Abstract. The local connectedness of inverse limit spaces was studied in many papers ([2], [5], [7], [8], [11]).

The main purpose of the present paper is to prove the following theorem.

THEOREM 1.8 Let $X = \{X_\alpha, f_{\alpha\beta} \}$ be an inverse system such that the projections $f_{\alpha\beta}$ are irreducible fully closed mappings. In order that $\lim X$ be locally connected it is necessary that each X_α be locally connected and it is sufficient that each X_α be a locally connected space without local cut points.

Key words and phrases: Locally connected spaces, closed irreducible mappings, inverse limit.

Mathematics subject classification (1980): Primary 54B25; Secondary 54D05.

0. Introduction

Introduction contains some basic definitions and notations.

0.1. Let Y be a subset of a space X. By $\text{Cl}_X Y$ or $\text{Cl} Y$ is denoted the closure of Y in X. The boundary of the subset $A \subseteq X$ is denoted by $\text{Fr}(A)$.

0.2. The symbols \mathbb{N} and \mathbb{R} denote the sets of positive integers and real numbers.

0.3. If A is a well-ordered set, then $\text{cf}(A)$ denotes the smallest ordinal number which is cofinal in A.

0.4. If A is a well-ordered set, then $|A|$ denotes the cardinality of A.

0.5. If ω and κ are cardinal numbers, then ω_κ denotes the cardinality of the set of all functions from κ to ω.

0.6. By $X = \{X_\alpha, f_{\alpha\beta}, A\}$ is denoted an inverse system and by $\lim X$ its limit.

0.7. An inverse system $X = \{X_\alpha, f_{\alpha\beta}, A\}$ is σ-directed if A is σ-directed, i.e., for each sequence $a_1, a_2, \ldots, a_n, \ldots$ of the members of A there is an $a \in A$ such that $a \geq a_i$, $i = 1, 2, \ldots$.

0.8. A topological space X is called pseudocompact [4:263] if X is completely regular and every real-valued function defined on X is bounded.

0.9. A space X is κ-compact if each open cover of X of cardinality $\leq \kappa$ has a finite subcover.

1. Local connectedness of the inverse limit space

In the sequel we use the following characterization of local connectedness.

LEMMA 1.1 ([10:II, 242, Teorema 1.]). A space X is locally connected if and only if each family $\{A_t : t \in T\}$ of subsets A_t of X has the property

\[
\text{Fr}(\bigcup \{A_t : t \in T\}) \subseteq \text{Cl}(\bigcup \{\text{Fr}A_t : t \in T\})
\]

(1)
REMARK 1.2 a) In the paper [9] it was proved that a non-locally connected space X contains a family $\{A_t: t \in T\}$ of open disjoint subsets A_t of X for which (1) is not satisfied.

b) If X is regular, then the family $\{A_t\}$ may be chosen so that $X - \text{Cl}(\bigcup\{A_t: t \in T\})$ is non-empty. Namely, if X is not locally connected at some point p, then there are neighbourhoods U and V such that $x \in \text{Cl}(U \cup \bigcup V)$ and V (as a subspace) is not locally connected at p. Now apply a) on the subspace V.

We start with the following theorem.

THEOREM 1.3 Let $X = \{X_\alpha, f_{\alpha \beta}, A\}$ be an inverse system such that the following condition (FR) is satisfied:

\[(FR) \text{ For each open subset } U \subseteq \text{lim} X \text{ and each } \alpha \in A \text{ it follows } f_\alpha(\text{Fr}(U)) = \text{Fr}(f_\alpha(U))\]

If the spaces $X_\alpha, \alpha \in A$, are locally connected, then $\text{lim} X$ is locally connected.

Proof. Suppose that $\text{lim} X$ is not locally connected. By virtue of Remark 1.2, it follows that there exists an infinite family $\{A_t: t \in T\}$ of open subsets A_t of $\text{lim} X$ such that there is a point $x \in \text{Fr}(\bigcup\{A_t: t \in T\}) - \text{Cl}(\bigcup\{\text{Fr}A_t: t \in T\})$. This means that there is an open set $U_x \subseteq X_\alpha$ such that $\text{Fr}(U_x) = \text{Fr}(x)$ and $f_{\alpha \beta}(U_x) \subseteq \text{Cl}(\bigcup\{\text{Fr}A_t: t \in T\})$. Clearly, $U_x = \text{Fr}(U_x) \subseteq \text{Fr}(\bigcup\{A_t: t \in T\})$. On the other hand from $x \in \text{Fr}(\bigcup\{A_t: t \in T\})$ and (FR) it follows that $f_\alpha(x) \in \text{Fr}(\bigcup\{f_\alpha(A_t): t \in T\})$. This means that the family $\{f_\alpha(A_t): t \in T\}$ has the property $\text{Fr}(\bigcup\{f_\alpha(A_t): t \in T\}) \subseteq \text{Cl}(\bigcup\{\text{Fr}f_\alpha(A_t): t \in T\})$. By Lemma 1.1, this is impossible since X_α is locally connected. The proof is completed.

If M is connected set and p is point of M such that $M - p$ is not connected, then p will be called a cut point of M [20:41]. A point $x \in X$ is said to be a local cut point of X if for each neighbourhood U of x there exists a neighbourhood V of x, $x \in V \subset U$, such that x is a cut point of V [15]. Each $\mathbb{R}^n, n \geq 2$, is a space without local cut points. Each point of real line \mathbb{R} is a local cut point. The Niemytzki plane is an example of a completely regular not normal space [4:62] without local cut points.

We say that a mapping $f: X \to Y$ onto Y is irreducible if for each non-empty open subset $U \subseteq X$ the set $f^*(U) = \{y : y \in Y, f^{-1}(y) \subseteq U\}$ is non-empty.

The notion of fully closed mapping was introduced by V.V. Fedorčuk in [6].

A mapping $f: X \to Y$ is said to be fully closed if for each $y \in Y$ and each finite open cover $\{U_1, \ldots, U_n\}$ of $f^{-1}(y)$ the set $\{y\} \cup f^*(U_1) \cup \cdots \cup f^*(U_n)$ is a neighbourhood of y.

The space obtained by identifying to a point a closed subset A of a space X is denoted by X/A [4:127]. The natural mapping $q: X \to X/A$ is a simple fully closed mapping. Each fully closed mapping is a limit of an inverse system of simple fully closed mappings [6:Teorema 2.1].

LEMMA 1.4 Each fully closed mapping $f: X \to Y$ is closed.

Proof. Let y be any point of Y and let U be any open set such that $f^{-1}(y) \subseteq U$. By the definition of fully closed mapping we infer that $V = \{y\} \cup f^*(U)$ is a neighbourhood of y. Now we have $V = f^*(U)$ since $f^{-1}(y) \subseteq U$. This means that V is an open set about y such that $f^{-1}(V) \subseteq U$. By [4:Theorem 1.4.13] it follows that f is closed.

LEMMA 1.5 [1:356]. If $f: X \to Y$ is closed and irreducible and if U is an open subset of X, then $f(\text{Cl}(U)) = \text{Cl}(f(U))$.

LEMMA 1.6 [19:70]. Let X be locally connected. If $f: X \to Y$ is closed and onto, then Y is locally connected.
LEMMA 1.7 Let \(f : X \to Y \) be a fully closed irreducible mapping onto a space \(Y \) without local cut points. For each open \(U \subseteq X \) one has \(f(\text{Fr}U) = \text{Fr}(f^*(U)) \).

Proof. By virtue of Lemmas 1.4 and 1.5 we have \(f(\text{Fr}U) \subseteq \text{Fr}(f^*(U)) \) since \(f \) is closed and irreducible mapping. In order to complete the proof it suffices to prove that \(f(\text{Fr}U) \supseteq \text{Fr}(f^*(U)) \). If \(y \in \text{Fr}(f^*(U)) = \text{Cl}(f^*(U)) - f^*(U) \), then by Lemma 1.5 it follows that there is a \(x \in \text{CIU} \) such that \(y = f(x) \). On the other hand from the relation \(y \notin f^*(U) \) it follows that \(f^{-1}(y) \not\subseteq U \). If we suppose that the set \(f^{-1}(y) \cap \text{Fr}U \) is empty, then we have that \(f^{-1}(y) = (f^{-1}(y) \cap U) \cup (f^{-1}(y) \cap (X \setminus \text{CIU})) \). The sets \(f^{-1}(y) \cap U \) and \(f^{-1}(y) \cap (X \setminus \text{CIU}) \) are open and disjoint. Now, we have the finite open cover \(\{U, V\} \), \(V = X \setminus \text{CIU} \), of \(f^{-1}(y) \). Thus, \(W = \{y\} \cup f^*(U) \cup f^*(V) \) is a neighborhood of \(y \). Moreover \(f^*(U) \) and \(f^*(V) \) are non-empty since \(f \) is irreducible. From the fact that \(U \) and \(V \) are disjoint it follows that \(f(U) \) and \(f(V) \) are disjoint open sets. Thus, the set \(W - \{y\} \) is disconnected. This means that \(f(\text{Fr}U) \cap \text{Fr}(f^*(V)) \) is non-empty. The proof is completed.

The following theorem is the main theorem of this Section.

THEOREM 1.8 Let \(X = \{X_\alpha, f_\alpha \beta, A\} \) be an inverse system such that the projections \(f_\alpha \beta \) are irreducible fully closed mappings. In order that \(\lim X \) be locally connected it is necessary that each \(X_\alpha \) be locally connected and it is sufficient that each \(X_\alpha \) be a locally connected spaces without local cut points.

Sufficiency. Suppose that \(\lim X \) is not locally connected. By Remark 1.2b) it follows that there exists an infinite family \(\{A_\alpha : \alpha \in T\} \) of open subsets \(A_\alpha \) of \(\text{lim} X \) such that there is a point \(x \in \text{Fr}(\bigcup\{A_\alpha : \alpha \in T\}) \cap \text{Cl}(\bigcup\{\text{Fr}A_\alpha : \alpha \in T\}) \). This means that there is an open \(U_\alpha \subseteq X_\alpha \) such that \(f_\alpha^{-1}(U_\alpha) \cap \bigcup\{\text{Fr}A_\alpha : \alpha \in T\} \) is the empty set. Clearly, \((U_\alpha) \cap f_\alpha^{-1}(\bigcup\{\text{Fr}A_\alpha : \alpha \in T\}) \) is also empty set. By 1.7 we have \(U_\alpha \cap \bigcup\{\text{Fr}A_\alpha : \alpha \in T\} = \emptyset \). We infer that \(f_\alpha(x) \notin \text{Cl}(\bigcup\{\text{Fr}A_\alpha : \alpha \in T\}) \). On the other hand, for each neighbourhood \(V_\alpha \) of \(f_\alpha(x) \) and for \(U = f_\alpha^{-1}(V_\alpha) \), from \(x \in \text{Fr}(\bigcup\{A_\alpha : \alpha \in T\}) \) it follows that each neighbourhood \(U \) of \(x \) meets \(\text{Int}(\bigcup\{A_\alpha : \alpha \in T\}) = \emptyset \). We define \(W = U \cap V \). Clearly, \(W \) is a neighbourhood of \(f_\alpha(x) \) which contains \(f_\alpha(V) \). Furthermore, \(f_\alpha(V) \) meets some \(f_\alpha(A_\beta) \), i.e., \(f_\alpha(V) \) meets \(\bigcap\{f_\alpha(A_\beta) : \beta \in T\} \). Therefore, \(f_\alpha(V) \) is non-empty, we infer that \(V \) meets \(X_\alpha \setminus \bigcup\{f_\alpha(A_\beta) : \beta \in T\} \). Since \(f_\alpha(V) \) is non-empty, we infer that \(V \) meets \(X_\alpha \setminus \bigcup\{f_\alpha(A_\beta) : \beta \in T\} \). This means that \(f_\alpha(x) \in \text{Fr}(\bigcup\{f_\alpha(A_\beta) : \beta \in T\}) \). Finally, \(f_\alpha(x) \in \text{Fr}(\bigcup\{f_\alpha(A_\beta) : \beta \in T\}) \cap \text{Cl}(\bigcup\{\text{Fr}(f_\alpha(A_\beta)) : \beta \in T\}) \). This is impossible since \(Y \) has no local cut points. The proof is completed.

THEOREM 1.9 Let \(X = \{X_\alpha, f_\alpha \beta, A\} \) be an inverse system with irreducible bonding mappings \(f_\alpha \beta \). Then the projections \(f_\alpha : \text{lim} X \to X_\alpha \), \(\alpha \in A \), are irreducible.

Proof. In order to prove that \(f_\alpha \) is irreducible it suffices to prove that for each open non-empty \(U \subseteq \text{lim} X \) the set \(f_\alpha(U) \) is non-empty. Let \(x \) be any point of \(U \). By virtue of the definition of a base of \(\text{lim} X \) there is a \(\beta \in A \) and open set \(U_\beta \subseteq X_\beta \) such that \(x \in f_\beta(U_\beta) \subseteq U \). Then \(\gamma \leq \beta \). Then for open set \(f_\beta^{-1}(U_\beta) = f_\beta^{-1}(U) \subseteq U \). Moreover, the set \(f_\beta(U_\beta) \) is non-empty since \(f_\gamma \) is irreducible. Clearly, \(f_\beta(f_\beta(U_\beta)) \subseteq U \). This means that \(f_\beta(U) \) is non-empty. The proof is completed.

An inverse system \(Y = \{Y_\alpha, g_\alpha \beta, B\} \) is said to be a subsystem of a system \(X = \{X_\alpha, f_\alpha \beta, A\} \) if \(B \subseteq A, Y_\alpha \subseteq X_\alpha \) and \(g_\alpha \beta = f_\alpha \beta |_{Y_\alpha} \). If \(B \) is cofinal in \(A \) and \(Y_\alpha = X_\alpha \) for each \(\alpha \in B \), then \(\text{lim} Y = \text{lim} X \). Similarly, if \(B \) is cofinal in \(A \) and \(Y_\alpha \subseteq X_\alpha \) for each \(\alpha \in B \), then \(\text{lim} Y \) is homeomorphic to a subset of \(\text{lim} X \).
We say that an inverse system \(X = \{ X_\alpha, f_\alpha \}, A \) is an \(N \)-system if each subsystem \(Y = \{ Y_\alpha, g_\alpha, B \}, Y_\alpha \neq \emptyset, Y_\alpha \) closed in \(X_\alpha \), has a non-empty limit \(\text{lim} Y \).

THEOREM 1.10 Let \(X = \{ X_\alpha, f_\alpha \}, A \) be an inverse system with fully closed mappings \(f_\alpha \). If \(X \) is an \(N \)-system, then the projections \(f_\alpha: \text{lim} X \rightarrow X_\alpha, \alpha \in A \), are fully closed.

Proof. Let \(x_\alpha \) be any point of \(X_\alpha \) and let \(\{ U_1, ..., U_\nu \} \) be an open finite cover of a set \(f_\alpha^{-1}(x_\alpha) \). Let us note that from the fact that \(X \) is \(N \)-system it follows that \(f_\alpha^{-1}(x_\alpha) \) is non-empty. Namely, a subsystem \(\{ f_\alpha^{-1}(x_\alpha), f_\alpha^{-1}(x_\alpha), \alpha \leq \beta \leq \gamma \} \) has a non-empty limit homeomorphic to \(f_\alpha^{-1}(x_\alpha) \). By the definition of a base in \(\text{lim} X \) we infer that for \(U_i, 1 \leq i \leq \nu \), there is \(\alpha(i) \in A \) and an open non-empty set \(U_\alpha(i) \) in \(X_\alpha(i) \) such that \(f_\alpha^{-1}(U_\alpha(i)) \subseteq U_i \). We may assume that \(U_\alpha(i) \) is maximal open set such that \(f_\alpha^{-1}(U_\alpha(i)) \subseteq U_i \). Let \(\beta \geq \alpha(1), ..., \alpha(s) \). There is a maximal open \(U_\beta \supseteq f_\alpha^{-1}(U_\alpha(i)) \) such that \(f_\alpha^{-1}(U_\beta) \subseteq U_i \). Moreover, \(U_n = \bigcup \{ U_\gamma \gamma \leq \beta \} \) is non-empty for each \(\gamma \geq \beta \). Then, we have a subsystem \(Y = \{ Y_\gamma, f_\gamma \gamma \gamma, B \} \). By the assumption that \(X \) is \(N \)-system, it follows that \(\text{lim} Y \) is non-empty. Each point \(y \in \text{lim} Y \) we shall identify with a point of \(\text{lim} X \) such that \(\text{lim} Y = \bigcap \{ f_\gamma^{-1}(Y_\gamma) : \gamma \geq \beta \} \). For each \(y \in \text{lim} Y \) we have \(y \in f_\alpha^{-1}(x_\alpha) \) and \(y \in \text{lim} X \), namely \(f_\gamma^{-1}(x_\alpha) \). This is impossible. Thus, there is a \(\gamma \in A \) such that \(Y_\gamma \) is empty, i.e., \(f_\gamma^{-1}(x_\alpha) \); \(f_\gamma^{-1}(x_\alpha) \). Now, \(U_\alpha = \bigcup \{ U_\gamma : 1 \leq i \leq \nu \} \). In \(\text{lim} X \), \(U_\alpha = \bigcup \{ U_\gamma \gamma \leq \beta \} \) is a neighbourhood of \(x_\alpha \). From the maximality of \(U_\gamma \) it follows that \(f_\alpha^{-1}(U_\gamma) \subseteq f_\gamma^{-1}(Y_\gamma) \). Finally, we infer that \(U = \{ x_\alpha \} \subseteq \text{lim} X \), i.e., \(f_\alpha \) is fully closed. The proof is completed.

REMARK 1.11 If in 1.10. the mappings \(f_\alpha \) are fully closed with compact fibers \(f_\alpha^{-1}(x_\alpha) \) (i.e. fully closed and perfect), then see [6].

2. Applications of the main theorem

In this Section we apply Theorem 1.8. on the inverse systems with fully closed irreducible bonding mappings.

THEOREM 2.1 Let \(X = \{ X_\alpha, f_{m \alpha}, N \} \) be an inverse sequence such that the mappings \(f_{m \alpha} \) are fully closed irreducible mappings and the spaces \(X_\alpha \) are regular countably compact spaces. In order that \(\text{lim} X \) be locally connected it is necessary that each \(X_\alpha \) be locally connected and it is sufficient that each \(X_\alpha \) be a locally connected space without local cut points.

Proof. From Theorem 8. of [17] it follows that the projections \(f_n: \text{lim} X \rightarrow X_n, n \in N \), are closed. Theorem 1.9. establishes that \(f_n \) is irreducible. Moreover, \(X \) is a \(N \)-system [13]. This means that \(f_n \) is fully closed. Theorem 1.8. completes the proof.

We say that a mapping \(f: X \rightarrow Y \) is perfect if it is closed and each fiber \(f^{-1}(y), y \in Y \), is compact [4:236]. A mapping \(f \) is said to be fully perfect if \(f \) is perfect and fully closed.

THEOREM 2.2 Let \(X = \{ X_\alpha, f_\alpha \}, A \) be an inverse system with fully perfect irreducible bonding mappings \(f_\alpha \). In order that \(\text{lim} X \) be locally connected it is necessary that each \(X_\alpha \) be locally connected and it is sufficient that each \(X_\alpha \) be a locally connected space without local cut points.

Proof. The projections \(f_\alpha \) are fully perfect [6] and irreducible, [Theorem 1.9.]. Theorem 1.8. completes the proof.

COROLLARY 2.3 Let \(X = \{ X_\alpha, f_\alpha \}, A \) be an inverse system of compact spaces \(X_\alpha \) and fully closed irreducible mappings \(f_\alpha \). In order that \(\text{lim} X \) be locally connected it is necessary that each \(X_\alpha \) be locally connected and it is sufficient that each \(X_\alpha \) be a locally connected space without local cut points.
A topological space is a \(q \)-space [16] if for each \(x \in X \) there is a sequence \(U_1, U_2, \ldots \) of open sets such that \(x \in U_n \) \(i \in \mathbb{N} \), with the property: if \(x_n \in U_n, x_n \to x_m \) for \(m \neq n \), then there is an accumulation point of \(\{x_n, n \in \mathbb{N}\} \).

Lemma 2.4 (15). Let \(f: X \to Y \) be a closed mapping of a normal space \(X \) onto \(T_1 \) q-space \(Y \), then \(Fr f^{-1}(y) \) is countably compact for each \(y \in Y \).

Corollary 2.5 If \(f \) in Lemma 2.5. is closed and irreducible and if \(X \) is \(T_1 \), then \(f^{-1}(y) \) is countably compact for each \(y \in Y \).

Proof. By [1, Exercise 112], we have that \(|f^{-1}(y)| = 1 \) or \(Fr f^{-1}(y) = f^{-1}(y) \). The proof is completed.

We say that a space \(X \) is iso-compact if each countably compact closed subspace \(Y \subseteq X \) is compact.

Corollary 2.6 Let \(f: X \to Y \) be a closed irreducible mapping of a normal \(T_1 \) iso-compact space \(X \) onto a \(T_1 \) q-space \(Y \), then \(f^{-1}(y), y \in Y \), is compact i.e., \(f \) is perfect and irreducible.

Theorem 2.7 Let \(X = \{X_\alpha, f_\alpha \}, A \} \) be an inverse system of a \(T_1 \) normal iso-compact q-spaces with fully closed irreducible mappings \(f_\alpha \). In order that \(limX \) be locally connected, it is necessary that each \(X_\alpha \) be locally connected and it is sufficient that each \(X_\alpha \) be a locally connected space without local cut points.

Proof. By 2.6. and 1.11., it follows that the projections \(f_\alpha \) are fully closed. Apply Theorem 1.8.

Corollary 2.8 Let \(X = \{X_\alpha, f_\alpha \}, A \} \) be an inverse system of metric spaces \(X_\alpha \) and fully closed irreducible mappings \(f_\alpha \). In order that \(limX \) be locally connected, it is necessary that each \(X_\alpha \) be locally connected and it is sufficient that each \(X_\alpha \) be a locally connected space without local cut points.

Proof. A metric space \(X \) is a q-space since \(X \) is first-countable. A metric space \(X \) is iso-compact since a metric countably compact space \(X \) is compact [4;320]. Apply Theorem 2.7.

Remark 2.9 Corollary 2.8. holds if we replace" metric" by" paracompact q-space" or by" first-countable paracompact".

Lemma 2.10 (15). Let \(f: X \to Y \) be a closed mapping of a normal space \(X \) onto a \(T_1 \)-q-space \(Y \). If \(|f^{-1}(y)| \leq \aleph_0 \), \(y \in Y \), then \(Fr f^{-1}(y) \) is compact, for each \(y \in Y \).

Proof. By 2.4. \(Fr f^{-1}(y) \) is countably compact. Since each countably compact space is compact, we infer that \(Fr f^{-1}(y) \) is compact, for each \(y \in Y \).

Theorem 2.11 Let \(X = \{X_\alpha, f_\alpha \}, A \} \) be an inverse system of \(T_1 \)-normal q-spaces \(X_\alpha \) and of fully closed irreducible mappings \(f_\alpha \) with countable fibers \(f_\alpha \)(\(x_\alpha \)), for each \(x_\alpha \in X_\alpha \). In order that \(limX \) be locally connected, it is necessary that each \(X_\alpha \) be locally connected and it is sufficient that each \(X_\alpha \) be a locally connected space without local cut points.

Proof. Apply 2.10. and 2.2.

Corollary 2.12 Let \(X = \{X_\alpha, f_\alpha \}, A \} \) be an inverse system of \(T_1 \) - normal first-countable spaces \(X_\alpha \) and of closed irreducible mappings with countable fibers \(f_\alpha \)(\(x_\alpha \)). In order that \(limX \) be locally connected it is necessary that each \(X_\alpha \) be locally connected and it is sufficient that each \(X_\alpha \) be a locally connected space without local cut points.
3. Concluding remarks

We close this paper with two lemmas.

Lemma 3.1 Let X be a normal space and let Y be a locally connected space without local cut points. If $f: X \to Y$ is a fully closed irreducible mapping, then f is monotone.

Proof. Suppose that for some point $y \in Y$ the set $f^{-1}(y)$ is not connected. This means that there is a pair of disjoint closed (in $f^{-1}(y)$) sets F_1, F_2 such that $f^{-1}(y) = F_1 \cup F_2$. Clearly, the sets F_1 and F_2 are closed in X. There exist a pair U, V of disjoint open sets in X such that $F_1 \subseteq U$ and $F_2 \subseteq V$. Now, we have a finite open cover $\{U, V\}$ of $f^{-1}(y)$. A set $W = \{y\} \cup f^*(U) \cup f^*(V)$ is a neighbourhood of y. Moreover, $f^*(U)$ and $f^*(V)$ are non-empty since f is irreducible. From the fact that U and V are disjoint, it follows that $f^*(U)$ and $f^*(V)$ are disjoint open sets. Thus, the set $W \setminus \{y\}$ is disconnected. This means that for each neighborhood W_1 of y there exist open sets $U_1 = f^{-1}(W_1) \cap U$ and $V_1 = f^{-1}(W_1) \cap V$ such that $\{U_1, V_1\}$ is a finite open cover of $f^{-1}(y)$. Thus, $W_2 = \{y\} \cup f^*(U_1) \cup f^*(V_1)$ is a neighborhood of y contained in W. Moreover, we have $f^*(U_1) \subseteq f^*(U)$, $f^*(V_1) \subseteq f^*(V)$. This means that $W_2 - \{y\}$ is disconnected. This is impossible since Y is locally connected and has no cut-points. Thus the set $f^{-1}(y)$ is connected. The proof is completed.

Lemma 3.2 Let $f: X \to Y$ be a closed monotone irreducible mapping. If $U \subseteq X$ is open, then $f(Fr(U)) = Fr(f^*(U))$.

Proof. If $x \in Fr(U)$, then $f(x) \in Cl f^*(U)$. It is clear that $f(x) \not\in f^*(U)$ since $f(x) \in f^*(U)$ implies $f^{-1}(x) \subseteq U$, i.e., $x \in U$. This is impossible because $x \in Fr(U) = Cl U - U$. Thus, $f(Fr(U)) \subseteq Fr(f^*(U))$. In order to complete the proof it suffices to prove that $f(Fr(U)) = Fr(f^*(U))$. If $y \in Fr(f^*(U)) = Cl f^*(U) - f^*(U)$, then by Lemma 1.5., it follows that there is an $x \in Cl f(U)$ such that $y = f(x)$. On the other hand, from the relation $y \not\in f^*(U)$, it follows that $f^{-1}(y) \not\subseteq U$. If we suppose that the set $f^{-1}(y)\cap Fr(U)$ is empty, then we have $f^{-1}(y) = (f^{-1}(y) \cap U) \cup (f^{-1}(y) \cap (X-Cl U))$. The sets $f^{-1}(y) \cap U$ and $f^{-1}(y) \cap (X-Cl U)$ are open and disjoint in $f^{-1}(y)$. This is impossible since $f^{-1}(y)$ is connected. Thus, $f^{-1}(y) \cap Fr(U)$ is non-empty. The proof is completed.

Acknowledgement. The author thanks Prof. Sibe Mardešić for pointing out some inaccuracies in an earlier version of this article.
References

Primljeno 1993-2-11