KoG-18-2014 N. Le, N. J. Wildberger:

Incenter Circles, Chromogeometng the Omega Triangle

Original scientific paper
Accepted 4. 3. 2014.

NGUYEN LE
NORMAN JOHN WILDBERGER

Incenter Circles, Chromogeometry,
and the Omega Triangle

Incenter Circles, and the

Omega Triangle
ABSTRACT

Chromogeometry,

Chromogeometry brings together planar Euclidean geom-
etry, here called blue geometry, and two relativistic ge-
ometries, called red and green. We show that if a trian-
gle has four blue Incenters and four red Incenters, then
these eight points lie on a green circle, whose center is
the green Orthocenter of the triangle, and similarly for the
other colours. Tangents to the incenter circles yield inter-
esting additional standard quadrangles and concurrencies.
The proofs use the framework of rational trigonometry
together with standard coordinates for triangle geometry,
while a dilation argument allows us to extend the results
also to Nagel and Speiker points.
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1 Introduction

This paper investigates a surprising connection between

three closely related Incenter hierarchies of a fixed planar
triangle. The framework here is that of Rational Trigonom-
etry ([7], [8]) which allows a consistentniversal trian-
gle geometryalid for any symmetric bilinear form, as de-
scribed in [5] together with the three-fold symmetry of
chromogeometry[9], [10]), which connects the familiar
Euclidean blue) geometry based on the symmetric bilinear
form x1x2 + y1y2, and two relativistic geometriesed and
greer) based respectively on the bilinear forms, — y1y2
andxiys + y1Xe. By working with the rational notions of
guadrance and spread instead of the transcendental notio
of distance and angle, the main laws of Rational Trigonom-
etry allow metrical geometry, and so triangle geometry, to

be developed in each of these three geometries in a paralle

fashion, with mostly identical formulas and theorems.

Upisane kruznice,
trokut

SAZETAK

kromogeometrija i Omega

Kromogeometrija povezuje ravninsku euklidsku geo-
metriju, ovdje zvanu plavom geometrijom, te dvije re-
lativistiCke geometrije, nazvane crvenom i zelenom geo-
metrijom.  Pokazuje se da ukoliko trokut ima Cetiri
plava i Zetiri crvena sredista upisanih (odnosno pripisanih)
kruZnica, tada tih osam tocaka lezi na zelenoj kruznici &ije
je srediSte zeleni ortocentar trokuta. Vrijede i druge dvije
analogne tvrdnje. Tangente na upisane kruZnice stvaraju
nove zanimljive &etverokute i konkurentnosti. Dokazi se
provode u okviru racionalne trigonometrije sa standar-
dnim koordinatama za geometriju trokuta. Transforma-
cija diletacije dozvoljava proSirenje rezultata na Nagelove
i Speikerove tocke.

Kljuéne rije¢i: geometrija trokuta, upisane kruZnice,
racionalna trigonometrija, kromogeometrija, &etverostruka
simetrija, Nagelove totke, Spiekerove totke, Omega trokut

The first results of this paper concern the four Incenters of
a planar triangle in one of the three geometries, and were
announced in [5]. As in that paper, we here refer to all four
meets of the vertex bisectors, or bilines, as Incenters, so
do not distinguish between the classical incenter and the
three excenters. If a trianghy A2Az has four blue Incen-
ters19,12,19 and1, then all four points lie both on eed
incenter circIeCrb with center the red Orthocentklg, and

on agreen incenter circleCé’ with center the green Or-
thocenterHg; this is illustrated in Figure 1. Similarly, if

a triangle has red Incenters, then these lie both on a green
incenter circleCg with centerHg, and a blue incenter circle

G, with center the blue Orthocentef,. If a triangle has
green Incenters, these lie both on a blue incenter c'ﬂ#le
with centerHp, and on a red incenter circig® with cen-

ns

ter H;. Furthermore, ifbothred and green Incenters exist,
then they lie on thesameblue incenter circle, and simi-
llarly for the other colours. The proofs are algebraic, and
rely on non-obvious simplifications found by the help of a
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computer. So the Omega triangle formed by the three Or-of coordinates to place an arbitrary triangle istandard

thocenter€) = HpH;Hg, introduced in [9], has an intimate  position, with vertices af0,0], [1,0] and[0,1]. The var-

connection with the Incenter hierarchies. ious triangle centers and constructions are then expressed
in terms of the coefficients, b andc of the matrix

1 Y b a b
N \ 1. —
T NN\ ’ c= (b c)

T of the resulting new bilinear form. This allows a system-
% \ atic augmentation of KimberlingBncyclopedia of Trian-

1 = = ah gle Cent_ers [@1, [3], [4]) to arbitrary quadratic formsand

-~ VY% 3 general fields

il b A N Standard coordinates also have the advantage of yielding
: b surprisingly simple equations for the three coloured Incen
ter Circles, which turn out to be, after pleasant simplifica-
tions,

G Qp(X) =bp(2x+2y—1)

Figure 1: The four blue Incenters @;A2A; and red and G Qr(X) =br (2x+2y—1)
green Incenter Circles Cy: Qy(X) =bg(2x+2y—1).

These facts relate also to elegant classical properties ofyaver the formulas for the star line® become rather
Euadr?]ngles. In ([11] HaskleII _shovlved Lhat |f|t|vvq qu]Jadrgnglesf formidable, but seem to have interesting algebraic aspects
have the s(,jamel |a?ona trla_mgle, t e_n. a de'_g tlfowtsg Some intriguing number theoretical questions arise when
these qua rangies lie on a singie conic, an in [11] 004dS e inquire into the existence of triangles, over a given field
four_ld a synthetic derivation of the same fes‘!'t- Now it is which have simultaneously blue, red and green Incenters.
ObV'Ol.J.S that the four. Incenters of a triangle, with res.pect.t Studying concrete examples and using empirical computer
any bilinear fqrm, will form gstandarq q“adrar,‘g"? n th"_s investigations of Michael Reynolds [6], we make some ten-
SENsE, meaning that the diagonal "'a”‘-?l'e coincides Wlthtative conjectures on such triangles, both over the rationa
the 0r|g|na_l friangle. As a consequence, |f_b|ue and red I_n- numbers and over a finite prime field. Finally we extend
_centers e.X'St’ theﬂ they must lie on a conic. Ol:rgsserﬂonthe results to Spieker and Nagel points by suitable central
|s.that this conic is actually a green Clrcﬂjé’ =G=G dilations.

}’V'tmcenteMQ]; blue | he f i h In the rest of this introduction we recall basic facts frofh [7
nt € case of biue bncenters, the four tangent lines to the ;4 [5] to formulate triangle geometry over a general bilin-
red Incenter C|rcIeCr_ at the blue Incenters fgrm_a Stan-  gar form. We then specialize to the blue, red and green ge-
dard quadrilateral, implying that they meet in six points ometries, and use standard coordinates to develop formulas

b . . . .
Rig]’ Wh'ﬁh lie twrc: ata time on the three rl]lnes AiAoAs, for points and lines (always one of our key aims), and to
where they are harmonic conjugates with respeéuta, - provide explicit computational proofs of the theorems.
andAg; and similarly the four tangent lines to the green in-

center circlm‘g at the blue Incenters meet in six poimﬁ_ 1.1 Quadrilateralsand quadrangles
on the three lines. This is also seen on the above Figure. . o )
Similarly there is a corresponding result when we look at e begin by reminding the reader of some basic facts from
red Incenters, and at green Incenters. the projective geometry of a quadrangle (four points) or
The six IinesAkR,-b- for i,j,k distinct, are the lines of quadrilateral (four lines), using a visual presentation to
]7 RN ) 1 i . . .
a complete quadrangle, so they meet three at a time a@void the need to introduce notation. _
four quad points QY. Similarly, the six linesA G2 meet In Figure 2 we see four blue lines forming a quadrilateral
I’J " ' |] . . . . .
. b [in this figure colours are not used in a metrical sense, but
three at a time at pointQgy;. Somewhat remarkably, the

‘ lines & — Ob.Ob. dard aril | only as an aide for explanation]. These four blue lines meet
our star lines sy = Qr; Qg; form a standard quadrilateral i, iy qints, also in blue. These six blue points determine

LB, a further three greediagonal lines, forming thediagonal

This paper also illustrates our novel approach to triangle triangle, in yellow, of the original quadrilateral, whose
geometry initiated in [5]; using standard coordinates to es vertices are three green points. Each green point may be
tablish universal aspects of the subject whichwalé over joined via a red line to the two blue points not on either
a general bilinear form This employs an affine change of the two green lines it lies on. This produces six red

6
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lines, which somewhat remarkably meet three at a time atmetric bilinear form on vectors:

four red points, giving th@pposite quadrangle from the
original blue quadrilateral. Note that there is a natural co

v-u=vCu'.

respondence between the four original blue lines and theNon—degenerate means et 0, and implies that ifr- u =

four red points.

Figure 2: A quadrilateral and its opposite quadrangle

The situation is completely symmetric with regard to
points and lines. If we had started out with a quadrilateral
of four red points, we would join them to form six red lines.

0 for all vectorsu, thenv = 0.

Two vectorsv and u are thenperpendicular precisely
whenv-u = 0. Since the matrixC is non-degenerate, for
any vectorv there is, up to a scalar, exactly one veator
which is perpendicular ta Two linesl andm areperpen-
dicular precisely when they have perpendicular direction
vectors.

The bilinear form determines the main metrical quantity:
thequadrance of a vectorv is the number

Qu=v-v

The quadrance between the pointd andB is Q(A,B) =
Qaz- A vectorv is null precisely wherQ, =v-v=0, in
other words precisely whenis perpendicular to itself. A
line is null precisely when it has a null direction vector.
The following basic fact appears in [5].

Theorem 1 (Parallel vectors) Vectors v and u are paral-

These six red lines determine a further three green diagonalg| precisely when

points, forming the diagonal triangle of the original quadr

lateral, whose sides form three green lines. Each green lineQ,Qu = (V- u)?.

meets two of the red lines in two new blue points. These six

new blue points lie three at a time on four blue lines, giving
theopposite quadrilateral from the original red quadran-
gle.

The diagonal green points on a green line are harmonic
conjugates with respect to the two blue points on the sameS(V;U) =1—
line. The diagonal green lines through a green point are

This motivates the following measure of the non-
parallelism of two vectors; thepread between non-null
vectorsv andu is the number

vou? L (vewp?
(V-v) (u-u)’

QQu

harmonic conjugates with respect to the two red lines The spread(v,u) is unchanged if either or u are multi-

through the same point.

plied by a non-zero number. We define tpeead between

There is another more subtle remark to be made here conany non-null lined andm with direction vectorss andu
cerning symmetry: each of the three diagonal points is to bes(l,m) = s(v,u). From Theorem 1, the spread be-

canonically associated to a subdivision of the four origina

tween parallel lines is.OTwo non-null linesl andm are

blue lines into two subsets of two: namely those subsetsperpendicular precisely when the spread between them is

whose joins meet at that diagonal point.
If we start with a triangle, say the yellow triangle in the

1
A circleis given by an equation of the for@ (A, X) =K

Figure formed by three green points and three green linesfor some fixed poinA called thecenter, and a numbekK

then any quadrilateral or quadrangle which has that trian-

gle as its diagonal triangle is callsthndard.

1.2 Quadrance, spread and standard coordinates

called thequadrance. Note that it is not required that a
circle have any pointX lying on it: in this case by enlarg-
ing the field to a quadratic extension we can guarantee that
it does.

In this section we briefly summarize the main facts needed "€ three particular planar geometries we are most inter-

from rational trigonometry in the general affine settinge(se
[71, [8]). We work in the standard two-dimensional vector
space/, consisting of row vectorg= [x,y], over a fieldF.

A linel is given by an equation of the forax+by+c=0,

or equivalently the proportion= (a: b: c).

We assume a metrical structure determined by a non-

degenerate symmetricx22 matrix C: this gives a sym-

ested in come from thielue, red andgreen bilinear forms
given by the respective matrices

a9 el 9 me(ly

The corresponding formulas for thxtue, red andgreen
quadrances between pointé\y = [x1,y1] andAy = [x2, 2]

7
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are and
Qb (AL, A2) = (X2 — x1)> + (¥2 — 1)? s = S(AA2, AAg) = aéc
Q (AL, A) = (X2 —X1)° — (Y2 — y1)° Poa AgA A
=s = —
Qo (A1, A0) =200~ x1) (Y2~ Y1) %2 = s(fofe Ao = g
It will be useful to discuss triangle geometry then in a gen- s3 = s(AzA1, AsAg) = %
eral setting: suppose ovy = levg is a symmetric bi- ¢
linear form, withB a symmetric 2 2 matrix. Suppose Furthermore
¢@:V — V is a linear transformation given by an invert- b2 (a— b)z (c— b)Z
ible 2 x 2 matrix M, so that@(v) = vM = w, with in- l1-s1= ac’ l-%= ad 1-s= od

verse matrixN, so thatwN = v. The new bilinear form I
w1 - W2 = (WiN) o (wWoN) then has matrio = NBN'. Note that the centroid dhaAxAs is

Suppose thaK; XXz is a triangle in the vector spasé G [} }]

which has a distinguished symmetric bilinear fosmwe 3'3]|°

may move this triangle by a combination of a translation

(which does not effect the bilinear form), and a linear trans 1.3  Bilines, Incentersand some other triangle centers

formationg, so that the triangle is in what we calndard A biline of the non-null verteXI is a lineb which passes
form, with points throughlyl, and satisfies(l1,b) = s(b,1,). The existence
AL=[0,0, A,=[1,0 and Ag=][0,1] of biIir_les depe_nds on numbertheoretical considerations of

a particularly simple kind.
and lines . . . .

Theorem 3 (Existence of Triangle bilines) The Triangle
l1=AA3=(1:1:-1) A1A2As3 has bilines at each vertex precisely when we can
l,=A1A3=(1:0:0 find numbers v, w in the field satisfying
l3=AA1=(0:1:0). ac=u?, ad=V?, cd=w 2)
Whatever the initial matrixB, the new bilinear form is In this case we can chooseww so that acd= uvw and
given by du=vw cv=uw and aw=uv. 3)
v-u=vDu" where D=NBN' = <g 2) Q) We now summarize some basic triangle centers of the stan-

dard triangleA1A2Az, assuming the existence of bilines.

for some numbers, b, andc. We may then replace ar- These formulas involve the entriagh, c of D from (1), as
guments involving the general trianghgXoX3 and the  well as the secondary quantitiess andw from (2), satis-
bilinear form o with ones involving the simpler triangle fying (3). The formulas and proofs are found in.[5]
A1A2A3. What we prove for the standard triangieAAs The four Incenters are

with bilinear form given by the matri will be true for 1 1

the original triangle with bilinear form given by the origi- lo= drv—w [—w, V], l1= d—v+w [w, —v],

nal matrixB. 1 1

We will assume thab is invertible, so that l2 = diviw [w,v], I3 = d—v—_w [—w,—V].

A =detD = ac— b? Notice thatl1,1, andlz may be obtained frorty by chang-

ing signs of: bothy andw, justw, and justv respectively.
This four-fold symmetry will hold more generally and note
d=a+c—2b that it means that we can generally just record the val-

. ) i ues oflp. The OrthocenteH, CircumcenterC and De
that appears in many formulas. With these notations, we Longchamps poinkyo (the orthocenter of the double tri-
have the following result from [5].

is non-zero. Another important quantity is timéxed tr ace

angle) are
Theorem 2 (Standard quadrancesand spreads) The b
quadrances and spreads AfA;As are H= A [c—b,a—b] (4)
Q1=Q(A2,Az) =d C:%[c(a—b),a(c—b)]
Q2=Q(A,A3) =¢ 1
Qs = Q(ALA) = a Xo0= 3 [b? — 2bc+ac, b® — 2ab+ad] .
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2 Thelncenter Circletheorem

Here is the main theorem of the paper, illustrated for green

Incenters of the triangld1A>Az in Figure 3. The situa-

tion is completely symmetric between the three geometries

blue, red and green.

N

0t

Figure 3: Green Incenters and the blue and red Incenter
Circles

Theorem 4 (Incenter Circles) If a triangle AjA2A3 has
four blue Incentersg, 2,15 and &, then they all lie both
on ared circIeC,b with center the red Orthocenter,Hand
on agreen circIeCé’ with center the green OrthocentegH
and similarly for the other colours. Furthermore, if both

red and green Incenters exist, then they lie on the same

blue circle, so thatf, = ¢ = (b, and similarly for the
other colours.

Proof. To prove that the four blue Incentels 12,15 and
1 lie on a red circlec? with centerH,, we need show that

Q (Ho18) =Qr (H1?) =@ (He18) = (He18).

First we find the bilinear forms for the blue, red and green
geometries. After translating, and then applying a linear

transformation with the matrisM, we send the original
triangle to the standard trianglAAs. If M1 =N =

(3 5)

green geometries become respectively the matrices

o=(5 6 96 §)

then the bilinear forms for the blue, red and

(ks ¥E)=( o)

o 0\ (a B\

JEXER
ay—Bd -5 ) " \b o

on=(y 86 35 8)

([ 20 cx6+[3y ay bg
T \ad+By 2y by cg

There are interesting relations between the introduced
guantities; for example

anCp = b3 + b,
agCg = bg - b?v

% =8 +a,

arCr = bf — b3, 2

ch=c5+cf
and

apCqg — 2bpbg + chag = 0, — 2bpby 4+ cpay =0,

agCr — 2bgbr +cgar = 0.

The determinants ddy,, D; andDg are respectively

Do = (ad—Py)°, ~ (ad—By)? = -

and the mixed traces are
Y2+ (B-8)%,

dg=2(a—y)(B-9).

Note also the relatiod? = d? + d.

If the original triangle has four blue Incenters, then the
Existence of Triangle bilines theorem shows that we may
choose numbens,, v, Wy satisfying (2) and (3), so that

Ar:Ag:

do = (0 — d = (a—y)*— (B3,

ug = (o®+B?) (V? + &)
= (@®+) (@ +(B-9°)
we= (¥ +8) ((@-v7+(B-37).
The blue Incenters are then
1 1
b_ _ b_ -~
Io_db+vb_Wb[ Wbavb]v Il db—Vb+W [ b, Vb]v
1 1
b_ b_ -~
|2_ db+vb+Wb [Wb,Vb], |3 db_Vb_Wb[ Wh, Vb]
In exactly the same fashion
1 1
r__ _ g__
lo= dr + Vi —W [=wi ] and I dg+Vg Wg[ ngvg]

According to (4), the respective orthocenters are

_ by by
Hp = A—b[Cb—bb,ab—bb], H = A [cr —br,a — by,
b
Hg = A—g[cg—bgaag—bg]-
g
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If we sete, = dp + Vp — Wy then

m:_ br(Cr—br)_i_% br (ar —by)
o A &’ A

_@)
€

—br) &+ Arwh, by (ar — br) & — Arvp)

(br (cr

Ar €
so that

T
Qr (Hnlo) (m) Dy (m)
br r*br

7%) a b <cAr )
& br Cr br (a—br)

+ b )
_W
[ €

ar (br (Cr —br) € + Arwiy) 2+-cr (br (ar —by) eo—Aer)z)
+2br (br (cr —br ) & +Arwp) (br (ar —br ) &y —Arvp)

b2 (ar — 2br +¢r) (arcr — b?) € )

br (a—by)
Y

— br (Cr *br) Wh
- ( [ + €

AZleg (

1
-

Use the relatiod, = a,c; — b? to get

— 20 br (Vo —Wp) (—br2+ar0r) €
+07 (3rW2 -+ Cr V@ — 2br VpWh)

Qr (Hr16) )

7i( b? (ar — 2br +cr) € )

T D2ey \ —20¢br (Vp — W) &+ Ar (arWg + ¢ V2 — 20y vipwhy)
20y (br — ) (ar —br) (Vpdp — VpWp — Wpd)
+ar (br — ¢ )2V +r (a — br)? w2 + bPd, d2

Afey
where we have collected,
(5), to rewrite it.
Replacev? = apdp, W2 = cpdp and vpwp, = Updp and the
values ofay, ¢y, dy, &, by, ¢ in terms ofa, 3,y,d to get the
factorization
2by (br —¢r) (a — br) (Vb — Up — W) dp + & (br — )% apdh

¢ (a — br)? oy + b? (& + & — 2by) d?
—db <2br (br—cr)(a —br) (Vo—Up—Wp) + & (br—Cr)zab)
+¢r (a —br)?co+ b2 (a + ¢ — 2br)
= 20 (ay— BS) (a? —ay+ Y+ B?—BE+ &°— Uy + Vp— W)

wZ andd? of the numerator of

x (02— B2~ ay+PB3) (—y? + &+ ay— Bd) (6)
and also note that
(db + Vb — Wb)% = db (@ + Co + b — 2Up + 2V — 2Wp)
=20 (0% — ay+y+ B? — B8+ — Up+ Vb —Wp) . (7)

Combine (6) and (7), to get the surprisingly simple formula

Qr (Hr.18)

_ (ay—Bd) (o — B2 —ay+B3) (—y*+d*+ay—Bd)
- A

_br@a—b)lbr—c) _ K.

Oy

10

We may now repeat the calculation to see that
Qr (Hr,1?) = Qr (Hr,12) = Qr (Hr,18) = K;, showing that
indeed the four blue Incenters lie on the red circfewith
guadrance; and centeH,. Note that the expression for
K; depends only on the matriX . Now a similar derivation
shows that

Qo (M) = 20200 ®

Ag

9~ Co) 0,123

= }<g7

Hence the four blue Incenters also lie on a green ckfé’le
with quadrancey and centeiHg. Similarly we find that

if a triangle has four red Incenters, then they lie on a blue
circle ¢, with centerHy, and quadrance

by (ap — bp) (bp — Cv)
Dy

Qb (Hb, 1?) = Qo (Hp, 1) = =Kp

as well as on a green circlg] with centerHy and quad-
ranceKy (the same one as above!) Similarly if a triangle
has four green Incenters, then they lie on a blue cic@e
with centerH, and quadrancky,, as well as on a red circle

¢? with centerH, and quadranc&;. The proof is com-

plete. O
Figure 4: Three Incenter Circles C; and G,.
We nowcallGy =G = &3, G = P = P and Gy = P =

(g the blue, red and greéncenter Circlesrespectively. In
Figure 4 we see a (small) triangla A2Az with its Omega
triangleH,H;Hg and the three Incenter Circles, whose re-
spective meets give the twelve blue, red and green Incen-
ters.

2.1 Equationsof Incenter Circles

Theorem 5 (Incenter Circlesequations) In standard co-
ordinates with X= [x,y], the blue, red and green Incenter
circles, when they exist, have respective equations

Go:Qp(X) =bp(2x+2y—1)
G Qr (X) =b (2X+ 2y — 1)
Cg:Qg(X) =bg(2x+2y—1).



KoG-18-2014 N. Le, N. J. Wildberger:

Incenter Circles, Chromogeometng the Omega Triangle

Proof. The derivation of these equations, using the formu-
las established above for the orthocentérsind coloured
Incenters, is somewhat involved algebraically, althoungh t
basic idea is simple. We show how to find the equation
of the red Incenter Circlgy, with centerH,, which four

blue Incenters and four green Incenters lie on if they ex-

ist. From the definition of a red circle, we get the equation
Qr (Hr,X) = K;, and then substitute the valueshf and
K to get
br r*br

by (cr —br) by (a; —by) ar by 7(1, L

& X 75 Y)\b ¢ br(a{br) _

br (ar —br) (br —cr)

Y

1

or after expansion
1 (a (b (o —br) = Ax)®+c (br (B — by) — Ary)?
A7

< +2br (br (¢r —br) — Arx) (br (& —br) — Ary)
br (ar —br) (br —cr)
Ay

)

This may be rewritten, usinfy, = a;¢; — b,2, in the form

A%(Arza,x2 + 2020 xy + A2cy? + A b? (ar — 2br +¢r)
— 20y x — 20?byy) = by (& — by) (by — ) .

Now cancel;, and rearrange to get

Drar X420 br Xy & y*— 20 by x— 20 br y-+by (8 & —b?) =0

or more simply

ax? + 2byxy+ Y2 — 2bix— 2by+ by =0

which has the form stated in the theorem. The same kindtangent lineg®

of calculation establishes the formulas fgyandCy. O

Note that the equations for the Incenter Circ{g@s¢; and
(g allow them to be definedthether or nothe correspond-

ing Incenters exist! Incenters then exist precisely as sneet H
of these Incenter Circles: for example the blue Incenters

18,12,18,12 are just the meets af and(y, if these exist in
the field in which we work.
2.2 Tangent lines of Incenter Circles

Now we consider tangent lines to Incenter circles. Fig-
ure 5 shows the four blue Incenters &fAyAs3, together

with the red and green Incenter Circles passing through

them, namely(; and (. At each of the four Incenters,
i = 1,2,3,4 we have the tangent lin¢$ andty; to the red
and green Incenter Circle$ and (g respectively.

Figure 5: Incenter tangent meets

Theorem 6 (Incenter tangent meets) The tangent lines
th,th,t2,t2% to the red Incenter circle; at the blue In-
centers form a standard quadrilateral, as do the tangent
lines ,t0,t%,t5 at the green Incenter circley. The

same holds for the red and green Incenters, if they exist.

This implies that the mee®; = titP andR), = totY, lie
onl; = A2As3, and are harmonic conjugates with respect to
A, and Ag. Similarly RS, = titl, and RY, = t2t2 lie on

I = A1Az, and are harmonic conjugates with respediio
andAg; andRg; = trytes andRY, = it lie onls = AuAg,
and are harmonic conjugates with respeciAtoand A;.
The pointsGg; = tgotgy andGB; = toytgs lie only, and are
harmonic conjugates with respectAg andAs. Similarly
G, = tiotg, andGh; = ti;td; lie onl, and are harmonic
conjugates with respect & andAg, andG; = tgto; and

G, = toytg, lie onl3, and are harmonic conjugates with
respect toA; andA;.

Proof. We prove the result for the me&i%} of the green
oi associated to the blue Incenters; the other

cases are similar. We find the joins of a blue Incemfer
and the green Orthocentidy to be

(bg—ag) byt + (Cg—bg) agvh + (ag—bg) bgw :
<(Cg_bg)bgdb+ Cg—Dg) bgVp + (8g—bg) CgWh

; < 5
(bg—Cg) bgVp + (bg—ag) bgwh
( (
( (
11

glo=
(bg—ag) bgdp — (Cg—Dg) agVh — (ag—Dg) bgw
(Cg—bg) bgds — (cg—bg) bgVp — (8g—bg) CgWh :

— (bg—cg) bgVb — (og—ag) bgwp
(bg—ag) bgdp + (Cg—Dg) agVh — (ag—Dg) bgw
(Cg—bg) bgds + (Cg—bg) bgVp — (8g—bg) CgWh :

(bg—Cg) bgVp — (bg—ag) bgwh

(bg—ag) bgdp — (Cg—Dg) agV + (ag—Dg) bgw
(Cg—bg) bgds — (cg—bg) bgVp + (8g—bg) CgWh :
— (bg—cg) bV + (bg—ag) bgwp

b_
Hgl1 =

b
Hgl?

b_
Hglz =
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The tangent ling} is the line green perpendicularityl?  The fact thatA, A, G}, G35 form a harmonic range etc.
passing throughb. These we may calculate to be is an immediate consequence of a well known fact about
standard quadrilaterals in projective geometry, since we

(8g—bg) Up + bgVip + (3g—20) Wp + dpby—Cp ag bg have shown that the point;, A, and Az are diagonal
go—< (Cg—bg) Uy + (209 —Cg) Viy—bgWh + dybg + 8 (bg —Cg) > points of the quadrilateral formed by the four green tan-

b (—Vp +Wp — dp) gent lines. O

(ag—bg) Up—bgVh— (ag—2bg) Wy + bt —Cp ag bg) :
t81_< (cg—bg) Up— (2bg — Cg) Vi + bgW, + dpbg + ap (bg—Cg)
bg

> Following the construction of the red lines in the introduc-
by (Vp —wWp —dp)

tory section on Quadrangles and quadrilaterals, we join a
(ag—bg) Uy + bV — (ag—2bq) W + byt —Cp ag pointGPj with the triangle poinfx opposite to the triangle
tgz_< (cg—byg) Up + (2bg— cg) vb+bgwb+dbbg+ab (bg—cg): > line that it lies on; giving six linegyG}:

by (—Vi — Wp — )

(bg —Cg) (—Up+Vp+ap) :

. —(ag—bg) up— bng+(ag 2bg) W + bgdy — s (ag—Dyg)
t93_<—(cg by ) up— (2bg—Cg) Vp—bgWp, + dybog + &y (byg cg):>.

(ag—bg) (Up + Wy —Cp) >

bg (Vo +Wp — dp) 0
We could verify directly that these four lines form a stan- A1GB,=
dard quadrilateral. But we prefer to verify that the meets
of these four tangent lines agree with the following meets

< (bg —Cg) (Up+ Vb +ap) :
ntiines b L
with the side lines oA AzAg : AoGE, < g (—Vb+Wp —p) :

(bgfag) (Up +Wp +Cp) I>
0

(bg—Cg) Up+ (cg—20g) Vip+ bgWp —bgdy+ap (g —bg):
bg (Vo — Wy + dp)
bg (—Vp +Wp +dp) :

(Cg—Dg) up+ (Cg—20g) Viy+ bgW + bgdy + & (bg —Cg) :
by (Vb —Wp — dp)

GOl_tbot 1 =t Oll
= )\— [(bg—Cg) (~Up+ Vb + @), (ag—bg) (~Up—Wp+Cp)]  AcCls=
Ghs= 93 = tgz|1

1 AgGls=

= [(bg— Cg) (Ub+vb+ab) ;(8g —bg) (Up + Wb + Cp)]

Goz_tbot 2—t 0|2—

(ag*bg)ub+bgvb+(ag 2bg) W +bgdy+Cp (bg—ag) :
bg (Vo —Wp +0dp) :
bg (—Vp +wWp —dp)

[0, bg (—Vb + Wb — db)] AgGh, = by (Vo wb—db)

(

)\_
02 Vi +Wp + dp)

\/\/\/\/

1
Gha =t =toyla = s [0, bg (—Vp + Wp + db)]

1
Gl =t0th, =215 = by (Vo — W + dp) , 0
037 908 0 ?\03[ ol )0 Theorem?(Quad points) The triples {A1G5;, AxG2,,
b b b b b
G12 = 92 - tgll3 - [bg (Vb — Wp — ) , O] 2} {A1(323aA%GoszzGos}* {Al_GorAZGwA?»Gos}
A12 and {A1G],, AoGh,, AsGE,}  of lines are concur-
Where rent in the respective points JQQY,Qf, and
Qgs, called the blue/green quad points. The
triples  {A1RD;, AR5, AsRD, ), { ARB3, AoRG,. AsRSs
+ (BoPg — @nCy + Cpag — Colog) {ALRS;, A2R; AsRE,} and { AR, AoRS,, AsRY, | are
A23 =(ag— Cg) Up+ (bg — cg) Vb also concurrent in the respective point§,@®P;, Q% and
+ (ag — bg) Wh + (apbg — anCq + Coag — Cobg) Qb,, called theblue/red quad points. Similar results hold

Aoz = (b — Cg) Up + (Gg — 2bg) Vi + bty for the red and green Incenters, if they exist.

+ (ang - Zabbg + bebg - Cbbg)

Ao1=(Cg —ag) Up + (bg — Cg) Vb + (g — ag) W

Proof. We verify this for the blue/green quad points: this

A13 = (Cg — Pg) Up + (Cg — 2bg) Vi + bW
+ (2apbg — apcy — 2bpbg + cpbyg)

Aoz = (ag — bg) Up + bng + (ag — 2bg) Wh
+ (apbg — 2bpbg — Chag + 2cpbg)

Ao = (bg — ag) Up + bng + (ag — 2bg) Wh
+ (2bpbg — apbg + chag — 2cpbyg) -

12

is a consequence of the projective geometry of the com-
plete quadrilateral we mentioned in the first section—if the
original four tangent lines are regarded as the blue lines
in Figure 6, then the quad poin(ggj correspond to the
red points. However we want to find explicit formulas and
check things directly. The quad poi@gj is naturally as-

sociated to the Incentde?. After some calculation, we find
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that these are
b
Q= ?\_Z [(bg — Cg) (dpup — (bp — Cp) Vi) ,

(

(ag — bg) ((Co — ) W + Co)]
(
)

Qg = ;)—?[(bg — Cg) ((ap — bp) Vb + @) ,
(ag — bg) (dolp + (8 — bp) Wp)]
Qb = 221(c —bo) (2 — ).
(bg — ag) (bpws — CpVh)]
bg

Qgs = [(bg—Cg) (—dpUp + (0l + bp) Vb —8pWh + apdh),

(bg— ag) (dpUp—CoVh + (db + bp) Wh—Cidb)]

where

Ao = (bg — Cg) (bgdh + (bp — Cb) (8g — bg)) Up
— (bg — Cg) (bpbg + Chag — 2cpbg) Vi
— by (ag — by) (bp — Cp) W + Cobg (ag — bg) dy
A1 = (ag — bg) (bydp + (ap — o) (bg — Cg)) Up
+ by (bg — Cg) (ap — bp) Vb
+ (ag—byg) (2apbg —aCg —bubg) W + apbg (bg—Ccg) dp
A2 = by (bg — Cg) (ag — bg) Up
+ bg (bbbg + Cpag — bng — Cbbg) Vb
—bg(@pbg+bpag— ancg—bybg) Wh —anch (0g —Cg) (g —bg)
A3 = ((db+ by) (b5 + agCq) —aghg (20, + bp) —bybyCy) Un
+ (g ((bg — cg) (ap — bp) + Cp (289 — bg)) — CraGCq) Vi
+ ((dp+ by) (bg — ag) by — apag (bg — cg)) Wh
+ bs (@ (dp—Cp) — Co) +bg(Coag(dp+ ap)— anCqy(db—Cp))
— agCqanCo.
We may then check directly that for exam;@go is inci-
dent withAsG?, by computing

((bg —ag) up + bV + (ag — 2bg) Wp — g0 +Cs (ag — bg) ) -
, (bg (bg —cg) (dpup — (b — Cb)Vb)>
Ao

by (8g — bg) (o — bb) W + o)
Ao

+bg(Vb—Wb—db)<

+bg (—Vp +Wp +dp)

dopU2 + (b — ap) UpWp — byl
b (3~ bg) (B~ ¢y ( —CoVp + bpVpWo + Ch (8 — by) Vi

( — (bg —¢g) (bgds + (b —cp) (8g —bg) ) b )

+ (bg — ¢g) (bpbg + Chag — 2csbg) vy
+bg (ag — bg) (bp — ) Wh — Cobg (ag — bg) db
=0

since dbug + (bp — ap) UpWp — bpdpup — vag + bpVeWp +
Cp (ap — bp) vp = 0 by using (2), and similarly for the other
indices. In a parallel fashion, we find that the four blue/red
quad pointsQPj have exactly the same formulas as the

ng, except for the replacemerdg — a;, by — by and
cg — Cr, and similarly for the other colours red and green.

Figure 6: Quad points and star lines

Now introduce theblue star line s? to be the join of the
corresponding blue/red quad pot@f(j and the blue/green
quad poilegj, and similarly for the other colours. There
are then four blue star line, s, 3 andsb.

The blue star point B is the meet of the two blue star
linessP ands?, that isBj; = ’s?, and similarly for the other
colours.

Note that following the introductory section on Quadran-
gles and quadrilaterals, we use the correspondence be-
tween theQ}};; and the tangent linet§;; and the Incenters

P to match up the indices.

Theorem 8 (Star quadrilateral) The four blue star lines

form a standard quadrilateraf}’3s3. This holds also for
the other colours.

Proof. The proof we have is surprisingly complicated. The
star Iiness‘j’ have quite involved formulas; for example we
find that
=P =
EodyUp + FoCoVh :
bgbr ((bb*%)2+cbdb>‘
“(aghr —bgar —agCr + cga; +byCr — Cgbr ) doup
—2cpbgbr (aghy —bgar —ager + cgar +bgcr —cgbyr ) (by—Cp) dpWy |

< —ap (br —cr) (g — cg) (aghr —bgar) ((bb—Cb)2+Oodb> W >

+2apCp (br — ¢r) (bg — Cg) (aghr —bgar ) (bp — cp) dy

—bghr dy (aghr — bgar — agCr + cgay + bgCr — cghy) -

( . (((bb — Og)2+cbdb> Up — 2Cy (bb — Cb)Vb) >

13
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whereEg andFy are both homogeneous polynomials of search. So we tentatively conjecture ttiegre are no such
degree 6 in the variables, b; andc;, with the former hav- triangles

ing 32 terms and the latter 46 terms. After some trial and In any case, to get an explicit example we use an alge-
error we can present these in the somewhat pleasant, bubraic extension field of the rationals; so k{80 we mean

still mysterious, forms: an appropriate symbol in the extension fi@o{\/@) etc..
Note that although our use of square roots is entirely alge-
Eo = —bgby (agCr — Cgar — bgCr + Cgby ) - braic, our representation of these square roots as approx-
. (bﬁ+4cﬁ+abcb— 6bnCp) imate rational numbers (we prefer to avoid discussion of

“real numbers”), necessarily brings approximate aspect

+bgbr (aghr — bgar) (bf + 26§ + ancy — 4bneo) into our diagrams

— 20 (agcgb? - arCrbS + agar Cr g — agcgay br) (bp—Cp)

and

Fo= (agCghf —arc:b + agarcrbg — agcgarby ) -
- (b5 — 4bnCp + 25 + anCp)
+ bgby (agCr — cgar — byt + Cghy) -
- (—5bf — 4ch + 2aphy, — 3a,Cy + 100,Ch)
— 2bghy (agbr — bgar) (bp — Cv) (8p — 2bp + Cp) -

We can then calculate the blue star points, for example

: (((bb —c)’ + deb) Up — 2Cp (bp — Cp) Vb)

Boz=

)

Eodpub + FoCoVb Figure 7: An example triangl&; XoX3

from which clearlyBos lies onls. The computations are Example1 One may check that the basic Triangle with
similar for the other indices, and the other colours. O points

ici : X = [-21/59,-58/59, X;=[-13/3,2 and
3 Explicit examples and some conjectures 1=[-21/ /59, Xp=[-13/3,2

31 Anexampleover Q(v/30,/217,/7411/2470,/82297) X8 =[35/3,-8/5]

We will now explore in detail a particular triangle which in  Q(v/30,v/217,/741,1/2470/82297 has both
has both blue, red and green Incenters; for us this is notblue, red and green Incenters. After translation
only an important tool for checking the consistency of our by (21/59,58/59) we obtain X; = [0,0], Xz =
formulas, but also a way to get a sense of the level of com-[—704/177,176/59 and Xz = [2128/177,—-182/295.
plexity of various constructions. In fact this kind of exgili The matrix N and its inverse M, where
calculation of examples is much to be encouraged in this

: i X . . 704 176
§ubj_egt: e§peC|aIIy as Wo_rl_<|ng over.con(_:rete fields, mc!ud N — (—2@ 9 ) _ <cx B> and
ing finite fields and explicit extension fields of the ratio- T 95
nals, allows us to appreciate the number theoretic aspects
of our geometrical investigations. For example, finding a 1
triangle with blue, red and green Incenters approximately "' — N™"= (
is easy with a geometry package: finding a concrete exam-
ple and working out all the points precisely is more chal- respectively senfl, 0] and[0, 1] to X» and X3, and X, and
lenging. X3 to [1,0] and [0,1]. From now on we discuss only the
In particular we were unable, despite a reasonable com-standard triangleA; AoAz associated tX; XoXg; to convert
puter search, to findny triangles with purely rational  back into the original coordinates, we would multiply by N
points that have blue, red and green Incenters! We wouldand translate by—21/59, —58/59). The bilinear forms in
like to thank Michael Reynolds for his contributions to this these new standard coordinates, for the blue, red and green

13 5
)
264 42

14



KoG-18-2014

N. Le, N. J. Wildberger: Incenter Circles, Chromogeometng the Omega Triangle

geometries respectively, are given by matrices

- 1 0 774400 777884 ap bb
owen(o V= (e g~ (3 o)
B 1 0 216832 720227 a br
oo V- (g wind)-( <)
B 0 1 247808 2000768 ag bg
o N o= (il i)~ 2)

The determinants of D, and Dy are A, = 22140736and

97140736 6724
Ar = Ag = — 57055, While the mixed traces arg,e-= 5z,

dr = 82 and ¢y = —22°. The orthocenters o AxAz are

|

[7105 377]
g =

8825537 84337 | 8783322755537
1019520 25488|’ 1121472025488|’

3894 177|°
Blue, red and green Incenters exist ovef =

Q(Vv30,v/217,1/741,1/24701/82297) and we may

choose

, _ 1875104 14432 = 873628
= 7313200 T 177 "®T T4425
17248 2464
196
W= 425\/217\/82297
19712 2816 448
Ug = =5 15\/2470 Vo= "o V30, wg= 295\/741

oarsaad 4032553/217+ 20461/217/82297
- +210343/82297+ 76618507,
3 soas( 7V217/82297- 2923,/217
—133/82297-30049

Sa
I

- 203 247 35 3211
7758V 741- 3894\/_0Jr 389V 2470— e }
| 1335V/2470- £,V/30+ 15 1239v 141- 17
- 247 203 3211
04"/ 30— 7788V 741+ 3894\’ 2470~ e }
T77V/30+ 13351/2470~ 1239V 41— 17
247 203 3211
— Z04V/30— 7788V 741- 3894V 2470— e }
| —15V/30— 1335V/2470- 1535V 741 177
- 247 203 3211
3a9aV/30+ 7788V 741 3894V 2470~ e
T77V/30— 1335V 2470+ 1535V 741 129

[lyrs)
I

Na
Il

wa
I

The Incenter circle quadrances are

18154129609 11681819191

® = 728196100 ° f T 7728196100
1182272

97 710443

The blue, red and green Incenter Circles themselves have

Then the four blue Incenters, the four red Incenters and the respective equations

four green Incenters ok AxAz respectively are

|b— _7161 @} |b:[ﬁ _E}
7| 590413 1710384 118
b= 761 E} |b— [iﬂ @}
27 12112 168 37 | 270 27

sriagaad 4032553/217— 20461/217/82297 ]
" +210343/82297- 76618507,

o s5576(2923,/217— 71/217/82297
+133,/82297- 30049
soavgaad 20461/217,/82297— 4032 553/2_17

+210343/82297- 76618507,
=557e(7V217\/82297—- 2923/217
+133,/82297- 30049
5 aa5qad 4032553/217+ 20 461\/2_17\/82297

" —210343/82297- 76618507,
2= sos76l 7V217/82297+ 2923,/217
—133,/82297- 30049

=
[

48400004 — 19447 128y 28376 929°
+19447 128+ 19447129 — 9723560= 0

19360 — 62524y+ 121032
+62524+ 62524/ — 31262=0

1936004 — 2572 2406ty + 4032553°
42572240+ 2572 24§ — 1286 120= 0.

The four tangent Iineg} are

go— 1570:-11823:8323
127512:—33761:58261
18216:-11823:8323
1570:4823: 8328

(
(=
(=
(=

15
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The meets of these four tangent lines agree with the follow-and they meet at the blue star points

ing meets with the side lines AfAxA3 :

OBy = 5, — [ 3500 9893
01 =loolg1 =tool1 = | 73353 73303
o . _ [ 3500 9893
2 = tgplgs = lgpl = | 6393 6393
1189
G2 = tgoter = tgol2 = _ ’—1689}
[ 1189
b b _
G t1t3—t1|2— _0,—689:|
[ 8323
b
G03_t0t3—t0|3— I —1570, :|
[ 8323
b b
G2 =13 :tg“3::_18216 ]

The blue/red quad pointsfassociated tog, 17, 13,15 re-
spectively are

»  [18005811535 1212966955
Qm___21082889161_21082889161
» [ 180058115351212966955
Q”“_"9330605209 9330605209]9
»  [180058115351212966955
QQ“_149287339091492873390$
» _ [180058115351212966955
Q“___453422282794534222827$'

The respective blue/green quad poin& Qre

Qb B '_ 41615001176277
90 | 2654777 2654777
Qb B '_ 4161500 1176277
917 | 125477771254777
Qb _ [ 4161500 1176277
927 |109777771097777
Qb B [ 4161500 1176277
937 |208707772087077
The blue star lines are then
= Qoo =
(1796063533088 : 8688045740391034074074039
(272084614990:11993435740391034074074039
(272084614990:8688045740391034074074039

(1796063533088:11993435740391034074074039

16

Boy = [165269500000761 989459 O4E
| 927258959049927 258959 04
Bys — __ 165269500000761989459 04E
| 596719959049596 71995904
Bop — _0 1034074074 03; - { 1034074074 OSE
|’ 868804574039’ 7119934357403
Bos — (1034074074039 } o {1034 074074039 ]
1796063533088 |’ 272084614990

Note the pleasant rationality of the previous objects.

3.2 Anexampleover 13

Now we look at an example over a finite field.

Theorem 9 (Null quadrancesincenters) Suppose that
the fieldF contains an element i, wheré £ —1, and
the characteristic oF is not2. If

_ bp(ap—bp)(bp—co) , _ br(ar—by)(br —c)
Kb = — Kr —

AT TAY
by (8g —bg) (bg — C) —0

Ag

then the standard Triangl&; A2A3 has four distinct blue,
red and green Incenters.

Proof. If Ky, = 0 then from the definition of the blue incen-
ter circle Gy, which isQp (Hp, X) = Kp, G, is a null circle,
so it is a product of lines. Similarly, ik, = 0 then( is a
null circle, and ifKg = 0 then(y is a null circle. These
null lines have distinct direction vectofd,+i), (1,+1)
and(1,0),(0,1) respectively, and they are never parallel
since cha(ff) # 2, soi # +1. Therefore, any two null cir-
cles meet in exactly four points. O

Here is an example found by Michael Reynolds [6] which
illustrates explicitly the above theorem.

Example2 The triangle XijXoX3 with points X =
[3,4], X2 =[1,9] and X = [12, 3] in F13 has four blue, red
and green Incenters. 1R;3 the squares ar€,1,3,4,9,10
and12, and in particular—1 = 12 = 5% is a square. After
translation by(3,4) we obtainX; = [0,0], X, = [11,5] and
X3 =[9,12]. The matrix N and its inverse M

(11 5 1 (10 11
(5 %) ez )

12 7
send|[1,0] and [0, 1] to X, and X3, and X, and X to [1,0]
and|[0, 1] respectively. The bilinear form in these new stan-
dard coordinates for the blue, red and green geometries
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respectively are

- )

1
Db:N(O

(1 o\, (50
N (o SV -( 2)
(0 1\ (6 8
Dg—N(l O)N _<8 8).

We can see immediately thag K K, = Kg = 0 from the

definitions
b —byp) (bp—cC
Qo (Hp, lir) = o 2 Ab)(b )
b
br (& —by) (br — ¢
Q (i) = XERIB =)
r
Qg(Hg,Iir):bg(ag_bAg)(bg_Cg)ng, i=0,1,2,3.
|
The four blue, red and green Incenters respectively are
I0=[4.8, 11=[36], 13=[810, I13=[114]
lo=1[10.9], 13=[82], 13=[65, I3=[412
I§=19,8, 19=1[53], 1§3=[1211, 1§=[2,4

and the blue, red and green Incenter Circles respectively
have equations

G:(y—x+1)(x+3y—1)=0
G 1 (x—6y) (x+6y) =
Gy (X+2y—2)(x+5y—5)=0.

From Michael Reynolds’ computer investigations, we ten-
tatively conjecture that for finite field¥, where p =
3mod4 there areno triangles which have both blue, red
and green Incenters, and for finite fieldg wherep =
1mod4 blue, red and green Incenters exists precisely
whenKy, = K = Kg =0, as in the above example.

4 Spieker circlesand Nagel circles

Now we recall from [5] that the central dilatidn ; , about

the centroid takes the Orthocenter to the Circumcenter, am{l

the Incenters to th&pieker centers In standard coordi-
nates
(1/2)[1-x1~

3 12([xy]) = Y-

The inverse central dilatiod_, takes the Orthocenter to
the De Longchamps pointg%, and takes the Incenters to
theNagel pointsIn standard coordinates

72([X7y]) = [1_2X31_2y]

Theorem 10 (Spieker circles) If a triangle has four blue
Incenters §,19,15 and 1B, then the four blue Spieker cen-
ters all lie both on a red Spieker circle with center the red
Circumcenter ¢ and on a green Spieker circle with center
the green CircumcenterCIf both say blue and red Incen-
ters exist, then all 8 blue and red Spieker points lie on the
same green circle. The same holds for the other colours.

Proof. We see that if we use the central dilation formula
to transform Incenter circles centred at the Orthocenters,
we get the Spieker circles centred at Circumcenters, so this
theorem is a direct consequence of the Incenter circles the-
orem and the fact that a dilation preserves circles of any
colour. O
Here are the formulas for the coloured Circumcenters in
standard coordinates:

Co=or- = [Cb(ab bp) , ap (Co — bp)]
C=5p 1 [Cr(ar br),a (¢ —br)]
Cg—_[ (ag—bg) ,ag (cg — by)]

Figure 8: Blue, red and green Speiker circles

Theorem 11 (Nagel circles) If atriangle has four blue In-
centers §,12,15 and I, then the four blue Nagel centers

Il lie both on a red Nagel circle with center the red De
ongchamps point 2%, and on a green Nagel circle with
center the green De Longchamps pointgX If both say
blue and red Incenters exist, then all 8 blue and red Nagel
points lie on the same green circle. The same holds for the
other colours.

Proof. In the same fashion as in the previous theorem, if
we use the inverse central dilatidn, to transform Incen-

ter circles centred at the Orthocenters, we get the Nagel
circles centred at De Longchamps points. O
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Figure 9: Blue, red and green Nagel circles

Here are the formulas for the blue, red and green De
Longchamps points:

1

1
X = —
20r A,

1
Xo0g = Ay b5 — 2bgCy -+ agCq, b — 2aghy + agCy] -

[bf — 2brer +arcr, bf — 2acby + acc |

relations between the
Circumcenters and De

In Figure 10 we see the
three coloured Orthocenters,

Longchamps points. The lines joining these are the three [6]

coloured Euler lines. Note that the centroids of the trian-

gles of Orthocenters, Circumcenters and De Longchamps [7]

points all agree with the centro@ of the original triangle
A1A2A3. We conclude with a simple observation about De
Longchamps points.

<
-

Figure 10:Blue, red, green Orthocenters, Circumcenters
and De Longchamps points

Theorem 12 (Orthocentersas midpoints) For any tri-
angle, a coloured orthocenter H is the midpoint of the two
De Longchamps points;Xof the other two colours.

18

Proof. This follows by considering the action of the central
dilation d_» which takes the circumcent€y to the ortho-
centerH;, and the orthocentdfi; to the De Longchamps
point Xxq . O
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