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Abstract. It is known that if X is a metric compact space (com-
pactum) with finite shape dimension sd(X) 6= 2, then sd(X) is equal to
the generalized coefficient of cyclicity c[X], equivalently sd(X × S1) =
sd(X) +1. In general, these equalities do not hold in the case of compacta
with sd(X) = 2. In this paper we prove that if X is a regularly 1-movable
connected pointed space with sd(X) = 2, then c[X] = 2.

1. Introduction

The shape dimension of compact metric spaces was first defined (under the
name of fundamental dimension) by K. Borsuk [B]. J. Dydak [D] generalized
this notion by defining a shape invariant for topological spaces called defor-
mation dimension ddim as follows: for a (topological) space X, ddimX ≤ n
if any (continuous) map f from X to a polyhedron P is deformable into the
n-skeleton P (n) of P , i.e., there is a homotopy H : X × [0, 1] → P such
that H(x, 0) = x and H(x, 1) ∈ P (n) for each x ∈ X . Deformation dimension
agrees with the notion of shape dimension sd for topological spaces introduced
by S. Mardešić and J. Segal [M-S]. It is known that if (X, ∗) is a pointed space
then sd(X, ∗) = sd(X).

S. Nowak [N] has proved that if X is a compact metric space such that
sd(X) < ∞ and sd(X) 6= 2 then sd(X) = c[X ], where c[X ] (called the
generalized coefficient of cyclicity of X) is the maximum (finite or infinite)
of all integers n such that Hn(X,L) 6= 0 for some generalized local system L
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of Abelian groups on X (see [N, N-S1, N-S2]). This result was generalized to
topological spaces in [N-S1]. It is known [N] that for any closed n-manifold
Mn, n ≥ 1, and any compact metric space X with sd(X) < ∞, we have
sd(X×Mn) = c[X ]+n, so in particular sd(X×S1) = c[X ]+ 1. The equality
sd(X) = c[X ] fails, in general, ifX is a compactum with sd(X) = 2. There is a
2-dimensional connected compact metric spaceX with c[X ] < sd(X) = 2, i.e.,
such that sd(X × S1) = sd(X) = 2 (see [Sp]). In [Sp] an obstruction theory
based on cohomologies with local coefficients was used to prove some of the
required properties of the example. In a subsequent paper we will prove, in a
geometric way, a new theorem concerning maps between 2-polyhedra which
can be applied to show these properties. The following question is open.

Problem ([Sp]). Is it true that c[X ] = 2 for each movable (or pointed mov-
able) connected compact metric space X with sd(X) = 2?

We say that an inverse system of groups G = (Gγ , qγγ′ ,Γ) is regularly
movable if

for each γ ∈ Γ there exists γ ′ ∈ Γ, γ′ ≥ γ, such that for any γ1 ∈ Γ
there exists γ′′ ∈ Γ, γ′′ ≥ γ′, γ1, such that qγ′γ′′ admits a right inverse.

We say that a connected pointed space X is regularly 1-movable if pro-π1(X)
is isomorphic to a regularly movable inverse system of groups. This notion is
shape invariant. We prove (Theorem 2.1) that if a connected pointed space X
with sd(X) = 2 is regularly 1-movable then c[X ] = 2. In the proof we apply
the following theorem of J. R. Stallings and R. Swan: groups of cohomological
dimension 1 are free ([St, Sw]). Since a regularly movable continuum is regu-
larly 1-movable, we also obtain that sd(X) = c[X ] for every regularly movable
continuum X .

In this paper by a space we understand a topological space, and by a
map a continuous map. To simplify notation, for a pointed space we use X
instead of (X, ∗). We also always assume, without noting, that the maps and
homotopies between pointed spaces preserve the base point. For notions and
results of pro-homotopy theory and shape theory we refer to [M-S].

2. A cohomological characterization of shape dimension of
regularly 1-movable connected pointed spaces

The main result of the paper is the following

Theorem 2.1. If X is a regularly 1-movable connected pointed space with
sd(X) = 2 then c[X ] = 2.

The proof of the theorem is a consequence of Lemma 2.2 and Lemma 2.4
below.

Lemma 2.2. Let f : P → Q and g : Q → R be maps of 2-dimensional
connected pointed CW -complexes such that
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a) the homomorphism π1(f) : π1(P ) → π1(Q) can be factored by a free
group, and

b) the homomorphism π2(g) : π2(Q)→ π2(R) is trivial.

Then the composition g ◦ f : P → R is deformable to the 1-skeleton of R.

Proof. Let P̂ and Q̂ be pointed Eilenberg-McLane spaces with P̂ (2) = P ,

Q̂(2) = Q and πn(P̂ ) = πn(Q̂) = 0 for every n > 1. By i : P → P̂ and

j : Q → Q̂ we denote the inclusions and by f̂ : P̂ → Q̂ an extension of the

map j ◦ f : P → Q̂. Note that π1(i) and π1(j) are isomorphisms.
By a) there exist a free group F and homomorphisms f ′ : π1(P ) → F

and f ′′ : F → π1(Q) such that π1(f) = f ′′ ◦ f ′. Let F̂ be a 1-dimensional

connected pointed CW -complex with π1(F̂ ) = F . It is well known that there

exist maps f̂ ′ : P̂ → F̂ and f̂ ′′ : F̂ → Q̂ such that

π1(f̂ ′) = f ′ ◦ (π1(i))
−1 and π1(f̂

′′) = π1(j) ◦ f ′′.
Observe that

π1(f̂
′′) ◦ π1(f̂

′) = π1(j) ◦ π1(f) ◦ (π1(i))
−1 = π1(f̂).

It follows that the maps f̂ and f̂ ′′ ◦ f̂ ′ are homotopic. So in the following
diagram

f

P Q- -
g

R

i

6 6

j

-P̂ Q̂
f̂�

�
�

�> Z
Z

Z
Z~

F̂

f̂ ′ f̂ ′′

the square commutes and the triangle commutes up to homotopy.

Since j◦f is homotopic to f̂ ′′◦f̂ ′◦i and F̂ is a 1-dimensional CW -complex

the map j ◦ f is deformable in Q̂ to the 1-skeleton Q̂(1) of Q̂. Let

H : P × [0, 1]→ Q̂

be a homotopy such that H(x, 0) = j ◦ f(x) and H(x, 1) ∈ Q̂(1) for every

x ∈ P . Since dimP ≤ 2, we may assume that H(P × [0, 1]) ⊂ Q̂(3), i.e., j ◦ f
is deformable to the 1-skeleton Q̂(1) in Q̂(3).
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Since g : Q → R induces the trivial homomorphism π2(g), there is an

extension g̃ : Q̂(3) → R of g. Note that g◦f = g̃◦j ′ ◦f , where j′ : Q→ Q̂(3) is
the inclusion map. It follows that g◦f is homotopic to g̃◦h, where h : P → Q(3)

is defined by h(x) = H(x, 1) for each x ∈ P . But h(P ) ⊂ Q(1) and so
g̃◦h(P ) ⊂ R(1) (without loss of generality we may assume that g(Q(1)) ⊂ R(1)

which implies g̃(Q(1)) ⊂ R(1)). This finishes the proof of Lemma 2.2.

In the sequel, we will use the following notation. Let f : X → Y be a
map of spaces and let L be a local system of Abelian groups on Y . By Lf we
denote the local system of Abelian groups on X induced by L and f . If B is
a subspace of Y and j : B → Y is the inclusion map, we denote Lj by L|B.
Note that if A is a subspace of X then Lf |A = Lf |A.

In the proof of Lemma 2.4 we need

Lemma 2.3. Let f : X → Y be a map of CW -complexes, let A and B be
subcomplexes of X and Y , respectively, such that f(A) ⊂ B and A(n) = X(n)

for some integer n, and let L be a local system of Abelian groups L on Y . If the
map f ′ : A→ B, defined by f ′(x) = f(x), induces the trivial homomorphism

(f ′)∗ : Hn (B,L|B)→ Hn (A, (L|B)f ′ )

then the map f induces the trivial homomorphism

f∗ : Hn (Y,L)→ Hn (X,Lf ) .

Proof. Consider the following commutative diagram

(f ′)∗
Hn(A,(L|B)f′ ) Hn(B,L|B)�

i∗

? ?

j∗

�Hn(X,Lf ) Hn(Y,L)
f∗

where i : A→ X and j : B → Y are the inclusions. Note that (L|B)f ′ = Lf |A.
Observe that

i∗ : Hn(X,Lf )→ Hn(A,Lf |A)

is a monomorphism since A is a subcomplex of X such that A(n) = X(n). By
the assumption (f ′)∗ is trivial, thus (f ′)∗ ◦ j∗ and, consequently, i∗ ◦ f∗ are
also trivial. It follows that f∗ is trivial.

Lemma 2.4. Let X be a regularly 1-movable connected pointed space with
sd(X) = 2. If c[X ] < 2 then pro-π1(X) is isomorphic to an inverse system of
free groups.



A COHOMOLOGICAL CHARACTERIZATION OF SHAPE DIMENSION 113

Proof. By [M-S, Theorem 2, p. 96], the space X admits an HPol∗-
expansion X → X = (Xλ, pλλ′ ,Λ), where all Xλ are connected pointed poly-
hedra of dimension ≤ 2. We assume that pro-π1(X) = π1(X), cf. [M-S,
p. 130]. Observe that it suffices to prove that for each λ ∈ Λ there is λ′ ∈ Λ
such that the homomorphism π1(pλλ′ ) can be factored by a free group.

For any λ ∈ Λ let Kλ denote an Eilenberg-McLane space with (Kλ)(2) =
Xλ and πn(Kλ) = 0 for every n > 2. By iλ : Xλ → Kλ we denote the
inclusion. Then π(iλ) is an isomorphism for any λ ∈ Λ, and for any λ, λ′ ∈ Λ,
λ ≤ λ′, the following diagram

pλλ′

Xλ Xλ′
�

iλ

6 6

iλ′

�Kλ Kλ′

p̂λλ′

is commutative, where p̂λ,λ′ : Kλ′ → Kλ denotes an extension of the map
iλ ◦ pλ,λ′ .

Let G = (Gγ , qγγ′ ,Γ) be a regularly movable inverse system of groups

isomorphic to pro-π1(X). For each γ ∈ Γ, let Ĝγ be a connected pointed

Eilenberg-MacLane space such that π1(Ĝγ) = Gγ and πn(Ĝγ) is trivial for

each n > 1. Let q̂γγ′ : Ĝγ′ → Ĝγ , where γ, γ′ ∈ Γ and γ ≤ γ′, be a map such
that π1(q̂γγ′) = qγγ′ .

Since π1(X) and G are isomorphic, the inverse systems K = (Kλ, p̂λ,λ′ ,Λ)

and Ĝ = (Ĝγ , q̂γγ′ ,Γ) are isomorphic in the category pro-HPol∗. Let

f = (fλ,Φ) : Ĝ→ K and g = (gγ ,Ψ) : K→ Ĝ,

where Φ : Λ → Γ, fλ : ĜΦ(λ) → Kλ for each λ ∈ Λ, Ψ : Γ → Λ and

gγ : KΨ(γ) → Ĝγ for each γ ∈ Γ, be morphisms of inverse systems such that
g ◦ f = id

Ĝ
and f ◦ g = idK in pro-HPol∗.

Let us fix λ ∈ Λ. Since G is regularly movable for γ = Φ(λ) there exist
γ′ ∈ Γ, γ ≤ γ′, such that

(a) for any γ1 ∈ Γ there exist γ′′ ∈ Γ, γ′′ ≥ γ′, γ1, such that the map q̂γ′γ′′

admits a right inverse.

Since g is a morphism and f ◦ g = idK, there exists λ′ ∈ Λ, λ′ ≥ λ,Ψ(γ′),Ψ ◦
Φ(λ), such that

gΦ(λ) ◦ p̂Ψ◦Φ(λ)λ′ = q̂Φ(λ)γ′ ◦ gγ′ ◦ p̂Ψ(γ′)λ′ and fλ ◦ gΦ(λ) ◦ p̂Ψ◦Φ(λ)λ′ = p̂λλ′

in HPol∗. It follows that
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(b) fλ ◦ q̂Φ(λ)γ′ ◦ gγ′ ◦ p̂Ψ(γ′)λ′ = p̂λλ′ in HPol∗.

Thus the following diagram

q̂Φ(λ)γ′

ĜΦ(λ) Ĝγ′
�

fλ

6

?

gγ′◦p̂Ψ(γ′)λ′

�Kλ Kλ′

p̂λλ′

commutes in HPol∗.
Now, let L̂ be any local system of Abelian groups on Ĝγ′ . The local

system of Abelian groups on Kλ′ induced by L̂ and the map gγ′ ◦ p̂Ψ(γ′)λ′ we
denote by L. Since c[X ] < 2, for λ′ and the local system of Abelian groups
L|Xλ′ on Xλ′ there is λ′′ ∈ Λ, λ′′ ≥ λ′, such that pλ′λ′′ induces the trivial
homomorphism of the second cohomology groups

(pλ′λ′′)
∗ : H2(Xλ′ ,L|Xλ′)→ H2(Xλ′′ , (L|Xλ′)pλ′λ′′

).

Thus by Lemma 2.3, the map p̂λ′λ′′ induces the trivial homomorphism of the
second cohomology groups

(p̂λ′λ′′ )
∗ : H2(Kλ′ ,L)→ H2(Kλ′′ ,Lpλ′λ′′

).

Since f is a morphism and g ◦ f = id
Ĝ

in pro-HPol∗, there exists γ1 ∈ Γ,
γ1 ≥ γ′,Φ(λ′′),Φ ◦Ψ(γ′), such that

fΨ(γ′) ◦ q̂Φ◦Ψ(γ′)γ1
= p̂Ψ(γ′)λ′′ ◦ fλ′′ ◦ q̂Φ(λ′′)γ1

and
gγ′ ◦ fΨ(γ′) ◦ q̂Φ◦Ψ(γ′)γ1

= q̂γ′γ1

in HPol∗. It follows that

(c) gγ′ ◦ p̂Ψ(γ′)λ′′ ◦ fλ′′ ◦ q̂Φ(λ′′)γ1
= q̂γ′γ1 in HPol∗.

By (a) there exist γ ′′ ∈ Γ, γ′′ ≥ γ′, γ1, and a map h : Ĝγ′ → Ĝγ′′ such
that

(d) q̂γ′γ′′ ◦ h = idĜγ′
in HPol∗.
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By (c), the following diagram

q̂γ′γ′′

Ĝγ′ Ĝγ′′
�

gγ′◦p̂Ψ(γ′)λ′

?

6

fλ′′◦q̂Φ(λ′′)γ′′

�Kλ′ Kλ′′

p̂λ′λ′′

commutes in HPol∗. Therefore, the homomorphism

(q̂γ′γ′′)
∗ : H2(Ĝγ′ , L̂)→ H2(Ĝγ′′ , L̂q̂γ′γ′′

)

is trivial, because the homomorphism (p̂λ′λ′′)
∗ is trivial. Thus, by (d), the

homomorphism

(idĜγ′
)∗ : H2(Ĝγ′ , L̂)→ H2(Ĝγ′ , L̂)

induced by the identity map on Ĝγ′ is trivial. So the group H2(Ĝγ′ , L̂) is

trivial for any local system of Abelian groups L̂. Thus cohomological dimen-

sion cd(π1(Ĝγ′)) ≤ 1. By Stallings-Swan theorem [St, Sw], the group π1(Ĝγ′)
is free.

Finally, by (b), the map p̂λλ′ : Kλ′ → Kλ is factored by Ĝγ′ in HPol∗.
It follows that the homomorphism π1(p̂λλ′), and thus the homomorphism

π1(pλλ′), is factored by the free group π1(Ĝγ′). This finishes the proof of the
lemma.

3. Proof of Theorem 2.1

Let X be a regularly 1-movable connected pointed space with sd(X) = 2.
Let X → X = (Xλ, pλλ′ ,Λ) be an HPol∗-expansion of the space X , where all
Xλ are pointed polyhedra of dimension ≤ 2. Suppose c[X ] < 2.

IfX is not approximatively 2-connected space with sd(X) = 2 then c[X ] =
2 (cf. [N, Theorem 8.3, p. 35]). Thus we may assume thatX is approximatively
2-connected space. It follows that for any λ ∈ Λ there exist λ′ ∈ Λ, λ′ ≥ λ,
such that the homomorphism

π2(pλλ′ ) : π2(Xλ′)→ π2(Xλ)

is trivial.
By Lemma 2.4 there exist λ′′ ∈ Λ, λ′′ ≥ λ′, such that the homomorphism

π1(pλ′λ′′ ) : π1(Xλ′′)→ π1(Xλ′)

can be factored by a free group.
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By Lemma 2.2, the composition pλλ′′ = pλλ′ ◦ pλ′λ′′ is deformable to the
1-skeleton of Xλ. It follows that sd(X) = 1, which contradicts the assumption
that sd(X) = 2. Thus the proof of Theorem 2.1 is complete.
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