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ABSTRACT

Chromogeometry brings together planar Euclidean geom-
etry, here called blue geometry, and two relativistic ge-
ometries, called red and green. We show that if a trian-
gle has four blue Incenters and four red Incenters, then
these eight points lie on a green circle, whose center is
the green Orthocenter of the triangle, and similarly for the
other colours. Tangents to the incenter circles yield inter-
esting additional standard quadrangles and concurrencies.
The proofs use the framework of rational trigonometry
together with standard coordinates for triangle geometry,
while a dilation argument allows us to extend the results
also to Nagel and Speiker points.
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Upisane kružnice, kromogeometrija i Omega

trokut

SAŽETAK

Kromogeometrija povezuje ravninsku euklidsku geo-
metriju, ovdje zvanu plavom geometrijom, te dvije re-
lativističke geometrije, nazvane crvenom i zelenom geo-
metrijom. Pokazuje se da ukoliko trokut ima četiri
plava i četiri crvena sredǐsta upisanih (odnosno pripisanih)
kružnica, tada tih osam točaka leži na zelenoj kružnici čije
je sredǐste zeleni ortocentar trokuta. Vrijede i druge dvije
analogne tvrdnje. Tangente na upisane kružnice stvaraju
nove zanimljive četverokute i konkurentnosti. Dokazi se
provode u okviru racionalne trigonometrije sa standar-
dnim koordinatama za geometriju trokuta. Transforma-
cija diletacije dozvoljava proširenje rezultata na Nagelove
i Speikerove točke.

Ključne riječi: geometrija trokuta, upisane kružnice,
racionalna trigonometrija, kromogeometrija, četverostruka
simetrija, Nagelove točke, Spiekerove točke, Omega trokut

1 Introduction

This paper investigates a surprising connection between
three closely related Incenter hierarchies of a fixed planar
triangle. The framework here is that of Rational Trigonom-
etry ([7], [8]) which allows a consistentuniversal trian-
gle geometryvalid for any symmetric bilinear form, as de-
scribed in [5], together with the three-fold symmetry of
chromogeometry([9], [10]), which connects the familiar
Euclidean (blue) geometry based on the symmetric bilinear
form x1x2+ y1y2, and two relativistic geometries (red and
green) based respectively on the bilinear formsx1x2−y1y2

andx1y2+ y1x2. By working with the rational notions of
quadrance and spread instead of the transcendental notions
of distance and angle, the main laws of Rational Trigonom-
etry allow metrical geometry, and so triangle geometry, to
be developed in each of these three geometries in a parallel
fashion, with mostly identical formulas and theorems.

The first results of this paper concern the four Incenters of
a planar triangle in one of the three geometries, and were
announced in [5]. As in that paper, we here refer to all four
meets of the vertex bisectors, or bilines, as Incenters, so
do not distinguish between the classical incenter and the
three excenters. If a triangleA1A2A3 has four blue Incen-
ters Ib

0, I
b
1, I

b
2 and Ib

3, then all four points lie both on ared
incenter circleC b

r with center the red OrthocenterHr , and
on a green incenter circleC b

g with center the green Or-
thocenterHg; this is illustrated in Figure 1. Similarly, if
a triangle has red Incenters, then these lie both on a green
incenter circleC r

g with centerHg, and a blue incenter circle
C

r
b with center the blue OrthocenterHb. If a triangle has

green Incenters, these lie both on a blue incenter circleC
g
b

with centerHb, and on a red incenter circleC g
r with cen-

ter Hr . Furthermore, ifboth red and green Incenters exist,
then they lie on thesameblue incenter circle, and simi-
larly for the other colours. The proofs are algebraic, and
rely on non-obvious simplifications found by the help of a
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computer. So the Omega triangle formed by the three Or-
thocentersΩ ≡ HbHrHg, introduced in [9], has an intimate
connection with the Incenter hierarchies.
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Figure 1: The four blue Incenters ofA1A2A3 and red and
green Incenter Circles

These facts relate also to elegant classical properties of
quadrangles. In [1] Haskell showed that if two quadrangles
have the same diagonal triangle, then all eight points of
these quadrangles lie on a single conic; and in [11] Woods
found a synthetic derivation of the same result. Now it is
obvious that the four Incenters of a triangle, with respect to
any bilinear form, will form a standard quadrangle in this
sense, meaning that the diagonal triangle coincides with
the original triangle. As a consequence, if blue and red In-
centers exist, then they must lie on a conic. Our assertion
is that this conic is actually a green circleC

b
g = C

r
g ≡ Cg

with centerHg.
In the case of blue Incenters, the four tangent lines to the
red incenter circleC b

r at the blue Incenters form a stan-
dard quadrilateral, implying that they meet in six points
Rb

i j , which lie two at a time on the three lines ofA1A2A3,
where they are harmonic conjugates with respect toA1,A2

andA3; and similarly the four tangent lines to the green in-
center circleC b

g at the blue Incenters meet in six pointsGb
i j

on the three lines. This is also seen on the above Figure.
Similarly there is a corresponding result when we look at
red Incenters, and at green Incenters.
The six linesAkRb

i j , for i, j,k distinct, are the lines of
a complete quadrangle, so they meet three at a time at
four quad points Qb

r j . Similarly, the six linesAkGb
i j meet

three at a time at pointsQb
g j. Somewhat remarkably, the

four star lines sb
j ≡ Qb

r j Q
b
g j form a standard quadrilateral

sb
0sb

1sb
2sb

3.
This paper also illustrates our novel approach to triangle
geometry initiated in [5]; using standard coordinates to es-
tablish universal aspects of the subject which arevalid over
a general bilinear form. This employs an affine change

of coordinates to place an arbitrary triangle intostandard
position, with vertices at[0,0] , [1,0] and[0,1]. The var-
ious triangle centers and constructions are then expressed
in terms of the coefficientsa,b andc of the matrix

C≡
(

a b
b c

)

of the resulting new bilinear form. This allows a system-
atic augmentation of Kimberling’sEncyclopedia of Trian-
gle Centers ([2], [3], [4]) to arbitrary quadratic formsand
general fields.
Standard coordinates also have the advantage of yielding
surprisingly simple equations for the three coloured Incen-
ter Circles, which turn out to be, after pleasant simplifica-
tions,

Cb : Qb (X) = bb(2x+2y−1)

Cr : Qr (X) = br (2x+2y−1)

Cg : Qg (X) = bg(2x+2y−1).

However the formulas for the star linessb
j become rather

formidable, but seem to have interesting algebraic aspects.
Some intriguing number theoretical questions arise when
we inquire into the existence of triangles, over a given field,
which have simultaneously blue, red and green Incenters.
Studying concrete examples and using empirical computer
investigations of Michael Reynolds [6], we make some ten-
tative conjectures on such triangles, both over the rational
numbers and over a finite prime field. Finally we extend
the results to Spieker and Nagel points by suitable central
dilations.
In the rest of this introduction we recall basic facts from [7]
and [5] to formulate triangle geometry over a general bilin-
ear form. We then specialize to the blue, red and green ge-
ometries, and use standard coordinates to develop formulas
for points and lines (always one of our key aims), and to
provide explicit computational proofs of the theorems.

1.1 Quadrilaterals and quadrangles

We begin by reminding the reader of some basic facts from
the projective geometry of a quadrangle (four points) or
quadrilateral (four lines), using a visual presentation to
avoid the need to introduce notation.
In Figure 2 we see four blue lines forming a quadrilateral
[in this figure colours are not used in a metrical sense, but
only as an aide for explanation]. These four blue lines meet
in six points, also in blue. These six blue points determine
a further three greendiagonal lines, forming thediagonal
triangle, in yellow, of the original quadrilateral, whose
vertices are three green points. Each green point may be
joined via a red line to the two blue points not on either
of the two green lines it lies on. This produces six red
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lines, which somewhat remarkably meet three at a time at
four red points, giving theopposite quadrangle from the
original blue quadrilateral. Note that there is a natural cor-
respondence between the four original blue lines and the
four red points.

Figure 2: A quadrilateral and its opposite quadrangle

The situation is completely symmetric with regard to
points and lines. If we had started out with a quadrilateral
of four red points, we would join them to form six red lines.
These six red lines determine a further three green diagonal
points, forming the diagonal triangle of the original quadri-
lateral, whose sides form three green lines. Each green line
meets two of the red lines in two new blue points. These six
new blue points lie three at a time on four blue lines, giving
theopposite quadrilateral from the original red quadran-
gle.
The diagonal green points on a green line are harmonic
conjugates with respect to the two blue points on the same
line. The diagonal green lines through a green point are
harmonic conjugates with respect to the two red lines
through the same point.
There is another more subtle remark to be made here con-
cerning symmetry: each of the three diagonal points is
canonically associated to a subdivision of the four original
blue lines into two subsets of two: namely those subsets
whose joins meet at that diagonal point.
If we start with a triangle, say the yellow triangle in the
Figure formed by three green points and three green lines,
then any quadrilateral or quadrangle which has that trian-
gle as its diagonal triangle is calledstandard.

1.2 Quadrance, spread and standard coordinates

In this section we briefly summarize the main facts needed
from rational trigonometry in the general affine setting (see
[7], [8]). We work in the standard two-dimensional vector
spaceV, consisting of row vectorsv= [x,y] , over a fieldF.
A line l is given by an equation of the formax+by+c= 0,
or equivalently the proportionl ≡ 〈a : b : c〉.
We assume a metrical structure determined by a non-
degenerate symmetric 2× 2 matrix C: this gives a sym-

metric bilinear form on vectors:

v ·u≡ vCuT .

Non-degenerate means detC 6= 0, and implies that ifv·u=
0 for all vectorsu, thenv= 0.
Two vectorsv and u are thenperpendicular precisely
whenv · u= 0. Since the matrixC is non-degenerate, for
any vectorv there is, up to a scalar, exactly one vectoru
which is perpendicular tov. Two linesl andmareperpen-
dicular precisely when they have perpendicular direction
vectors.
The bilinear form determines the main metrical quantity:
thequadrance of a vectorv is the number

Qv ≡ v ·v.

Thequadrance between the pointsA andB is Q(A,B) ≡
Q−→

AB
. A vectorv is null precisely whenQv = v · v = 0, in

other words precisely whenv is perpendicular to itself. A
line is null precisely when it has a null direction vector.
The following basic fact appears in [5].

Theorem 1 (Parallel vectors) Vectors v and u are paral-
lel precisely when

QvQu = (v ·u)2 .

This motivates the following measure of the non-
parallelism of two vectors; thespread between non-null
vectorsv andu is the number

s(v,u)≡ 1− (v ·u)2
QvQu

= 1− (v ·u)2
(v ·v)(u ·u) .

The spreads(v,u) is unchanged if eitherv or u are multi-
plied by a non-zero number. We define thespread between
any non-null linesl andm with direction vectorsv andu
to bes(l ,m) ≡ s(v,u). From Theorem 1, the spread be-
tween parallel lines is 0. Two non-null linesl andm are
perpendicular precisely when the spread between them is
1.
A circle is given by an equation of the formQ(A,X) = K
for some fixed pointA called thecenter, and a numberK
called thequadrance. Note that it is not required that a
circle have any pointsX lying on it: in this case by enlarg-
ing the field to a quadratic extension we can guarantee that
it does.
The three particular planar geometries we are most inter-
ested in come from theblue, red andgreen bilinear forms
given by the respective matrices

Cb ≡
(

1 0
0 1

)
, Cr ≡

(
1 0
0 −1

)
and Cg ≡

(
0 1
1 0

)
.

The corresponding formulas for theblue, red andgreen
quadrances between pointsA1 ≡ [x1,y1] andA2 ≡ [x2,y2]
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are

Qb (A1,A2) = (x2− x1)
2+(y2− y1)

2

Qr (A1,A2) = (x2− x1)
2− (y2− y1)

2

Qg (A1,A2) = 2(x2− x1) (y2− y1) .

It will be useful to discuss triangle geometry then in a gen-
eral setting: supposev1 ◦ v2 ≡ v1BvT

2 is a symmetric bi-
linear form, withB a symmetric 2× 2 matrix. Suppose
φ : V → V is a linear transformation given by an invert-
ible 2× 2 matrix M, so thatφ(v) = vM = w, with in-
verse matrixN, so thatwN = v. The new bilinear form
w1 ·w2 ≡ (w1N)◦ (w2N) then has matrixD = NBNT .
Suppose thatX1X2X3 is a triangle in the vector spaceV
which has a distinguished symmetric bilinear form◦. We
may move this triangle by a combination of a translation
(which does not effect the bilinear form), and a linear trans-
formationφ, so that the triangle is in what we callstandard
form, with points

A1 ≡ [0,0] , A2 ≡ [1,0] and A3 ≡ [0,1]

and lines

l1 ≡ A2A3 = 〈1 : 1 :−1〉
l2 ≡ A1A3 = 〈1 : 0 : 0〉
l3 ≡ A2A1 = 〈0 : 1 : 0〉 .
Whatever the initial matrixB, the new bilinear form· is
given by

v ·u≡ vDuT where D ≡ NBNT =

(
a b
b c

)
(1)

for some numbersa,b, and c. We may then replace ar-
guments involving the general triangleX1X2X3 and the
bilinear form ◦ with ones involving the simpler triangle
A1A2A3. What we prove for the standard triangleA1A2A3

with bilinear form given by the matrixD will be true for
the original triangle with bilinear form given by the origi-
nal matrixB.
We will assume thatD is invertible, so that

∆ ≡ detD = ac−b2

is non-zero. Another important quantity is themixed trace

d ≡ a+ c−2b

that appears in many formulas. With these notations, we
have the following result from [5].

Theorem 2 (Standard quadrances and spreads) The
quadrances and spreads ofA1A2A3 are

Q1 ≡ Q(A2,A3) = d

Q2 ≡ Q(A1,A3) = c

Q3 ≡ Q(A1,A2) = a

and

s1 ≡ s(A1A2,A1A3) =
∆
ac

s2 ≡ s(A2A3,A2A1) =
∆
ad

s3 ≡ s(A3A1,A3A2) =
∆
cd

.

Furthermore

1− s1 =
b2

ac
, 1− s2 =

(a−b)2

ad
, 1− s3 =

(c−b)2

cd
.

Note that the centroid ofA1A2A3 is

G=

[
1
3
,
1
3

]
.

1.3 Bilines, Incenters and some other triangle centers

A biline of the non-null vertexl1l2 is a lineb which passes
throughl1l2 and satisfiess(l1,b) = s(b, l2). The existence
of bilines depends on number theoretical considerations of
a particularly simple kind.

Theorem 3 (Existence of Triangle bilines) The Triangle
A1A2A3 has bilines at each vertex precisely when we can
find numbers u,v,w in the field satisfying

ac= u2, ad= v2, cd= w2. (2)

In this case we can choose u,v,w so that acd= uvw and

du= vw, cv= uw and aw= uv. (3)

We now summarize some basic triangle centers of the stan-
dard triangleA1A2A3, assuming the existence of bilines.
These formulas involve the entriesa,b,c of D from (1), as
well as the secondary quantitiesu,v andw from (2), satis-
fying (3). The formulas and proofs are found in [5].
The four Incenters are

I0 =
1

d+ v−w
[−w,v] , I1 =

1
d− v+w

[w,−v] ,

I2 =
1

d+ v+w
[w,v] , I3 =

1
d− v−w

[−w,−v] .

Notice thatI1, I2 andI3 may be obtained fromI0 by chang-
ing signs of: bothv andw, just w, and justv respectively.
This four-fold symmetry will hold more generally and note
that it means that we can generally just record the val-
ues of I0. The OrthocenterH, CircumcenterC and De
Longchamps pointX20 (the orthocenter of the double tri-
angle) are

H =
b
∆
[c−b,a−b] (4)

C=
1

2∆
[c(a−b),a(c−b)]

X20 =
1
∆
[
b2−2bc+ac,b2−2ab+ac

]
.
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2 The Incenter Circle theorem

Here is the main theorem of the paper, illustrated for green
Incenters of the triangleA1A2A3 in Figure 3. The situa-
tion is completely symmetric between the three geometries
blue, red and green.
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Figure 3: Green Incenters and the blue and red Incenter
Circles

Theorem 4 (Incenter Circles) If a triangle A1A2A3 has
four blue Incenters Ib0, I

b
1, I

b
2 and Ib3, then they all lie both

on a red circleC b
r with center the red Orthocenter Hr , and

on a green circleC b
g with center the green Orthocenter Hg,

and similarly for the other colours. Furthermore, if both
red and green Incenters exist, then they lie on the same
blue circle, so thatC r

b = C
g
b = Cb, and similarly for the

other colours.

Proof. To prove that the four blue IncentersIb
0, I

b
1, I

b
2 and

Ib
3 lie on a red circleC b

r with centerHr , we need show that

Qr

(
Hr , I

b
0

)
= Qr

(
Hr , I

b
1

)
= Qr

(
Hr , I

b
2

)
= Qr

(
Hr , I

b
3

)
.

First we find the bilinear forms for the blue, red and green
geometries. After translating, and then applying a linear
transformation with the matrixM, we send the original
triangle to the standard triangleA1A2A3. If M−1 = N =(

α β
γ δ

)
, then the bilinear forms for the blue, red and

green geometries become respectively the matrices

Db ≡
(

α β
γ δ

)(
1 0
0 1

)(
α β
γ δ

)T

=

(
α2+β2 αγ+βδ
αγ+βδ γ2+ δ2

)
≡
(

ab bb

bb cb

)

Dr ≡
(

α β
γ δ

)(
1 0
0 −1

)(
α β
γ δ

)T

=

(
α2−β2 αγ−βδ
αγ−βδ γ2− δ2

)
≡
(

ar br

br cr

)

Dg ≡
(

α β
γ δ

)(
0 1
1 0

)(
α β
γ δ

)T

=

(
2αβ αδ+βγ

αδ+βγ 2γδ

)
≡
(

ag bg

bg cg

)
.

There are interesting relations between the introduced
quantities; for example

a2
b = a2

g+a2
r , abcb = b2

g+b2
r ,

arcr = b2
b−b2

g, agcg = b2
b−b2

r , c2
b = c2

g+ c2
r

and

abcg−2bbbg+ cbag = 0, abcr −2bbbr + cbar = 0,

agcr −2bgbr + cgar = 0.

The determinants ofDb,Dr andDg are respectively

∆b = (αδ−βγ)2 , ∆r = ∆g =−(αδ−βγ)2 =−∆b

and the mixed traces are

db = (α− γ)2+(β− δ)2 , dr = (α− γ)2− (β− δ)2 ,

dg = 2(α− γ)(β− δ) .

Note also the relationd2
b = d2

r +d2
g.

If the original triangle has four blue Incenters, then the
Existence of Triangle bilines theorem shows that we may
choose numbersub,vb,wb satisfying (2) and (3), so that

u2
b =

(
α2+β2)(γ2+ δ2)

v2
b =

(
α2+β2)((α− γ)2+(β− δ)2

)

w2
b =

(
γ2+ δ2)((α− γ)2+(β− δ)2

)
.

The blue Incenters are then

Ib
0 =

1
db+ vb−wb

[−wb,vb] , Ib
1 =

1
db− vb+wb

[wb,−vb] ,

Ib
2 =

1
db+ vb+wb

[wb,vb] , Ib
3 =

1
db− vb−wb

[−wb,−vb] .

In exactly the same fashion

I r
0 =

1
dr+ vr−wr

[−wr ,vr ] and Ig
0 =

1
dg+vg−wg

[−wg,vg] .

According to (4), the respective orthocenters are

Hb =
bb

∆b
[cb−bb,ab−bb] , Hr =

br

∆r
[cr −br ,ar −br ] ,

Hg =
bg

∆g
[cg−bg,ag−bg] .
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If we seteb ≡ db+ vb−wb then

−−→
Hr I

b
0 =−

(
br (cr −br)

∆r
+

wb

eb
,
br (ar −br)

∆r
− vb

eb

)

=− 1
∆reb

(br (cr −br)eb+∆rwb,br (ar −br)eb−∆rvb)

so that

Qr

(
Hr , I

b
0

)
=

(−−→
Hr I

b
0

)
Dr

(−−→
Hr I

b
0

)T

=
(

br (cr−br )
∆r

+wb
eb

br (ar−br )
∆r

− vb
eb

)(ar br

br cr

)( br (cr−br )
∆r

+ wb
eb

br (ar−br )
∆r

− vb
eb

)

=
1

∆2
r e2

b

(
ar (br (cr−br )eb+∆rwb)

2+cr (br (ar−br)eb−∆rvb)
2

+2br (br (cr −br )eb+∆rwb) (br (ar−br)eb−∆rvb)

)

=
1

∆2
r e2

b




b2
r (ar −2br +cr)

(
arcr −b2

r
)

e2
b

−2∆rbr (vb−wb)
(
−b2

r +ar cr
)

eb
+∆2

r
(
arw2

b+crv2
b−2br vbwb

)


 .

Use the relation∆r = arcr −b2
r to get

Qr

(
Hr , I

b
0

)
(5)

=
1

∆2
r eb

(
b2

r (ar −2br +cr )e2
b

−2∆rbr (vb−wb)eb+∆r
(
arw2

b+crv2
b−2br vbwb

)
)

=

(
2br (br −cr )(ar −br )(vbdb−vbwb−wbdb)

+ ar (br −cr)
2 v2

b+cr (ar −br )
2 w2

b+b2
r dr d2

b

)

∆2
r eb

where we have collectedv2
b,w

2
b andd2

b of the numerator of
(5), to rewrite it.
Replacev2

b = abdb, w2
b = cbdb and vbwb = ubdb and the

values ofab,cb,db,ar ,br ,cr in terms ofα,β,γ,δ to get the
factorization

2br (br − cr)(ar −br)(vb−ub−wb)db+ar (br − cr)
2abdb

+ cr (ar −br)
2cbdb+b2

r (ar + cr −2br)d2
b

= db

(
2br (br−cr)(ar−br)(vb−ub−wb)+ar (br−cr)

2ab

+cr (ar −br)
2cb+b2

r (ar + cr −2br)db

)

= 2db(αγ−βδ)
(
α2−αγ+ γ2+β2−βδ+ δ2−ub+ vb−wb

)

×
(
α2−β2−αγ+βδ

)(
−γ2+ δ2+αγ−βδ

)
(6)

and also note that

(db+ vb−wb)
2 = db (ab+ cb+db−2ub+2vb−2wb)

= 2db
(
α2−αγ+ γ2+β2−βδ+ δ2−ub+ vb−wb

)
. (7)

Combine (6) and (7), to get the surprisingly simple formula

Qr

(
Hr , I

b
0

)

=
(αγ−βδ)

(
α2−β2−αγ+βδ

)(
−γ2+ δ2+αγ−βδ

)

∆r

=
br (ar −br) (br − cr)

∆r
≡ Kr .

We may now repeat the calculation to see that
Qr
(
Hr , Ib

1

)
= Qr

(
Hr , Ib

2

)
= Qr

(
Hr , Ib

3

)
= Kr , showing that

indeed the four blue Incenters lie on the red circleC b
r with

quadranceKr and centerHr . Note that the expression for
Kr depends only on the matrixDr .Now a similar derivation
shows that

Qg

(
Hg, I

b
i

)
=

bg (ag−bg) (bg− cg)

∆g
≡ Kg, i = 0,1,2,3.

Hence the four blue Incenters also lie on a green circleC b
g

with quadranceKg and centerHg. Similarly we find that
if a triangle has four red Incenters, then they lie on a blue
circleC r

b with centerHb and quadrance

Qb
(
Hb, I

g
i

)
= Qb (Hb, I

r
i ) =

bb (ab−bb) (bb− cb)

∆b
≡ Kb

as well as on a green circleC r
g with centerHg and quad-

ranceKg (the same one as above!) Similarly if a triangle
has four green Incenters, then they lie on a blue circleC

g
b

with centerHb and quadranceKb, as well as on a red circle
C

g
r with centerHr and quadranceKr . The proof is com-

plete. �

4

4

8

8

A

H

H

H
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g
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A
A

1
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g

r
b

C

C

C

Figure 4: Three Incenter Circles Cb, Cr and Cg.

We now callCb = C
r
b = C

g
b ,Cr = C

b
r = C

g
r andCg = C

b
g =

C r
g the blue, red and greenIncenter Circles respectively. In

Figure 4 we see a (small) triangleA1A2A3 with its Omega
triangleHbHrHg and the three Incenter Circles, whose re-
spective meets give the twelve blue, red and green Incen-
ters.

2.1 Equations of Incenter Circles

Theorem 5 (Incenter Circles equations) In standard co-
ordinates with X= [x,y], the blue, red and green Incenter
circles, when they exist, have respective equations

Cb : Qb (X) = bb(2x+2y−1)

Cr : Qr (X) = br (2x+2y−1)

Cg : Qg (X) = bg(2x+2y−1).

10
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Proof. The derivation of these equations, using the formu-
las established above for the orthocentersHr and coloured
Incenters, is somewhat involved algebraically, although the
basic idea is simple. We show how to find the equation
of the red Incenter CircleCr , with centerHr , which four
blue Incenters and four green Incenters lie on if they ex-
ist. From the definition of a red circle, we get the equation
Qr (Hr ,X) = Kr , and then substitute the values ofHr and
Kr to get

(
br (cr−br )

∆r
− x br (ar−br )

∆r
− y
)(ar br

br cr

)( br (cr−br )
∆r

− x
br (ar−br )

∆r
− y

)

=
br (ar −br) (br − cr)

∆r

or after expansion

1
∆2

r

(
ar (br (cr −br)−∆rx)

2+ cr (br (ar −br)−∆ry)
2

+2br (br (cr −br)−∆rx)(br (ar −br)−∆ry)

)

=
br (ar −br) (br − cr)

∆r
.

This may be rewritten, using∆r = arcr −b2
r , in the form

1
∆r

(∆2
r arx

2+2∆2
r brxy+∆2

r cry
2+∆rb

2
r (ar −2br + cr)

−2∆2
r brx−2∆2

r bry) = br (ar −br)(br − cr) .

Now cancel∆r , and rearrange to get

∆rarx
2+2∆rbrxy+∆rcry

2−2∆rbrx−2∆rbry+br
(
arcr−b2

r

)
=0

or more simply

arx
2+2brxy+ cry

2−2brx−2bry+br = 0

which has the form stated in the theorem. The same kind
of calculation establishes the formulas forCb andCg. �

Note that the equations for the Incenter CirclesCb,Cr and
Cg allow them to be definedwhether or notthe correspond-
ing Incenters exist! Incenters then exist precisely as meets
of these Incenter Circles: for example the blue Incenters
Ib
0, I

b
1, I

b
2, I

b
3 are just the meets ofCr andCg, if these exist in

the field in which we work.

2.2 Tangent lines of Incenter Circles

Now we consider tangent lines to Incenter circles. Fig-
ure 5 shows the four blue Incenters ofA1A2A3, together
with the red and green Incenter Circles passing through
them, namelyCr andCg. At each of the four IncentersIb

i ,
i = 1,2,3,4 we have the tangent linestb

ri andtb
gi to the red

and green Incenter CirclesCr andCg respectively.
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Figure 5: Incenter tangent meets

Theorem 6 (Incenter tangent meets) The tangent lines
tb
r0, t

b
r1, t

b
r2, t

b
r3 to the red Incenter circleCr at the blue In-

centers form a standard quadrilateral, as do the tangent
lines tbg0, t

b
g1, t

b
g2, t

b
g3 at the green Incenter circleCg. The

same holds for the red and green Incenters, if they exist.

This implies that the meetsRb
01≡ tb

r0t
b
r1 andRb

23≡ tb
r2t

b
r3 lie

on l1 = A2A3, and are harmonic conjugates with respect to
A2 and A3. Similarly Rb

02 ≡ tb
r0t

b
r2 andRb

13 ≡ tb
r1t

b
r3 lie on

l2 = A1A3, and are harmonic conjugates with respect toA1

andA3; andRb
03 ≡ tb

r0t
b
r3 andRb

12 ≡ tb
r1t

b
r2 lie on l3 = A1A2,

and are harmonic conjugates with respect toA1 and A2.
The pointsGb

01 ≡ tb
g0t

b
g1 andGb

23 ≡ tb
g2t

b
g3 lie on l1, and are

harmonic conjugates with respect toA2 andA3. Similarly
Gb

02 ≡ tb
g0t

b
g2 andGb

13 ≡ tb
g1t

b
g3 lie on l2, and are harmonic

conjugates with respect toA1 andA3, andGb
03≡ tb

g0t
b
g3 and

Gb
12 ≡ tb

g1t
b
g2 lie on l3, and are harmonic conjugates with

respect toA1 andA2.

Proof. We prove the result for the meetsGb
i j of the green

tangent linestb
gi associated to the blue Incenters; the other

cases are similar. We find the joins of a blue IncenterIb
i

and the green OrthocenterHg to be

HgIb
0 =

〈(bg−ag)bgdb+(cg−bg)agvb+(ag−bg)bgwb :
(cg−bg)bgdb+(cg−bg)bgvb+(ag−bg)cgwb :

(bg−cg)bgvb+(bg−ag)bgwb

〉

HgIb
1 =

〈(bg−ag)bgdb− (cg−bg)agvb− (ag−bg)bgwb :
(cg−bg)bgdb− (cg−bg)bgvb− (ag−bg)cgwb :

−(bg−cg)bgvb− (bg−ag)bgwb

〉

HgIb
2 =

〈(bg−ag)bgdb+(cg−bg)agvb− (ag−bg)bgwb :
(cg−bg)bgdb+(cg−bg)bgvb− (ag−bg)cgwb :

(bg−cg)bgvb− (bg−ag)bgwb

〉

HgIb
3 =

〈(bg−ag)bgdb− (cg−bg)agvb+(ag−bg)bgwb :
(cg−bg)bgdb− (cg−bg)bgvb+(ag−bg)cgwb :

−(bg−cg)bgvb+(bg−ag)bgwb

〉
.

11
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The tangent linetb
gi is the line green perpendicular toHgIb

i

passing throughIb
i . These we may calculate to be

tb
g0=

〈(ag−bg
)

ub+bgvb+
(
ag−2bg

)
wb+dbbg−cb

(
ag−bg

)
:(

cg−bg
)

ub+
(
2bg−cg

)
vb−bgwb+dbbg+ab

(
bg−cg

)
:

bg (−vb+wb−db)

〉

tb
g1=

〈 (
ag−bg

)
ub−bgvb−

(
ag−2bg

)
wb+bgdb−cb

(
ag−bg

)
:(

cg−bg
)

ub−
(
2bg−cg

)
vb+bgwb+dbbg+ab

(
bg−cg

)
:

bg (vb−wb−db)

〉

tb
g2=

〈−
(
ag−bg

)
ub+bgvb−

(
ag−2bg

)
wb+bgdb−cb

(
ag−bg

)
:

−
(
cg−bg

)
ub+

(
2bg−cg

)
vb+bgwb+dbbg+ab

(
bg−cg

)
:

bg (−vb−wb−db)

〉

tb
g3=

〈−
(
ag−bg

)
ub−bgvb+

(
ag−2bg

)
wb+bgdb−cb

(
ag−bg

)
:

−
(
cg−bg

)
ub−

(
2bg−cg

)
vb−bgwb+dbbg+ab

(
bg−cg

)
:

bg(vb+wb−db)

〉
.

We could verify directly that these four lines form a stan-
dard quadrilateral. But we prefer to verify that the meets
of these four tangent lines agree with the following meets
with the side lines ofA1A2A3 :

Gb
01 ≡ tb

g0t
b
g1 = tb

g0l1

=
1

λ01
[(bg−cg)(−ub+ vb+ab),(ag−bg)(−ub−wb+ cb)]

Gb
23 ≡ tb

g2t
b
g3 = tb

g2l1

=
1

λ23
[(bg− cg) (ub+ vb+ab) ,(ag−bg)(ub+wb+ cb)]

Gb
02 ≡ tb

g0t
b
g2 = tb

g0l2 =
1

λ02
[0,bg(−vb+wb−db)]

Gb
13 ≡ tb

g1t
b
g3 = tb

g1l2 =
1

λ13
[0,bg(−vb+wb+db)]

Gb
03 ≡ tb

g0t
b
g3 = tb

g0l3 =
1

λ03
[bg(vb−wb+db) ,0]

Gb
12 ≡ tb

g1t
b
g2 = tb

g1l3 =
1

λ12
[bg(vb−wb−db) ,0]

where

λ01 =(cg−ag)ub+(bg− cg)vb+(bg−ag)wb

+(abbg−abcg+ cbag− cbbg)

λ23 =(ag− cg)ub+(bg− cg)vb

+(ag−bg)wb+(abbg−abcg+ cbag− cbbg)

λ02 =(bg− cg)ub+(cg−2bg)vb+bgwb

+(abcg−2abbg+2bbbg− cbbg)

λ13 =(cg−bg)ub+(cg−2bg)vb+bgwb

+(2abbg−abcg−2bbbg+ cbbg)

λ03 =(ag−bg)ub+bgvb+(ag−2bg)wb

+(abbg−2bbbg− cbag+2cbbg)

λ12 =(bg−ag)ub+bgvb+(ag−2bg)wb

+(2bbbg−abbg+ cbag−2cbbg) .

The fact thatA2,A3,Gb
01,G

b
23 form a harmonic range etc.

is an immediate consequence of a well known fact about
standard quadrilaterals in projective geometry, since we
have shown that the pointsA1,A2 and A3 are diagonal
points of the quadrilateral formed by the four green tan-
gent lines. �

Following the construction of the red lines in the introduc-
tory section on Quadrangles and quadrilaterals, we join a
pointGb

i j with the triangle pointAk opposite to the triangle

line that it lies on; giving six linesAkGb
i j :

A1Gb
01=

〈 (
ag−bg

)
(ub+wb−cb) :(

bg−cg
)
(−ub+vb+ab) :

0

〉

A1Gb
23=

〈(bg−ag
)
(ub+wb+cb) :(

bg−cg
)
(ub+vb+ab) :

0

〉

A2Gb
02=

〈 bg (−vb+wb−db) :(
bg−cg

)
ub+

(
cg−2bg

)
vb+bgwb−bgdb+ab

(
cg−bg

)
:

bg (vb−wb+db)

〉

A2Gb
13=

〈 bg (−vb+wb+db) :(
cg−bg

)
ub+

(
cg−2bg

)
vb+bgwb+bgdb+ab

(
bg−cg

)
:

bg (vb−wb−db)

〉

A3Gb
03=

〈(ag−bg
)
ub+bgvb+

(
ag−2bg

)
wb+bgdb+cb

(
bg−ag

)
:

bg (vb−wb+db) :
bg (−vb+wb−db)

〉

A3Gb
12=

〈(bg−ag
)
ub+bgvb+

(
ag−2bg

)
wb−bgdb+cb

(
ag−bg

)
:

bg (vb−wb−db) :
bg (−vb+wb+db)

〉
.

Theorem 7 (Quad points) The triples {A1Gb
23,A2Gb

13,
A3Gb

12},
{

A1Gb
23,A2Gb

02,A3Gb
03

}
,
{

A1Gb
01,A2Gb

13,A3Gb
03

}

and
{

A1Gb
01,A2Gb

02,A3Gb
12

}
of lines are concur-

rent in the respective points Qbg0,Q
b
g1,Q

b
g2 and

Qb
g3, called the blue/green quad points. The

triples
{

A1Rb
23,A2Rb

13,A3Rb
12

}
,
{

A1Rb
23,A2Rb

02,A3Rb
03

}
,{

A1Rb
01,A2Rb

13,A3Rb
03

}
and

{
A1Rb

01,A2Rb
02,A3Rb

12

}
are

also concurrent in the respective points Qb
r0,Q

b
r1,Q

b
r2 and

Qb
r3, called theblue/red quad points. Similar results hold

for the red and green Incenters, if they exist.

Proof. We verify this for the blue/green quad points: this
is a consequence of the projective geometry of the com-
plete quadrilateral we mentioned in the first section—if the
original four tangent lines are regarded as the blue lines
in Figure 6, then the quad pointsQb

g j correspond to the
red points. However we want to find explicit formulas and
check things directly. The quad pointQb

g j is naturally as-

sociated to the IncenterIb
j . After some calculation, we find

12
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that these are

Qb
g0 =

bg

λ0
[(bg− cg) (dbub− (bb− cb)vb) ,

(ag−bg) ((cb−bb)wb+ cbdb)]

Qb
g1 =

bg

λ1
[(bg− cg) ((ab−bb)vb+abdb) ,

(ag−bg) (dbub+(ab−bb)wb)]

Qb
g2 =

bg

λ2
[(cg−bg) (abwb−bbvb) ,

(bg−ag) (bbwb− cbvb)]

Qb
g3 =

bg

λ3
[(bg−cg)(−dbub+(db+bb)vb−abwb+abdb),

(bg−ag) (dbub−cbvb+(db+bb)wb−cbdb)]

where

λ0 = (bg− cg)(bgdb+(bb− cb)(ag−bg))ub

− (bg− cg)(bbbg+ cbag−2cbbg)vb

−bg(ag−bg)(bb− cb)wb+ cbbg (ag−bg)db

λ1 = (ag−bg) (bgdb+(ab−bb)(bg− cg))ub

+bg(bg− cg) (ab−bb)vb

+(ag−bg)(2abbg−abcg−bbbg)wb+abbg(bg−cg)db

λ2 = bb(bg− cg) (ag−bg)ub

+bg(bbbg+ cbag−bbcg− cbbg)vb

−bg(abbg+bbag−abcg−bbbg)wb−abcb(bg−cg)(ag−bg)

λ3 =
(
(db+bb)

(
b2

g+agcg
)
−agbg (2db+bb)−bbbgcg

)
ub

+(bg ((bg− cg)(ab−bb)+ cb(2ag−bg))− cbagcg)vb

+((db+bb)(bg−ag)bg−abag (bg− cg))wb

+b2
g(ab(db−cb)−cbdb)+bg(cbag(db+ab)−abcg(db−cb))

−agcgabcb.

We may then check directly that for exampleQb
g0 is inci-

dent withA3Gb
12 by computing

((
bg−ag

)
ub+bgvb+

(
ag−2bg

)
wb−bgdb+cb

(
ag−bg

))
·

·
(

bg
(
bg−cg

)
(dbub− (bb−cb)vb)

λ0

)

+bg (vb−wb−db)

(
bg
(
ag−bg

)
((cb−bb)wb+cbdb)

λ0

)

+bg (−vb+wb+db)

=

bg
(
ag−bg

)(
bg−cg

)( dbu2
b+(bb−ab)ubwb−bbdbub

−cbv2
b+bbvbwb+cb (ab−bb)vb

)




−
(
bg−cg

)(
bgdb+(bb−cb)

(
ag−bg

))
ub

+
(
bg−cg

)(
bbbg+cbag−2cbbg

)
vb

+bg
(
ag−bg

)
(bb−cb)wb−cbbg

(
ag−bg

)
db




= 0

sincedbu2
b + (bb−ab)ubwb − bbdbub − cbv2

b + bbvbwb +
cb (ab−bb)vb = 0 by using (2), and similarly for the other
indices. In a parallel fashion, we find that the four blue/red
quad pointsQb

r j have exactly the same formulas as the

Qb
g j, except for the replacementsag −→ ar , bg −→ br and

cg −→ cr , and similarly for the other colours red and green.
�
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Figure 6: Quad points and star lines

Now introduce theblue star line sb
j to be the join of the

corresponding blue/red quad pointQb
r j and the blue/green

quad pointQb
g j, and similarly for the other colours. There

are then four blue star linessb
0,s

b
1,s

b
2 andsb

3.
The blue star point Bi j is the meet of the two blue star
linessb

i andsb
j , that isBi j ≡ sb

i sb
j , and similarly for the other

colours.
Note that following the introductory section on Quadran-
gles and quadrilaterals, we use the correspondence be-
tween theQb

g j; and the tangent linestb
g j; and the Incenters

Ib
j to match up the indices.

Theorem 8 (Star quadrilateral) The four blue star lines
form a standard quadrilateralsb

0sb
1sb

2sb
3. This holds also for

the other colours.

Proof. The proof we have is surprisingly complicated. The
star linessb

j have quite involved formulas; for example we
find that

sb
0 = Qb0

g Qb0
r =

〈

E0dbub+F0cbvb :


bgbr

(
(bb−cb)

2+cbdb

)
·

·(agbr −bgar −agcr +cgar +bgcr −cgbr )dbub
−2cbbgbr (agbr−bgar −agcr +cgar +bgcr−cgbr )(bb−cb)dbvb

−ab (br −cr )(bg−cg)(agbr −bgar )
(
(bb−cb)

2+cbdb

)
wb

+2abcb (br −cr )(bg−cg)(agbr −bgar )(bb−cb)db




:

(
−bgbr db (agbr −bgar −agcr +cgar +bgcr −cgbr) ·

·
((

(bb−cb)
2+cbdb

)
ub−2cb (bb−cb)vb

)
)

〉

13
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whereE0 andF0 are both homogeneous polynomials of
degree 6 in the variablesai,bi andci , with the former hav-
ing 32 terms and the latter 46 terms. After some trial and
error we can present these in the somewhat pleasant, but
still mysterious, forms:

E0 =−bgbr (agcr − cgar −bgcr + cgbr) ·
·
(
b2

b+4c2
b+abcb−6bbcb

)

+bgbr (agbr −bgar)
(
b2

b+2c2
b+abcb−4bbcb

)

−2cb
(
agcgb2

r −arcrb
2
g+agarcrbg−agcgarbr

)
(bb−cb)

and

F0 =
(
agcgb2

r −arcrb
2
g+agarcrbg−agcgarbr

)
·

·
(
b2

b−4bbcb+2c2
b+abcb

)

+bgbr (agcr − cgar −bgcr + cgbr) ·
·
(
−5b2

b−4c2
b+2abbb−3abcb+10bbcb

)

−2bgbr (agbr −bgar) (bb− cb)(ab−2bb+ cb) .

We can then calculate the blue star points, for example

B03=




(
bgbrdb(agbr−bgar−agcr+cgar+bgcr−cgbr)·
·
((

(bb− cb)
2+ cbdb

)
ub−2cb(bb− cb)vb

)
)

E0dbub+F0cbvb
,0




from which clearlyB03 lies on l3. The computations are
similar for the other indices, and the other colours. �

3 Explicit examples and some conjectures

3.1 An example over Q
(√

30,
√

217,
√

741,
√

2470,
√

82297
)

We will now explore in detail a particular triangle which
has both blue, red and green Incenters; for us this is not
only an important tool for checking the consistency of our
formulas, but also a way to get a sense of the level of com-
plexity of various constructions. In fact this kind of explicit
calculation of examples is much to be encouraged in this
subject: especially as working over concrete fields, includ-
ing finite fields and explicit extension fields of the ratio-
nals, allows us to appreciate the number theoretic aspects
of our geometrical investigations. For example, finding a
triangle with blue, red and green Incenters approximately
is easy with a geometry package: finding a concrete exam-
ple and working out all the points precisely is more chal-
lenging.
In particular we were unable, despite a reasonable com-
puter search, to findany triangles with purely rational
points that have blue, red and green Incenters! We would
like to thank Michael Reynolds for his contributions to this

search. So we tentatively conjecture thatthere are no such
triangles.
In any case, to get an explicit example we use an alge-
braic extension field of the rationals; so by

√
30 we mean

an appropriate symbol in the extension fieldQ
(√

30
)

etc..
Note that although our use of square roots is entirely alge-
braic, our representation of these square roots as approx-
imate rational numbers (we prefer to avoid discussion of
“real numbers”), necessarily brings anapproximate aspect
into our diagrams.
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Figure 7: An example triangleX1X2X3

Example 1 One may check that the basic Triangle with
points

X1 ≡ [−21/59,−58/59], X2 ≡ [−13/3,2] and

X3 ≡ [35/3,−8/5]

in Q
(√

30,
√

217,
√

741,
√

2470,
√

82297
)

has both
blue, red and green Incenters. After translation
by (21/59,58/59) we obtain X̃1 = [0,0], X̃2 =
[−704/177,176/59] and X̃3 = [2128/177,−182/295].
The matrix N and its inverse M, where

N =

(
− 704

177
176
59

2128
177 − 182

295

)
=

(
α β
γ δ

)
and

M = N−1 =

( 13
704

5
56

95
264

5
42

)

respectively send[1,0] and[0,1] to X̃2 andX̃3, andX̃2 and
X̃3 to [1,0] and [0,1]. From now on we discuss only the
standard triangleA1A2A3 associated toX1X2X3; to convert
back into the original coordinates, we would multiply by N
and translate by(−21/59,−58/59). The bilinear forms in
these new standard coordinates, for the blue, red and green

14
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geometries respectively, are given by matrices

Db=N

(
1 0
0 1

)
NT =

( 774400
31329 − 7778848

156645
− 7778848

156645
113507716

783225

)
=

(
ab bb

bb cb

)

Dr =N

(
1 0
0 −1

)
NT=

( 216832
31329 −7202272

156645
− 7202272

156645
112911484

783225

)
=

(
ar br

br cr

)

Dg=N

(
0 1
1 0

)
NT =

(
− 247808

10443
2000768
52215

2000768
52215 − 774592

52215

)
=

(
ag bg

bg cg

)
.

The determinants of Db, Dr and Dg are ∆b =
97140736

87025 and
∆r =∆g =− 97140736

87025 , while the mixed traces are db =
6724
25 ,

dr =
6076
25 and dg =− 576

5 . The orthocenters ofA1A2A3 are

Hb=

[
−8825537

1019520
,−84337

25488

]
,Hr =

[
87833227
11214720

,
55537
25488

]
,

Hg =

[
7105
3894

,
377
177

]
.

Blue, red and green Incenters exist overF =
Q
(√

30,
√

217,
√

741,
√

2470,
√

82297
)

and we may
choose

ub =
1875104
31329

, vb =
14432
177

, wb =
873628
4425

ur =
17248
156645

√
82297, vr =

2464
885

√
217

wr =
196
4425

√
217

√
82297

ug =
19712
52215

√
2470, vg =

2816
295

√
30, wg =

448
295

√
741.

Then the four blue Incenters, the four red Incenters and the
four green Incenters ofA1A2A3 respectively are

Ib
0 =

[
−761

590
,
220
413

]
Ib
1 =

[
5327

10384
,− 25

118

]

Ib
2 =

[
761
2112

,
25
168

]
Ib
3 =

[
5327
270

,
220
27

]

I r
0 =




1
22429440(4032553

√
217−20461

√
217

√
82297

+210343
√

82297−76618507),
1

50976(2923
√

217−7
√

217
√

82297
+133

√
82297−30049)




I r
1 =




1
22429440(20461

√
217

√
82297−4032553

√
217

+210343
√

82297−76618507),
1

50976(7
√

217
√

82297−2923
√

217
+133

√
82297−30049)




I r
2 =




1
22429440(4032553

√
217+20461

√
217

√
82297

−210343
√

82297−76618507),
1

50976(7
√

217
√

82297+2923
√

217
−133

√
82297−30049)




I r
3 =




−1
22429440(4032553

√
217+20461

√
217

√
82297

+210343
√

82297+76618507),
−1

50976(7
√

217
√

82297−2923
√

217
−133

√
82297−30049)




Ig
0 =

[ 203
7788

√
741− 247

3894

√
30+ 35

3894

√
2470− 3211

7788,
13

1239

√
2470− 29

177

√
30+ 20

1239

√
741− 100

177

]

Ig
1 =

[ 247
3894

√
30− 203

7788

√
741+ 35

3894

√
2470− 3211

7788,
29
177

√
30+ 13

1239

√
2470− 20

1239

√
741− 100

177

]

Ig
2 =

[
− 247

3894

√
30− 203

7788

√
741− 35

3894

√
2470− 3211

7788,

− 29
177

√
30− 13

1239

√
2470− 20

1239

√
741− 100

177

]

Ig
3 =

[ 247
3894

√
30+ 203

7788

√
741− 35

3894

√
2470− 3211

7788,
29
177

√
30− 13

1239

√
2470+ 20

1239

√
741− 100

177

]
.

The Incenter circle quadrances are

Kb =
18154129609

28196100
, Kr =−11681819191

28196100

Kg =
1182272
10443

.

The blue, red and green Incenter Circles themselves have
respective equations

4840000x2−19447120xy+28376929y2

+19447120x+19447120y−9723560= 0

19360x2−62524xy+12103y2

+62524x+62524y−31262= 0

193600x2−2572240xy+4032553y2

+2572240x+2572240y−1286120= 0.

The four tangent lines tb
g j are

tb
g0 = 〈1570 :−11823 : 8323〉
tb
g1 = 〈−127512 :−33761 : 58261〉
tb
g2 = 〈−18216 :−11823 : 8323〉
tb
g3 = 〈−1570 : 4823 : 8323〉.
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The meets of these four tangent lines agree with the follow-
ing meets with the side lines ofA1A2A3 :

Gb
01 ≡ tb

g0t
b
g1 = tb

g0l1 =

[
3500

13393
,

9893
13393

]

Gb
23 ≡ tb

g2t
b
g3 = tb

g2l1 =

[
−3500

6393
,
9893
6393

]

Gb
02 ≡ tb

g0t
b
g2 = tb

g0l2 =

[
0,

1189
1689

]

Gb
13 ≡ tb

g1t
b
g3 = tb

g1l2 =

[
0,

1189
689

]

Gb
03 ≡ tb

g0t
b
g3 = tb

g0l3 =

[
−8323

1570
,0

]

Gb
12 ≡ tb

g1t
b
g2 = tb

g1l3 =

[
8323

18216
,0

]
.

The blue/red quad points Qbr j associated to Ib0, I
b
1, I

b
2, I

b
3 re-

spectively are

Qb
r0 =

[
18005811535
21082889161

,−12129669559
21082889161

]

Qb
r1 =

[
−18005811535

9330605209
,
12129669559
9330605209

]

Qb
r2 =

[
18005811535
14928733909

,
12129669559
14928733909

]

Qb
r3 =

[
18005811535
45342228279

,
12129669559
45342228279

]
.

The respective blue/green quad points Qb
g j are

Qb
g0 =

[
−4161500

2654777
,
11762777
2654777

]

Qb
g1 =

[
− 4161500

12547777
,
11762777
12547777

]

Qb
g2 =

[
4161500

10977777
,
11762777
10977777

]

Qb
g3 =

[
4161500

20870777
,
11762777
20870777

]
.

The blue star lines are then

sb
0 = Qb

r0Qb
g0 =

〈1796063533088 : 868804574039 :−1034074074039〉
sb
1 =

〈272084614990 : 1199343574039 :−1034074074039〉
sb
2 =

〈272084614990 : 868804574039 :−1034074074039〉
sb
3 =

〈1796063533088: 1199343574039:−1034074074039〉

and they meet at the blue star points

B01 =

[
165269500000
927258959049

,
761989459049
927258959049

]

B23 =

[
−165269500000

596719959049
,
761989459049
596719959049

]

B02 =

[
0,

1034074074039
868804574039

]
,B13 =

[
0,

1034074074039
1199343574039

]

B03 =

[
1034074074039
1796063533088

,0

]
,B12 =

[
1034074074039
272084614990

,0

]
.

Note the pleasant rationality of the previous objects.

3.2 An example over F13

Now we look at an example over a finite field.

Theorem 9 (Null quadrances incenters) Suppose that
the fieldF contains an element i, where i2 = −1, and
the characteristic ofF is not2. If

Kb ≡
bb (ab−bb)(bb− cb)

∆b
= Kr ≡

br (ar −br)(br − cr)

∆r

= Kg ≡
bg (ag−bg) (bg− cg)

∆g
= 0

then the standard TriangleA1A2A3 has four distinct blue,
red and green Incenters.

Proof. If Kb = 0 then from the definition of the blue incen-
ter circleCb, which isQb (Hb,X) = Kb, Cb is a null circle,
so it is a product of lines. Similarly, ifKr = 0 thenCr is a
null circle, and ifKg = 0 thenCg is a null circle. These
null lines have distinct direction vectors(1,±i) ,(1,±1)
and (1,0) ,(0,1) respectively, and they are never parallel
since char(F) 6= 2, so i 6= ±1. Therefore, any two null cir-
cles meet in exactly four points. �

Here is an example found by Michael Reynolds [6] which
illustrates explicitly the above theorem.

Example 2 The triangle X1X2X3 with points X1 ≡
[3,4] ,X2 ≡ [1,9] and X3 ≡ [12,3] in F13 has four blue, red
and green Incenters. InF13 the squares are0,1,3,4,9,10
and12, and in particular−1= 12= 52 is a square. After
translation by(3,4) we obtainX̃1 = [0,0] , X̃2 = [11,5] and
X̃3 = [9,12] . The matrix N and its inverse M

N =

(
11 5
9 12

)
, M = N−1 =

(
10 11
12 7

)

send[1,0] and [0,1] to X̃2 andX̃3, andX̃2 andX̃3 to [1,0]
and[0,1] respectively. The bilinear form in these new stan-
dard coordinates for the blue, red and green geometries
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respectively are

Db = N

(
1 0
0 1

)
NT =

(
3 3
3 4

)

Dr = N

(
1 0
0 −1

)
NT =

(
5 0
0 2

)

Dg = N

(
0 1
1 0

)
NT =

(
6 8
8 8

)
.

We can see immediately that Kb = Kr = Kg = 0 from the
definitions

Qb (Hb, Iir ) =
bb(ab−bb)(bb− cb)

∆b
≡ Kb

Qr (Hr , Iib) =
br (ar −br)(br − cr)

∆r
≡ Kr

Qg (Hg, Iir ) =
bg(ag−bg)(bg− cg)

∆g
≡ Kg, i = 0,1,2,3.

The four blue, red and green Incenters respectively are

Ib
0 = [4,8] , Ib

1 = [3,6] , Ib
2 = [8,10] , Ib

3 = [11,4]

I r
0 = [10,9] , I r

1 = [8,2] , I r
2 = [6,5] , I r

3 = [4,12]

Ig
0 = [9,8] , Ig

1 = [5,3] , Ig
2 = [12,11] , Ig

3 = [2,4]

and the blue, red and green Incenter Circles respectively
have equations

Cb : (y− x+1)(x+3y−1)= 0

Cr : (x−6y)(x+6y) = 0

Cg : (x+2y−2)(x+5y−5) = 0.

From Michael Reynolds’ computer investigations, we ten-
tatively conjecture that for finite fieldsFp where p ≡
3mod4, there areno triangles which have both blue, red
and green Incenters, and for finite fieldsFp where p ≡
1mod4, blue, red and green Incenters exists precisely
whenKb = Kr = Kg = 0, as in the above example.

4 Spieker circles and Nagel circles

Now we recall from [5] that the central dilationδ−1/2 about
the centroid takes the Orthocenter to the Circumcenter, and
the Incenters to theSpieker centers. In standard coordi-
nates

δ−1/2([x,y]) = (1/2)[1− x,1− y].

The inverse central dilationδ−2 takes the Orthocenter to
the De Longchamps point X20, and takes the Incenters to
theNagel points. In standard coordinates

δ−2 ([x,y]) = [1−2x,1−2y].

Theorem 10 (Spieker circles) If a triangle has four blue
Incenters Ib0, I

b
1, I

b
2 and Ib3, then the four blue Spieker cen-

ters all lie both on a red Spieker circle with center the red
Circumcenter Cr , and on a green Spieker circle with center
the green Circumcenter Cg. If both say blue and red Incen-
ters exist, then all 8 blue and red Spieker points lie on the
same green circle. The same holds for the other colours.

Proof. We see that if we use the central dilation formula
to transform Incenter circles centred at the Orthocenters,
we get the Spieker circles centred at Circumcenters, so this
theorem is a direct consequence of the Incenter circles the-
orem and the fact that a dilation preserves circles of any
colour. �

Here are the formulas for the coloured Circumcenters in
standard coordinates:

Cb =
1

2∆b
[cb (ab−bb) ,ab(cb−bb)]

Cr =
1

2∆r
[cr (ar −br) ,ar (cr −br)]

Cg =
1

2∆g
[cg (ag−bg) ,ag(cg−bg)] .
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C
C

b

g
r

A A

1

2 3

4

4

8

8

Figure 8: Blue, red and green Speiker circles

Theorem 11 (Nagel circles) If a triangle has four blue In-
centers Ib0, I

b
1, I

b
2 and Ib3, then the four blue Nagel centers

all lie both on a red Nagel circle with center the red De
Longchamps point X20r , and on a green Nagel circle with
center the green De Longchamps point X20g. If both say
blue and red Incenters exist, then all 8 blue and red Nagel
points lie on the same green circle. The same holds for the
other colours.

Proof. In the same fashion as in the previous theorem, if
we use the inverse central dilationδ−2 to transform Incen-
ter circles centred at the Orthocenters, we get the Nagel
circles centred at De Longchamps points. �
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Figure 9: Blue, red and green Nagel circles

Here are the formulas for the blue, red and green De
Longchamps points:

X20b =
1

∆b

[
b2

b−2bbcb+abcb,b
2
b−2abbb+abcb

]

X20r =
1
∆r

[
b2

r −2brcr +arcr ,b
2
r −2arbr +arcr

]

X20g =
1

∆g

[
b2

g−2bgcg+agcg,b
2
g−2agbg+agcg

]
.

In Figure 10 we see the relations between the
three coloured Orthocenters, Circumcenters and De
Longchamps points. The lines joining these are the three
coloured Euler lines. Note that the centroids of the trian-
gles of Orthocenters, Circumcenters and De Longchamps
points all agree with the centroidG of the original triangle
A1A2A3. We conclude with a simple observation about De
Longchamps points.
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b
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g

g
r

r

Figure 10:Blue, red, green Orthocenters, Circumcenters
and De Longchamps points

Theorem 12 (Orthocenters as midpoints) For any tri-
angle, a coloured orthocenter H is the midpoint of the two
De Longchamps points X20 of the other two colours.

Proof. This follows by considering the action of the central
dilation δ−2 which takes the circumcenterCi to the ortho-
centerHi , and the orthocenterHi to the De Longchamps
pointX20i . �
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