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ABSTRACT. Let G be a compact Lie group. We prove that if each point
z € X of a G-space X admits a Gg-invariant neighborhood U which is a
G4-ANE then X is a G-ANE, where G5 stands for the stabilizer of z. This
result is further applied to give two equivariant homotopy characterizations
of G-ANR’s. One of them sounds as follows: a metrizable G-space Y is a
G-ANR iff Y is locally G-contractible and every metrizable closed G-pair
(X, A) has the G-equivariant homotopy extension property with respect
to Y. In the same terms we also characterize G-ANR subsets of a given
G-ANR space.

1. INTRODUCTION

This paper is devoted to homotopy characterization of equivariant abso-
lute neighborhood retracts or G-ANR’s under the assumption that the acting
group G is compact Lie. The non-equivariant analogs of the results presented
here are well known (see Borsuk [6], Hu [10] and van Mill [12]).

It was proved in Jaworowski [11] that a finite-dimensional metrizable G-
space is a G-ANR iff it is locally G-contractible. Local G-contractibility alone
is not sufficient to characterize the G-ANR’s of arbitrary dimension even if
G is the trivial group (see [6, Chapter V, §11] for a counterexample). It
turns out (see Theorem 5.3(b)) that local G-contractibility together with the
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G-homotopy extension property (short: G-HEP) characterizes the G-ANR’s
among metrizable G-spaces of abitrary dimension. We prove in Theorem 5.1
a “controlled” equivariant version of Borsuk’s homotopy extension theorem.
In Section 4 we define the property P(G, V) - a stronger property than the G-
HEP, which alone characterizes the G-ANR’s among all metrizable G-spaces
(Theorem 4.4). We should mention here that all these characterizations are
based on the following local characterization of G-ANE’s obtained in Theo-
rem 3.2: a G-space X is a G-ANE if and only if each point x € X admits a
Gz-invariant neighborhood U which is a G,-ANE, where G, stands for the
stabilizer of z. In last Theorem 5.4 we prove that a closed invariant subset
A of a G-ANR space X is a G-ANR iff the pair (X, A) satisfies the G-HEP
with respect to any G-space.

2. PRELIMINARIES

Throughout the paper the letter “G” will always denote a compact Lie
group (though some of the results presented here are valid also in the case of
an arbitrary compact acting group G).

“A space” will mean a completely regular Hausdorff topological space.

The monographs [7, 13] are our main references for the basic notions of
the theory of transformation groups. For the equivariant theory of retracts
the reader can see, for instance, [1, 2, 4].

For the convenience of the reader we recall, however, some more special
definitions and facts below.

By an action of the group G on a space X we mean a continuous map
(g,x) — gz of the product G x X into X such that (gh)x = g(hz) and ex = x
whenever x € X, g, h € G and e is the unity of G. A space X together with
a fixed action of the group G is called a G-space.

By a normed linear G-space we shall mean a real normed linear space L
on which G acts by means of linear isometries, i.e., g(Ax+puy) = A(gx)+p(gy)
and ||gz|| = ||z|| for all g € G, @,y € L and X, p € R.

A continuous map f : X — Y of G-spaces is called an equivariant map
or, for short, a G-map, if f(gz) = gf(x) for every x € X and g € G. If G acts
trivially on Y then we use the term “invariant map” instead of “equivariant
map”. By a G-embedding we shall mean a topological embedding X — Y
which is a G-map.

Let X be a G-space. For any x € X, we denote by GG, the stabilizer of
x defined by G, = {g € G|gx = z}. A G-fixed point is a point z € X with
G, =G.

For a subset S C X and for a subgroup H C G, the H-hull (or H-
saturation) of S is defined as follows: H(S)= {hs|h € H,s € S}. If S is the
one point set {z}, then the H-hull H(S) is usually denoted by H(z) and called
the H-orbit of . The set X/H of all H-orbits endowed with the quotient
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topology is called the H-orbit space. A subset A C X is called H-invariant,
or simply, an H-subset if it coincides with its H-hull, i.e., A = H(A). We
shall often use the term “invariant subset” for a “G-invariant subset”.

A subset S C X is called an H-slice in X, if: (1) S is H-invariant, (2) the
G-hull G(S) is open in X, (3) if g € G\ H, then gSNS =0, (4) S is closed
in G(S).

If, in addition, G(S) = X, then S is called a global H-slice of X.

For each H-slice S, the G-hull G(S) is G-homeomorphic to the twisted
product G xg S (see [7, Chapter II, Theorem 4.2]); we will use this fact in
what follows without a specific reference.

Recall that, for an H-space Y, the twisted product G x gy Y is defined
to be the H-orbit space of the H-space G x Y, where H acts on G X Y by
h(g,y) = (gh™', hy). Furthermore, there is a natural action of G on G x g Y
given by ¢'[g,y] = [¢'g, y], where [g,y] denotes the H-orbit of (g,y) € G XY
and ¢’ € G. We shall identify Y, as an H-space, with the H-invariant subset
{le;,y]|lye Y} of Gxuy Y.

The following result plays a central rule in the theory of topological trans-
formation groups (see [7, Chapter II, Theorem 5.4]):

THEOREM 2.1 (Slice theorem). Let X be a G-space, © € X and U a
neighborhood of x. Then there exists a G-slice S, C X such thatx € S, C U.

A G-space Y is called an absolute neighborhood G-extensor (notation:
Y € G-ANE) if, for any closed invariant subset A of a metrizable G-space
X and any G-map f : A — Y, there exist an invariant neighborhood U of
Ain X and a G-map ¥: U — Y that extends f. If, in addition, one can
always take U = X, then we say that Y is an absolute G-extensor (notation:
Y € G-AE). The map v is called a G-extension of f.

A metrizable G-space Y is called an absolute neighborhood G-retract (no-
tation: Y € G-ANR), provided that for any closed G-embedding of ¥ in a
metrizable G-space X, there exists a G-retraction r: U — Y, where U is an
invariant neighborhood of Y in X. If, in addition, one can always take U = X,
then we say that Y is an absolute G-retract (notation: ¥ € G-AR).

It is known [2] that a metrizable G-space is a G-ANR (resp., a G-AR) iff
it is a G-ANE (resp., a G-AE); we shall often use this fact throughout the
paper without an additional reference.

As usual, the letter I will stand for the closed interval [0, 1].

Let X and Y be G-spaces. A homotopy F;: X — Y, t €I, is called a G-
homotopy, if F(gx) = gFi(x) for every x € X, g € G and t € I. Two G-maps
f,o: X =Y are G-homotopic, if there exists a G-homotopy F;: X — Y such
that Fy = f and F; = ¢.

Let v be an open covering of the G-space Y. Then a G-homotopy F; :
X — Y, tel,issaid to be limited by v, or simply, a y-G-homotopy provided
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for any x € X, there exists I" €  such that Fy(z) € T for all t € I. In such a
case Fy and Fj are called y-G-homotopic G-maps.

A G-subset A of a G-space X is called G-contractible in X if the identity
inclusion A < X is G-homotopic to a constant map A — {x¢}, where 2y € X
is a G-fixed point. Respectively, X is called locally G-contractible at the
point x € X if for every G,-invariant neighborhood U of z there exists a
Gz-invariant neighborhood V of x such that V is G,-contractible in U. A
G-space X is called locally G-contractible if it is locally G -contractible at
each point x € X.

In the sequel we will need the following known results:

ProprosITION 2.2. Let K be a closed subgroup of G, and S a K-space.
Then S is a neighborhood K -retract of the twisted product G X i S.

PROOF. See [5, Proposition 4.1]. O

ProprosITION 2.3. If a G-space Y is the union of a family of invariant
open G-ANE subsets Y,, CY, p€ M, then Y is a G-ANE as well.

PROOF. See [4, Corollary 5.7]. O

ProprosITION 2.4. Let K be a closed subgroup of G, and S a K-space.
Then every K-map f : S — Y in a G-space Y induces a G-map f': GX S —
Y according to the formula: f'([g,s]) = gf(s) for any [g,s] € G x S.

PROOF. See [8, Chapter I, Proposition 4.3]. O

PROPOSITION 2.5. Let K be a closed subgroup of G, and S a global K -slice
of the G-space X. If S is a K-ANE then X is a G-ANE.

PROOF. See [13, Corollary 1.7.16]. O

3. LocaL G-ANE’s

DEFINITION 3.1. A G-space X is called a local G-ANE if each point xz € X
admits a Gy-invariant neighborhood U which is a G,-ANE.

The following local characterization of G-ANE’s plays a fundamental role
in the paper:

THEOREM 3.2. A G-space X is a G-ANE if and only if X is a local
G-ANE.

ProoOF. If X is a G-ANE then X is also an H-ANE for any closed sub-
group H C G (see [14, Corollary 4.5]). In particular, X is a G,-ANE for any
zeX.

Now assume that X is a local G-ANE. For any = € X, let U be a G-
invariant neighborhood of x which is a G,-ANE. By Theorem 2.1, one can
choose a G-slice S, such that x € S, C U. Since the G-hull G(S,) is G-
homeomorphic to the twisted product G x¢g, Sz, by Proposition 2.2, S, is
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a G-retract of some G, -invariant neighborhood W of S, in G(S;). Since
U is Gy -invariant, without loss of generality one can assume that W C U.
Then, being a G -invariant open subset of the G,-ANE space U, the set W
is itself a G,-ANE. This yields that S, is a Gz-ANE too. Next, by virtue of
Proposition 2.5, the G-hull G(S;) is a G-ANE.

Now, since X is the union of its open invariant G-ANE subsets G(S,,),
x € X, then it follows from Proposition 2.3 that X is a G-ANE. O

4. HOMOTOPY CHARACTERIZATION OF G-ANR’S

Recall that a covering U of a G-space Y is called a G-covering if gU € U
for every U € U and g € G. Two continuous maps f,o : X — Y are called
U-near, if for every € X there exists U € U such that {f(x), p(z)} CU.

DEFINITION 4.1. Let Y be a G-space and let U andV be open G-coverings
of Y such that V is a refinement of U. We say that Y satisfies the property
P(G,U,V) if for any two V-near G-maps f,o : X — Y defined on a metrizable
G-space X and any V-G-homotopy j: : A — Y, t € I, defined on a closed
G-subset A of X with jo = f|la and j1 = ¢|a, there exists a U-G-homotopy
Jo: X >Y, tel, withJy=f, JJ1 =¢ and Ji|a = ji for every t € I.

If U = {Y} is the one element covering, then we shall write P(G,V)
instead of P(G,U,V)

THEOREM 4.2. IfY is a G-ANR and U a given open G-covering of Y,
then there exists an open G-covering V of Y which is a refinement of U such
that Y satisfies the property P(G,U,V) from Definition 4.1.

PRrROOF. By [2, Corollary 5], we can assume that Y is an invariant closed
subset of a normed linear G-space L. Since Y is a G-ANR, there exists an
invariant neighborhood M of Y in L and an equivariant retraction r : M —
Y. Consider the open covering r—1(U) = {r~'(U)| U € U} of M. Let W
consist of all open balls of L each of which is contained in an element of
r~1(U). Clearly, W is an open G-covering of M which refines r~1(i/). Put
V={WnY| W eW}. We claim that V is the required G-covering of Y.

Indeed, let X be a metrizable G-space and A a closed G-subset of X.
Assume further that f, ¢ : X — Y are any two V-near G-maps defined on X
and j; : A — Y, t €1, is a given V-G-homotopy defined on A with jo = f|a
and j1 = p|a.

We construct a W-G-homotopy ¢; : X — M, t € I, by putting

Yr(x) = (1= 1) f(z) + te(x)

for every z € X and every t € I.
Consider the closed G-subset

T=(Xx{0hHUAxIHU((X x{1})
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of the topological product P = X x I endowed with the G-action: g(z,t) =
(g9z,t). Define a G-map ® : T x I — Y by the rule:

flx), fzeXandt=0
O(z,t) = ¢ ji(x), ifzeAandtel .
p(x), frzeXandt=1
Since Y is a G-ANR, it follows that ® has a G-extension ¥ : N — Y over
a G-neighborhood N of T in P.
By means of compactness of the unit interval I, one can easily prove the

existence of an open neighborhood C’ of A in X, such that C’ x I is contained
in N and that the homotopy &, : C' — Y, t € I, defined by

&(x) =U(x,t), zeC, tel

is a V-homotopy. Since G is compact, one can choose an invariant neighbor-
hood C of A in X such that C C C’. Then the restriction & = &;|¢, t € I, is
a V-G-homotopy.

Further, choose an open invariant set B in X such that

AcBcBcC.

Then, by the equivariant Urysohn lemma, there exists an invariant map
s : X — I such that

1, ifxe A
Define a G-homotopy 6; : X — M, t € I, by the rule:

S(x){o, ifzeX\B

t Vi), ifz € X\ B.

Each 6, is a G-map since ¢, and &, are so and G acts linearly on L.
Let us prove that 6, is a W-homotopy. For this purpose, let = be an
arbitrary point of X. We will prove the existence of a W, € W such that

0i(x) € W, forevery tel.

Consider two cases.

CAsE 1. s(x) = 0. In this case, we have 0;(x) = ¢:(x) for every t € I.
Since v is a W-homotopy, there is a W, € W such that 0;(z) = ¥y (x) € W),
for every t € I.

Case II. s(z) > 0. In this case, we have x € B C C. Since & is a
W-homotopy, there exists a W, € W such that & (z) € W, for every ¢t € I.
In particular, W, contains both points

o(x) = f(x) and & () = p(z).
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Since W), is a convex set, it follows that i;(x) € W, for every t € I. Now,
since the convex set W, contains both points ¢ (z) and & (x), it must also
contain 0 (x) for every ¢t € I. Thus, we have proved that

0,: X =M, tel

is a WW-homotopy.
Finally, define a G-homotopy J; : X — Y, t € I, by taking

Ji(x) =r(0i(z)), z€Xandtel

Since 6; is a W-homotopy and W is a refinement of »—1(U), it follows
that J; is a U-homotopy. On the other hand, since r is a retraction, it is easy
to verify that Jy = f, J1 = ¢, and Ji|4 = j; for every t € I. O

PROPOSITION 4.3. Let Y be a G-space and V an open G-covering of Y.
If'Y satisfies the property P(G,V) then it also satisfies the property P(K,V)
for every closed subgroup K C G.

PROOF. Let X be a metrizable K-space and A a closed K-invariant subset
of X. Assume that f,¢o : X — Y are two V-near K-maps and j; : A — Y,
t € I, is a V-K-homotopy with jo = f|a and j1 = ¢|a. Then the twisted
product X’ = G xx X is a metrizable G-space and A’ = G xg A is a G-
invariant closed subset of X".

Now, by Proposition 2.4, the K-maps f, ¢ and the K-homotopy j; induce
G-maps f',¢' : X’ =Y and a G-homotopy j; : A’ — Y,t € I, respectively.

Let us check first that f’ and ¢’ are V-near. Indeed, f'([g,z]) = gf(x)
and ¢'([g,z]) = gp(x) for any [g,2] € G xx X. Since f and ¢ are V-near,
then there exists an element V' € V which contains both points f(x) and ¢(z).
Consequently, gf(x), gp(z) € gV, and since gV € V (remember that V is a
G-covering), we conclude that the G-maps f’ and ¢’ are V-near.

Next, let us check that j; : A” — Y, t € I, is a V-homotopy. Indeed,
ji([g,a]) = gji(a) for any [g,a] € G xxg A and t € I. Since j; : A = Y, t € I,
is a V-homotopy, there exists an element W € V such that j:(a) € W for all
t € I. Consequently, j;([g,a]) = gj:(a) € gW for all t € I, and since gW € V,
we infer that j; : A’ — Y, ¢ € I, is a V-homotopy.

Now, since the G-space Y satisfies the property P(G, V), there must exist
a G-homotopy J; : X' — Y, t € I, with Jj = f/, J{ = ¢ and J/|a = j;
for every t € I. Evidently, the restriction J; = Jf|x : X = Y, t €I, is a
K-equivariant homotopy with Jy = f, J1 = ¢ and J¢|a = j; for every ¢ € I,
as required. This completes the proof. O

It turns out that in the class of all metrizable G-spaces the property
P(G,V) characterizes the G-ANR’s. In fact, we have the following

THEOREM 4.4. A necessary and sufficient condition for a metrizable G-
space Y to be a G-ANR is the ezistence of an open G-covering V of Y such
that Y satisfies the property P(G,V).
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PRrROOF. The necessity condition follows from Theorem 4.2 by taking U =
{Y'} — the covering consisting of a single open set Y.

To prove the sufficiency of the condition P(G,V), by virtue of Theo-
rem 3.2, it suffices to show that Y is local G-ANE.

For, let y € Y and let V € V be an element that contains y. By compact-
ness of the group G,, we can and do choose a G -invariant neighborhood S
of y such that S C V. Define two Gy-maps ¢,¢ : S — Y and a G,-homotopy
0: : {y} — Y, t €I, by putting

o(s)=y, ifsesS
Y(s)=s, ifses
Gt(y):y, iftel.

Obviously, ¢ and v are V-near Gy-maps, and 0, t € I, is a V-Gy-
homotopy. According to Proposition 4.3, Y considered as a G-space satisfies
the condition P(Gy, V).

Now, since S is a metrizable G,-space and {y} is a closed G-subset of S,
it follows from P(G,, V) that there exists a Gy-homotopy j; : S — Y, t € I,
with jo = ¢, j1 = ¢, and j;(y) = y for every t € I.

Since the unit interval I is compact and since j;(y) = y € V for every
t € I, there exists an open Gy-invariant neighborhood U of y such that U C S
and j;(U) C V for every t € I. We will prove that U is a G,-ANE.

To this end, let f : A — U be any Gy-map defined on a closed G-
subspace A of a metrizable Gy-space X. Define two Gy-maps £, : X — Y
and a Gy- homotopy J; : A = Y, t € I, by taking

() =y=mn(), rzcX

and

oo Ji(f@), el 0
) {j2—2t(f(x)), if z€A, 3

Obviously, ¢ and n are V-near Gy-maps and J; is a V-Gy-homotopy.
Hence, by the condition P(Gy, V), there exists a Gy-homotopy R; : X — Y,
tel, with Ry =&, Ry =1, and R¢|a = J; for every t € .

Consider the Gy-map r = R% : X — Y. By the construction of r, one
can clearly see that r|4 = f. Let W = r=1(U). Then, W is an open G,-
neighborhood of A in X and the restriction 7|y : W — U is a Gy-extension
of f over W. This proves that U is a Gy-ANE, and hence, Y is a local G-ANE,
as required. O

5. EQUIVARIANT HOMOTOPY EXTENSION PROPERTY

By a G-pair we shall mean a couple (X, A) where X is a metrizable G-
space and A a closed G-subset of X.
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A G-pair (X, A) is said to have the equivariant homotopy extension prop-
erty (abbreviated: G-HEP) with respect to a G-space Y iff every partial
G-homotopy

hi : A=Y tel
of an arbitrary G-map f : X — Y has a G-extension
fi: X =Y, tel suchthat fo=7F.

The G-pair (X, A) is said to have the absolute equivariant homotopy extension
property (abbreviated: G-AHEP) iff it has the G-HEP with respect to every
G-space Y. In this case one says also that the inclusion A — X is a G-
cofibration (see [8, p. 96]).

An immediate consequence of the G-HEP of (X, A) with respect to Y
is that the equivariant extension problem of a G-map f : A — Y over X
depends only on the G-homotopy class of f. In other words, if f,¢: A —Y
are G-homotopic G-maps and if f is G-extendable over X, then so is ¢.

Equivariant version of the well known Borsuk homotopy extension theo-
rem states that if Y is a G-ANR, then every G-pair (X, A) has the G-HEP
with respect to Y (see [1, Theorem 5]). Our next theorem establishes a “con-
trolled” version of this result:

THEOREM 5.1. Let Y be a G-ANR and U an open G-covering of Y.
Assume that A is a closed G-subset of a metrizable G-space X and j; : A — Y,
t € I, a partial U-G-homotopy. If jo can be extended to a G-map f: X — Y,
then there exists a U-G-homotopy Jp : X — Y such that Jo = f and Jt|a = ji
foralltel.

ProoOF. By the above quoted equivariant Borsuk homotopy extension
theorem (see [1, Theorem 5]), there exists a G-homotopy Fy : X — Y, t €[]
such that Fy = f and Fi|a = j:. For each a € A, there exists U, € U
containing Fy(a) = ji(a) for all t € I. By means of compactness of the unit
interval I, there exists a neighborhood W, of a in X such that

(5.1) F,(W,) CcU,, forall tel.

Put W = |J W,. Then W is a neighborhood of A in X. Due to the
a€A
compactness of the acting group G, there exists a G-invariant neighborhood

V of A such that V C W.
Next we choose an invariant Urysohn function A : X — [ such that
Ala =1and A[x\y = 0. Define J; : X — Y, t € I, as follows:

Ji(xz) = Fr@)(z), =e€X.

Then, clearly, J;(z) depends continuously upon the pair (z,t) € X x I, J; is
equivariant and Ji|4 = j; for all ¢ € I. In addition,

Jo(z) = Fo(x) = f(x)
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for every x € X, so Jy = f. It remains to prove that the G-homotopy J,
t € 1, is limited by . Indeed, take an arbitrary x € X. If x € V then there
exists a € A such that z € W,. Consequently, by (5.1), for each ¢t € I one
has:
Jt(l‘) = F,\(Q)At(l‘) eU,.
If £ ¢ V, then A\(z) = 0, from which it follows that
Ji(z) = Fo(x) = f(z), tel.

Since U is a covering of Y, there exists an element U € U that contains f(z),
and therefore, Ji(z) is contained in U for all ¢ € I, as required. O

PROPOSITION 5.2. LetY be a G-space such that every G-pair has the G-
HEP with respect to Y. Then for every closed subgroup K C G, every K -pair
(X, A) has the K-HEP with respect to'Y considered as a K -space.

PROOF. The proof is quite similar to the one of Proposition 4.3. 0

Local G-contractibility or G-HEP alone cannot characterize G-ANR/’s
even in the case of the trivial acting group GG. Corresponding counterexamples
can be found in Borsuk [6, Chapter V, §11] and Hanner [9)].

However, we have the following convenient characterization of G-ANRs:

THEOREM 5.3. For a given metrizable G-space Y, the following three
statements are equivalent:

(a) Y is a G-ANR.

(b) Y is locally G-contractible, and every G-pair (X, A) has the G-HEP
with respect to 'Y .

(c) Every point y € Y has a Gy-invariant neighborhood V' such that any
Gy-map f: A — V defined on a closed G,-subset A of a metrizable
Gy-space X has a Gy-extension ¢ : X — Y.

PRrROOF. (a) = (b). The G-HEP follows from Theorem 5.1 if we take
U = {Y} — the one element covering. Let us prove that Y is locally G-
contractible. According to [2, Corollary 5], one can assume that Y is a closed
G-subset of a normed linear G-space Z. Since Y is a G-ANR, there must exist
an open G-subset U C Z and a G-retraction r : U — Y. Now, take a point
y € Y and a Gy-neighborhood W of y in Y. Since r~!(W) is an open subset
of Z, we can choose an open ball B(y,¢) centered at y and having the radius
e > 0 such that B(y,e) C r~}(W). Put V = B(y,e) N Y. Since G acts on Z
by means of linear isometries we infer that the ball B(y,¢), and hence, also
V' is a Gy-invariant set. Next we define a Gy-homotopy f; : V — W, t € I,
by the formula:

fiw) =r(ty+ (1 —t), veV.
Clearly f;, t € I, is a Gy-contraction of V in W to the G-fixed point y.
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(b) = (c). Let y be an arbitrary point in Y. Since Y is locally G-
contractible, there exists a Gy-invariant neighborhood V' of y which is G-
contractible in Y to a Gy-fixed point z € Y (in general, z may be different
from y). To prove that V satisfies (c), let f : A — V be a Gy-map defined on
a closed Gy-subset A of a metrizable Gy-space X. Since V' is G-contractible
to the Gy-fixed point z, it follows that f, considered as a G,-map into Y, is
Gy-homotopic to the constant G,-map ¢ : A — Y which carries all A into
the point z € Y. Now, observe that by Proposition 5.2, (X, A) satisfies the
G,-HEP with respect to Y. Therefore, since ¢ can be Gy-extended over X, it
then follows that f has a Gy-extension ¢ : X — Y.

(c) = (a). By Theorem 3.2, it suffices to show that Y is a local G-ANE.
Let y € Y be an arbitrary point and let V' be a G-invariant neighborhood of y
which satisfies (¢). We will prove that V' is an G,-ANE. For this purpose, let
f:+A—V be any Gy-map defined on a closed Gy-subset A of a metrizable
Gy-space X. By (c), f has a Gy-extension ¢ : X — Y. The inverse image
U= ¢ 1 (V) is a Gy-invariant open set in X containing A4, and the restriction
¢lv : U — V is a Gy-extension of f: A — V over U. O

Our last result characterizes invariant closed G-ANR subsets in a G-ANR
space; more precisely, we have the following

THEOREM 5.4. Let X be a G-ANR. Then an invariant closed subset A of
X is a G-ANR iff the G-pair (X, A) has the G-AHEP.

For the proof we shall need the following two lemmas.

LEMMA 5.5. A G-pair (X, A) has the G-AHEP iff the invariant closed
subset

T=(Xx{0hHu(AxI)
of the G-space P = X x I is a G-retract of P.
PRrROOF. The “only if” part. Let f : X — T denote the G-map defined
by
f(z) = (z,0), z € X.
Define a partial G-homotopy h; : A — T, t € I, of f by putting
hi(a) = (a,t) for a€ A, tel.

Since (X, A) has the G-AHEP and hg = f|a, we infer that h; has an equi-
variant extension f; : X — T, t € I, such that fo = f. Let r : P — T denote
the G-map defined by

r(z,t) = fi(z), ze€X, tel.

Then r is a G-retraction of P onto T', and hence, T is a G-retract of P.
The “if” part. Assume that T is a G-retract of P with a G-retraction
r: P — T. To prove the G-AHEP of (X, A), let f : X — Y be any G-map
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to a G-space Y and hy : A — Y, t € I, a partial G-homotopy of f. Define a
G-map H : T — Y by taking

Hiz,t) flz), frzeXandt=0
x7 = .
hi(z), fxzecAandtel.

Then h; has a G-extension f; : X — Y t € I, defined by
fe(x) = H(r(z,t)) forevery ze€ X, tel.
Clearly, fo = f, and hence, (X, A) has the G-AHEP. 0

LEMMA 5.6. If X is a G-ANR and A is an invariant closed G-ANR, subset
of X, then the invariant closed subset

T=(Xx{0}H)U(AxI)
of the G-space P = X x I is a G-retract of P.

PrOOF. Since X x {0} and A x I are invariant closed G-ANR subsets
of T and their intersection A x {0} is also a G-ANR, it follows from [1,
Theorem 4(2)] that T is a G-ANR. Hence, the identity G-map ¢ : T'— T has
an equivariant extension j : U — T over an invariant neighborhood U of T
in P.

Let us show that then there exists a G-retraction r : P — T'. Indeed, due
to compactness of the interval I, one can find a neighborhood V of A in X
such that V x I C U. Because of compactness of the acting group GG one can
assume that V' is invariant. Next, since A and X \ V are disjoint invariant
closed subsets of X, using normality of the orbit space X/G (which is in fact
even metrizable), one can find an invariant function A : X — I such that

1, if A
Aa)y={4 0 "PE
0, fzreX\V.

Define a G-map r : P — T by putting
r(z,t) = j(z, Ma)t)
for every z € X and every t € I. Then r is a G-retraction of P onto T. O

PrROOF OF THEOREM 5.4. The “only if” part is a simple combination
of Lemmas 5.5 and 5.6.

The “if” part. Assume that the G-pair (X, A) has the G-AHEP. Then,
by Lemma 5.5, T' is an equivariant retract of P. Since P = X x [ is a G-ANR
then it follows that T is also a G-ANR.

Next, A may be identified, as a G-space, with the invariant closed sub-
space A x {1} of T. Evidently, the set

V={(a,t) €T |ac A, t>0}
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is an invariant neighborhood of A in T. Let s : V' — A denote the G-map
defined by

s(a,t) = (a,1), a€ A, 0<t<I.

Since s is clearly a G-retraction of V onto A, we infer that A is a neighborhood
G-retract of T'. Since T is a G-ANR, then it follows that A is a G-ANR. This
completes the proof. O
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