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A NOTE ONTHE WC-MAPPINGS

Sinopsis

Let X be a topological T, space. By wX we denote the Wallman compactifi-
cation of X. A mapping [: X—Y is a we-mapping if [ has an unique closed ex-
tension wf : wX —-wY.

The main purpose of this paper is to give some external and internal charac-
terizations of the we-mappings. The main theorem establishes that if Y is a Ha-
usdorff Frechet space then f is a we-mapping iff [ is an uw-mapping (Theorem
1.13)

0. Introduction

In the present paper we deal with T, topological spaces and with continuous on-
to mappings f: X—Y.

By CIA or by Clx A the closure of a subset A of a space X is denoted. A space X is
quasi-compact [2 : 177] if each open cover of X has a finite subcover.

For each T, space X there is the Wallman compactification wX ([1] or [2]). The
Wallman compactification wX of a T, space X is the union of the space X and a fa-
mily Fy(X) of all free ultrafilters consisting of the closed subset of X. For each
open U € X we define

U*=UU{ 7€ Fy(X):FE U forsome F €, 7} € wX. (1)
Similarly, for each closed subset F of X we define
Fe=FU{ZF€ FX):Fe 7)< wX (2)
It is easy to see that [2 :231]:
(UUV)* =U* U v+ and (UNV)* = U* NV, 3)
(FU Gy =Pyl Ga and (LG =B T, (@)
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From (3) and (4) it follovs that the family {U* : U open in X} is a base for open
sets on wX and {F : F closed in X} is a base for closed sets on wX. By virtue of (1)
and (2) it folows that if F C X is closed then Cl,,xF = F.. Moreover, if U is open and
F is closed in X such that F € U then F. € U* i.e. Cl,,xF € U*. The dense embed-
ding X in wX we denote by wy : X—wX.

Let f : X—Y be a continuous mapping. We say that a mapping f: X—Y is a w-
-mapping (uw-mapping) if f has a (an unique) continuous extension wf : wX —wY.
It is khown that there exist the mappings f : X—Y without w-extensions [3].

1. A characterization of the WC-mappings

The notion of the we-mappings was introduced by Harris [4].

A mapping f : X—Y is called a we-mapping if f is an uw-mapping with closed ex-
tension wf [4].

This definition is external since the Wallman compactification is used. The
question of an internal characterizations was raised by Harris [3].

The main purpose of this Section is to give an internal characterization of wc-
-mappings for some classes of spaces. The question of an internal characterization
in the general case remains open.

We start with the following lemma.

1.1. LEMMA. An uw-mapping f:X—Y is a we-mapping iff wf(Fs) is closed in
wY for each closed subset F C X.

Proof. Necessity. For each closed F € X we have that Cl xF=F.. If f : X—Y is
the we-mapping, then wf : wX —wY is closed. Thus, wf(F.) is closed in wY.

Sufficiency. Suppose that each wf(F,) is closed an let us prove that wf is closed.
Let A be a closed subset of wX. There is a family {F, : F, is closed in X, p € M} such
that A= N{F,., p€ M}. Clearly, wf(A) S N {wf(F,:) :un € M}. Let us prove that
wf(A) 2 N {wf(F) :pe M}. For each ye& N{wk(F,):pe M} we infer that
(wb)~'(y) N F,- is non-empty. Since (wf)~! (y) is quasi-compact, we have that the in-
tersection N {(wf)~'"(y) N Fp:p€ M} is non-empty. Thus, there is a point
x € (W)~ '(y) such that y € N {F,- : p € M} = A. This means that y € wf(A). Finally,
we have that wf(A) = N {wf(F,.) : p € M}. Since each wf(F,.) is closed, we infer that
wf(A) is closed. The proof is completed.

In the sequel we use the following relations. From the continuity of wf it fol-
lows

wf(Fs) € Cl,,y Wi(F) = Clvf(F), F is closed in X. (1)
On the other hand we have
CIy f(F) = Cl f(F) N Y € Cl f(F). (2)
The inclusion f(F) € Clyf(F) gives
Cl,y f(F) € Cl,y (Cly f(F)). (3)

Similarly from (2) we obtain

Cl\\Y(ClYf(F)) g C]\\Yf(F) (4)
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Finally we have
Cl,y f(F) = Cl,.y (Cly f(F)). (3)
From (1) and the last relation it follows
wi(F.) € Cl v (Cl f(F)), F is closed in X. (6)

1.2. LEMMA. An uw-mapping f : X—Y is a we-mapping iff for each closed set
F € X it follows wf(Fx) = Cl,,y (CIy£(F)) = (Cly f(F))x.

Proof. Apply Lemma 1.1. and the relations (1) — (6).

1.3. COROLLARY. If f : X—Y is closed then f is a wc-mapping.

Proof. It is sufficient to prove that wi(F.) = (f(F))« for each closed F € X. From
(1) it follows that wf(F+) € (f(F)). Clearly, {(F) € wf(F.) € (f(F))x. We now use the
condition (KC) [5].

(KC) If A is a closed subset of Y and KEwY is quasi-compact with
A C K C Cl,yA, then K is closed.

If we prove that wY satisfies the condition (KC) then Corollary 1.3. is proved
since wi(Fy) is quasi-compact.

1.4. LEMMA. The Wallman compactification wX of a T, space X satisfies the
condition (KC).

Proof. Let us note that Lemma follows from Theorem 4.1. — 4.5. of [5]. We give
the proof based on the properties of the Wallman compactification. Suppose that
we have a closed subset A of X and quasi-compact subset K such that
AC KCClxA. If we suppose that K is not closed then there exists a point
y € CluxA \ K. For each point k € K there is an open set U} [2:232] such that
k € U} and y ¢ U}. From the compactness of K it follows that there is a finite sub-
family {Ug,, ..., Uy} which covers K. Since (U,, U ... U U )*=(Uy U ... U UJ)
[2 :231] we infer that AS U, U ... U U,_. This means that Cl,xAS (U, U ... U
Uy,)*. This is impossible since y & (U, U ... U U, )*. The proof is completed.

If f: X—Y is a mapping between the T, spacesX and Y and U, V are open sub-
sets of X, Y respectively, then U < {V if for each closed A C U we have Clyf(A) C V.
A w-cover of a space is a finite open cover. If v is a w-cover of Y and u a w-cover of
X, then p < v will be writen if for each U € u there is a V € v with U < V. The
mappings f is a WO-mapping if for each w-cover v of Y there is a w-cover p of X
such that p < v.

1.5. LEMMA. [3]. Every WO-mapping has an unique w-extension and the exten-
sion is also WO-mapping.

1.6. LEMMA. [3]. Every wc-mapping is WO-mapping.

1.7. EXAMPLE. [3]. There is a WO-mapping between compact spaces which is
not closed i.e. which is not we-mapping.

1.8. LEMMA. An uw-mapping f:X—Y is a wemapping iff for each closed
F € X and each y € Clyf(F) there is a x € F« such that wf(x) =y.

Proof. Sufficiency. In this case we have Clyf(F) € wf(F.) € Cl,yCly f(F) for each
closed F € X. By (KC) it follows that wf(F:) = Cl,yClyf(F). Apply Lemma 1.2.

Necessity. If f:X—Y is a wcmapping then by Lemma 1.2. we have
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wf(F.) = (Cly f(F))«. Since Clf(F) € (Cl, f(F)). we infer that for each y &€ Cly{(F)
there is a point x € F. such that wf(x) = y. The proof is completed.

1.9. REMARK. If f is closed, then f(F) is closed and Cly f(F) = f(F). Thus by Lem-
ma 1.8. wf is closed since for each y € Clx f(F) = {(F) there is a point x € F C F,
such that f(x) =y i.e. wf(x) =

1.10. LEMMA. A mapping f : X—Y is a we-mapping iff f is a WO-mapping (uw-
-mapping) with the following property:

(W) For each closed F € X and each point x € CIyf(F) \ f(F) there is a point
y € Fi \ F such that wf(x) =

Proof. Necessity. If f is a we-mapping then f is the WO-mapping (Lemma 1.6.)
and uw-mapping. The condition (W) holds from Lemma 1.8.

Sufficiency. If [ is the WO (uw)-mapping, then f has an unique extension wf. Mo-
reover, from the condition (W) and Lemma 1.8. it follows that f is the we-mapping.
The proof is completed.

If the space Y in Lemma 1.10. is regular, then we have

1.11. LEMMA. A mapping f: X—Y, Y regular, is a we-mapping iff f is a WO-
-mapping.

Proof. Necessity. If f is the wc-mapping, then f is the WO-mapping, (Lemma
1.6.).

Sufficiency. Let y € Clyf(F) \ f(F) and let I ={U, :y € U, and U, is open}. Consi-
der a centred family (~!'(¥) ={f~'(U,): U, € U}. Clearly, V.NF + @& for each
V.ef~'(l,). Let ® be a maximal centred family which contains a family
{Cle :V, € f=1 (U)}. Clearly, ® € F.«. For each V € ® we have VN ClxV, + & and
f(v)y N ClyU + &, where V, = {='(U,). If we suppose that v € Cly f(V) then there is
a 0, such that ye 0, C ClYO C Y \ Clyf(V). This means that Clxf~'(0) NV = &.
This is impossible since V N U, is non-empty for each U, € .. The proof is comple-
ted.

From the proof of the sufficient part of Lemma 1.11. in fact we have.

1.12. COROLLARY. If Y is regular and if f : X—Y is an w-mapping, then wf is
closed. Moreover, if f is an uw-mapping, then f is a we-mapping.

Let us recal that the first part of this Corollary was proved in the paper [10].

A topological space X is called a Fréchet space if for each A S X and each
x € ClxA there exists a sequence X, X,... of points of A converging to x [2:78].

1.13. THEOREM. Let Y be a Fréchet Hausdorff space. A mapping f : X—Yisa
(closed) we-mapping iff f is an (uw-mapping) WO-mapping.

Proof. Necessity folows from the definition of a we-mapping and Lemma 1.6.

Sufficiency. We apply Lemma 1.10. Let F be a closed subset of X and let y be
any point of Clyf(F) \ [(F). From the assumption that Y is a Fréchet space it fol-
lows that there is a sequence y,, y,,... of points of {(F) converging toy. Let x, € F,
n € N, such that f(x,) = y,. Now we prowe that the sets G, = {x,, : m = n} are clo-
sed, n € N. Suppose that x € ClxG, \ G,.. Clearly, x € F and f(x) + y. Let U,V be a
pair of disjoint open sets about y and f(x). There is a neighbourhood W of x such
that f(W) € V. This means that V contains infinitely many points f(x,). On the ot-
her hand the set U contains the points f(x,) = v, for all n = ng. This is impossible
since U NV = &. Thus each G, is closed. Let A be a maximal centred family which
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contains a family {G, : n € N}. It is obviosly that wf (4 ) = y since y € Clyf(A) for
each A € A. The proof is completed.

1.14. COROLLARY. Let Y be a first-countable Hausdorff space. Then a mapping
f:X—Y is a (closed mapping) we-mapping iff f is (an uw-mapping) a WO-mapping.

A space is said to be an E;-space [11] if every its point is a countable intersecti-
on of closed neighbourhoods of that point. Clearly, each E,-space is a Hausdorff
space.

We close this Section with the following theorem.

1.15. THEOREM. Let Y be a countably compact E|-space. A mapping f : X—Y
is a we-mapping iff f is an uw-mapping. Moreover, every w-mapping f : X —Y has a
closed extension wf : wX —wY.

Proof. Necessity follows from the definition of the wc-mapping.

Sufficiency. Let F be a closed subset of X and let y be any point of Cly f(F) \ f(F).
There is a family U/ = (U, : n € N} of open sets U, such that y= N{ClyU, : n € N}.
There exists x € Fy« \ F which contains a family {Clxf~'(U,) : n € N}. For each G € x
we have Clyf(G) N ClyU, + &, n € N. Since Clyf(F) is countably compact we infer
that N {CIyf(F) N ClyU, : n € N} = Clyf(F) N {ClyU, : n € N} = Clyf(F) N ly} is
non-empty. This means that y € Clyf(F) for each G € x. Thus wf(x) =y. The proof
is completed.
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SADRZAJ

Klasu we-preslikavanja uveo je Harris u radu [4] i postavio pitanje interne defi-
nicije tih preslikavanja tj. definicije u terminima prostora X i Y. To je interesan-
tno zato §to su we-preslikavanja definirana tako da wf : wX —wY bude zatvoreno.

U radu su dane neke externe i interne karakterizacije we-preslikavanja. Nuzni i
dovoljni uvjeti da bi f : X—Y bilo we-preslikavanje dani su za T, Fréchetov prostor
Y (Teorem 1.13.) i E, prebrojivo kompaktan prostor (Teorem 1.15.).
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