-map f : X → Y ,
then there exists a U-G-homotopy Jt : X → Y such that J0 = f and Jt|A = jt
for all t ∈ I.

Proof. By the above quoted equivariant Borsuk homotopy extension
theorem (see [1, Theorem 5]), there exists a G-homotopy Ft : X → Y , t ∈ I
such that F0 = f and Ft|A = jt. For each a ∈ A, there exists Ua ∈ U
containing Ft(a) = jt(a) for all t ∈ I . By means of compactness of the unit
interval I , there exists a neighborhood Wa of a in X such that

(5.1) Ft(Wa) ⊂ Ua, for all t ∈ I.
Put W =

⋃
a∈A

Wa. Then W is a neighborhood of A in X . Due to the

compactness of the acting group G, there exists a G-invariant neighborhood
V of A such that V ⊂W .

Next we choose an invariant Urysohn function λ : X → I such that
λ|A = 1 and λ|X\V = 0. Define Jt : X → Y , t ∈ I , as follows:

Jt(x) = Fλ(x)·t(x), x ∈ X.
Then, clearly, Jt(x) depends continuously upon the pair (x, t) ∈ X × I , Jt is
equivariant and Jt|A = jt for all t ∈ I . In addition,

J0(x) = F0(x) = f(x)
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for every x ∈ X , so J0 = f . It remains to prove that the G-homotopy Jt,
t ∈ I , is limited by U . Indeed, take an arbitrary x ∈ X . If x ∈ V then there
exists a ∈ A such that x ∈ Wa. Consequently, by (5.1), for each t ∈ I one
has:

Jt(x) = Fλ(x)·t(x) ∈ Ua.

If x /∈ V , then λ(x) = 0, from which it follows that

Jt(x) = F0(x) = f(x), t ∈ I.
Since U is a covering of Y , there exists an element U ∈ U that contains f(x),
and therefore, Jt(x) is contained in U for all t ∈ I , as required.

Proposition 5.2. Let Y be a G-space such that every G-pair has the G-
HEP with respect to Y . Then for every closed subgroup K ⊂ G, every K-pair
(X,A) has the K-HEP with respect to Y considered as a K-space.

Proof. The proof is quite similar to the one of Proposition 4.3.

Local G-contractibility or G-HEP alone cannot characterize G-ANR’s
even in the case of the trivial acting group G. Corresponding counterexamples
can be found in Borsuk [6, Chapter V, §11] and Hanner [9].

However, we have the following convenient characterization of G-ANR’s:

Theorem 5.3. For a given metrizable G-space Y , the following three
statements are equivalent:

(a) Y is a G-ANR.
(b) Y is locally G-contractible, and every G-pair (X,A) has the G-HEP

with respect to Y .
(c) Every point y ∈ Y has a Gy-invariant neighborhood V such that any

Gy-map f : A → V defined on a closed Gy-subset A of a metrizable
Gy-space X has a Gy-extension φ : X → Y .

Proof. (a) ⇒ (b). The G-HEP follows from Theorem 5.1 if we take
U = {Y } – the one element covering. Let us prove that Y is locally G-
contractible. According to [2, Corollary 5], one can assume that Y is a closed
G-subset of a normed linear G-space Z. Since Y is a G-ANR, there must exist
an open G-subset U ⊂ Z and a G-retraction r : U → Y . Now, take a point
y ∈ Y and a Gy-neighborhood W of y in Y . Since r−1(W ) is an open subset
of Z, we can choose an open ball B(y, ε) centered at y and having the radius
ε > 0 such that B(y, ε) ⊂ r−1(W ). Put V = B(y, ε) ∩ Y . Since G acts on Z
by means of linear isometries we infer that the ball B(y, ε), and hence, also
V is a Gy-invariant set. Next we define a Gy-homotopy ft : V → W , t ∈ I ,
by the formula:

ft(v) = r
(
ty + (1− t)v

)
, v ∈ V.

Clearly ft, t ∈ I , is a Gy-contraction of V in W to the Gy-fixed point y.
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(b) ⇒ (c). Let y be an arbitrary point in Y . Since Y is locally G-
contractible, there exists a Gy-invariant neighborhood V of y which is Gy-
contractible in Y to a Gy-fixed point z ∈ Y (in general, z may be different
from y). To prove that V satisfies (c), let f : A→ V be a Gy-map defined on
a closed Gy-subset A of a metrizable Gy-space X . Since V is Gy-contractible
to the Gy-fixed point z, it follows that f , considered as a Gy-map into Y , is
Gy-homotopic to the constant Gy-map c : A → Y which carries all A into
the point z ∈ Y . Now, observe that by Proposition 5.2, (X,A) satisfies the
Gy-HEP with respect to Y . Therefore, since c can be Gy-extended over X , it
then follows that f has a Gy-extension φ : X → Y .

(c) ⇒ (a). By Theorem 3.2, it suffices to show that Y is a local G-ANE.
Let y ∈ Y be an arbitrary point and let V be a G-invariant neighborhood of y
which satisfies (c). We will prove that V is an Gy-ANE. For this purpose, let
f : A → V be any Gy-map defined on a closed Gy-subset A of a metrizable
Gy-space X . By (c), f has a Gy-extension φ : X → Y . The inverse image
U = φ−1(V ) is a Gy-invariant open set in X containing A, and the restriction
φ|U : U → V is a Gy-extension of f : A→ V over U .

Our last result characterizes invariant closed G-ANR subsets in a G-ANR
space; more precisely, we have the following

Theorem 5.4. Let X be a G-ANR. Then an invariant closed subset A of
X is a G-ANR iff the G-pair (X,A) has the G-AHEP.

For the proof we shall need the following two lemmas.

Lemma 5.5. A G-pair (X,A) has the G-AHEP iff the invariant closed
subset

T = (X × {0}) ∪ (A× I)
of the G-space P = X × I is a G-retract of P .

Proof. The “only if” part. Let f : X → T denote the G-map defined
by

f(x) = (x, 0), x ∈ X.
Define a partial G-homotopy ht : A→ T, t ∈ I , of f by putting

ht(a) = (a, t) for a ∈ A, t ∈ I.
Since (X,A) has the G-AHEP and h0 = f |A, we infer that ht has an equi-
variant extension ft : X → T, t ∈ I , such that f0 = f . Let r : P → T denote
the G-map defined by

r(x, t) = ft(x), x ∈ X, t ∈ I.
Then r is a G-retraction of P onto T , and hence, T is a G-retract of P .

The “if” part. Assume that T is a G-retract of P with a G-retraction
r : P → T . To prove the G-AHEP of (X,A), let f : X → Y be any G-map
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to a G-space Y and ht : A → Y , t ∈ I , a partial G-homotopy of f . Define a
G-map H : T → Y by taking

H(x, t) =

{
f(x), if x ∈ X and t = 0

ht(x), if x ∈ A and t ∈ I.
Then ht has a G-extension ft : X → Y , t ∈ I , defined by

ft(x) = H
(
r(x, t)

)
for every x ∈ X, t ∈ I.

Clearly, f0 = f , and hence, (X,A) has the G-AHEP.

Lemma 5.6. If X is a G-ANR and A is an invariant closed G-ANR subset
of X, then the invariant closed subset

T = (X × {0}) ∪ (A× I)
of the G-space P = X × I is a G-retract of P .

Proof. Since X × {0} and A × I are invariant closed G-ANR subsets
of T and their intersection A × {0} is also a G-ANR, it follows from [1,
Theorem 4(2)] that T is a G-ANR. Hence, the identity G-map i : T → T has
an equivariant extension j : U → T over an invariant neighborhood U of T
in P .

Let us show that then there exists a G-retraction r : P → T . Indeed, due
to compactness of the interval I , one can find a neighborhood V of A in X
such that V × I ⊂ U . Because of compactness of the acting group G one can
assume that V is invariant. Next, since A and X \ V are disjoint invariant
closed subsets of X , using normality of the orbit space X/G (which is in fact
even metrizable), one can find an invariant function λ : X → I such that

λ(x) =

{
1, if x ∈ A
0, if x ∈ X \ V.

Define a G-map r : P → T by putting

r(x, t) = j
(
x, λ(x)t

)

for every x ∈ X and every t ∈ I . Then r is a G-retraction of P onto T .

Proof of Theorem 5.4. The “only if” part is a simple combination
of Lemmas 5.5 and 5.6.

The “if” part. Assume that the G-pair (X,A) has the G-AHEP. Then,
by Lemma 5.5, T is an equivariant retract of P . Since P = X× I is a G-ANR
then it follows that T is also a G-ANR.

Next, A may be identified, as a G-space, with the invariant closed sub-
space A× {1} of T . Evidently, the set

V = {(a, t) ∈ T | a ∈ A, t > 0}
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is an invariant neighborhood of A in T . Let s : V → A denote the G-map
defined by

s(a, t) = (a, 1), a ∈ A, 0 < t ≤ 1.

Since s is clearly a G-retraction of V onto A, we infer that A is a neighborhood
G-retract of T . Since T is a G-ANR, then it follows that A is a G-ANR. This
completes the proof.
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