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Sažetak 
Pri izračunavanju volumena geoloških struktura često se 

koristi određeni integral. Iako se u nekim slučajevima integral 
može riješiti analitički, u praksi se njegova vrijednost obično 
procjenjuje koristeći tehnike numeričke integracije. Primjena 
određenog integrala u izračunavanju volumena ilustrirana je dvama 
primjerima. Volumen planine Fuji, koja je svjetski poznati 
geomorfološki primjer “stožaste” strukture, izračunat je 
analitičkom integracijom. Dvije temeljne metode numeričkog 
integriranja, tj. trapezno i Simpsonovo pravilo, primijenjene su na 
izračun volumena ležišta ugljikovodika, gdje je struktura 
nepravilne antiklinale aproksimirana pravilnim krnjim stošcem 
 
 

Key words: irregular anticline, hydrocarbon reservoir, Fuji Mt., 
volume, trapezoidal rule, Simpson’s rule 

Abstract 
The volume of geological structures is often calculated by 

using the definite integral. Though in some cases the integral can 
be solved analitically, in practice we usually approximate its value 
by numerical integration techniques. The application of definite 
integral in volume calculation is illustrated by two examples. The 
volume of Mount Fuji, the world-known “conic” 
geomorphological structure, is calculated by analytical integration. 
Two basic numerical integration methods, that is, the trapezoidal 
and Simpson’s rule are applied to subsurface hydrocarbon 
reservoir volume calculation, where irregular anticline is 
approximated by a frustum of a right circular cone. 
 

1. Introduction 

In practical problems, one is working with 
measured data of limited accuracy, so the accuracy of 
the results cannot be expected to exceed that of the 
initial data. In such cases, an approximation method 
may give an answer that is as accurate as we need. 
The basic problem in numerical integration is to 
compute an approximate solution to a definite 
integral ∫  ( )   

  to a given degree of accuracy. 
There are two main reasons for carrying out 

numerical integration: analytical integration may be 
difficult or impossible, or the integrand   is given by 
a table of values. Polynomial approximation like the 
Lagrange interpolating polynomial method serves as 
the basis for the two integration methods: the 
trapezoidal rule and Simpson’s rule, by means of 
which the approximations to the integral are obtained 
by using only values of the integrand  ( ) at a finite 
number of points    In this paper we illustrate the 
application of these methods in calculating geological 
structures’ volume. Volumes are often calculated by 
integrating the area functions with respect to distance. 
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Geological structures are mostly irregular and only 
sometimes apparently symmetrical (e.g., Malvić & 
Novak Zelenika, 2014), so in most cases their 
volumes cannot be calculated by analytical 
integration. Having values of the area of each of 
several equally spaced cross-sections (measured, for 
example, by a mechanical device called planimeter), 
the volume is calculated by using the numerical 
integration techniques.  

 

2. Application of integration in mountain 
volume calculation 

The definite integral can be applied for 
calculating geometrical quantities such as volumes. 
Suppose that a solid object (Figure 1) has boundaries 
extending from     to    , and that its cross-
section by a plane passing through the point (     )  
and parallel to the   -plane has the area  ( ). Let us 
suppose that the function    ( ) is continuous on 
,   -. To find a volume of the object, let us take a 
regular partition   *          + of the interval 
,   -. The planes that are perpendicular to the  -axis 
at the partition points will divide the objects into   
slices. The volume     of the   th slice between the 
planes        and      is approximated by the 
volume of the cylinder with cross-section area  (  ) 
and height              where    ,       -  
         Thus, 

      (  )                    

 
Figure 1: A solid object with boundaries extending from     to 
     

Slika 1: Tijelo s granicama     i      

 
The sum ∑  (  )    

    is an approximation to the 
volume   of our solid object. We can expect the 
approximations to get better and better as      
The volume of a solid object with known cross-
section is defined as 

 
        ∑  (  )    ∫  ( )   

 
 
      (Eq. 1) 

We shall now apply this formula for measuring 
the volume of a mountain of relatively simple 
geomorphological shape and symmetric volcanic 
structure, such as Mount Fuji in Japan. The mountain 
is divided into a series of thin slices. As the shape is 
relatively regular (as the frustum of a cone), the slices 
are well approximated by small cylinders (Figure 2), 
which can be easily presented with almost regular 
isohypses (Figure 3).  

 
Figure 2: Estimation of the volume of Mount Fuji by summing the 
volume of several small cylinders (modified after Waltham, 2000). 

Slika 2: Procjena volumena planine Fuji zbrajanjem volumena 
niza malih valjaka (modificirano prema Waltham, 2000). 

 

 
Figure 3: Approximate isohypses map corresponding to the 
structure of Mount Fuji in the part shown in Figure 2 and made 
from the cylinders. The height of solid (altitude) is approximately 
1950 m, and of Mount Fuji 3776 m. 

Slika 3: Približna karta izohipsi koja bi odgovarala strukturi 
planine Fuji u dijelu koji je na slici 2 aproksimiran valjcima. 
Visina prikazana kartom je približno 1950 m, a vrha planine Fuji 
3776. 

 
The base of  -th cylinder is a circle of radius   , so 

the area    of the base is equal to        . If     
denotes the height of  -th cylinder, then its volume    
is equal to 
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The volume of the entire mountain is then 

approximately equal to the sum of the volumes of   
cylinders, that is, 

 

 ∑  
 

   
           

 
The logical question is how many cylinders 

(slices) are needed to reach a reliable volume 
calculation. In the case of a small number of slices, 
the mountain would be poorly approximated, with the 
flanks of the “staircase” structure. However, the 
calculation would be fast. On the contrary, with the 
large number of slices the result becomes more 
accurate, but the calculation could be time-
consuming. The exact result is obtained by using Eq. 
1, which gives 

   ∫   ( ) 
    

    
      (Eq. 2) 

where      is the altitude of the mountain base, 
and      the altitude of the mountain top. To 
calculate the volume by using Eq. 2, one must know 
how the radius   depends on the height  . Each 
“symmetrical” mountain has its own relation between 
the radius and the height. For Mount Fuji, it can be 
shown that, to a good approximation, 

 
  ( )  .         √ 

√     /       (Eq. 3) 
 
where           and            It implies 

that the radius is       at the mountain base, and 
     at the mountain top (Figure 4). 

 
 
 
 
 
 

 
Figure 4: Model of radius versus altitude for Mount Fuji (modified 
after Waltham, 2000). 

Slika 4: Model odnosa radijusa i visine za planinu Fuji 
(modificirano prema Waltham, 2000). 

 
Substituting Eq. 3 into Eq. 2, we get 
 

    ∫  [         √ 
√ 

    ]   
 

 
 

        ∫     
 

 

 
    ∫    √ 

√ 
   ∫      

 

 

 

 
 

        [    
 

      
   

   √ 
     ]|    

        (             ) 
                     

 
The result is a good approximation of the volume 

of Mount Fuji. 
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3. Numerical integration: the trapezoidal 

and Simpson’s rule 

To get the exact value of the volume   of a solid 
object whose boundaries extend from     to     
by using the definite integral   ∫  ( )   

 , the 
area  ( ) of the cross-section by a plane parallel to 
the   -plane must be known at every point    
,   -. However, in practical work the integrand   is 
usually defined by a table of values. In such cases, an 
approximate value of the definite integral can be 
obtained by certain numerical formulas, and by the 
use of a planimeter - a mechanical device for 
measuring irregular areas. In this section we shall 
describe two basic numerical integration methods: the 
trapezoidal and Simpson’s rule (see e.g. Atkinson, 
1989, Kevo, 1986, or Quarteroni et al., 2000). 

 

3.1. The trapezoidal rule 

 
We would like to evaluate the integral 

∫  ( )   
 . Recall that in the case of a positive 

continuous function     this integral represents the 
area bounded by the curve    ( ) and the lines 
             (Figure 5). 

 

 
Figure 5: The area bounded by    ( )              

Slika 5: Površina ograničena s    ( )            . 

 
The first, and rather crude, approximation to the 

integral is obtained by replacing the curve    ( ) 
between     and     by a straight line segment; 
that is, a polynomial of degree 1. Then the 
approximation is the area of the trapezium with 
vertices at the points (   ) (   ) (   ( )) 
(   ( )), so we have 

 

 ∫ ( )     (   )( ( )   ( )) 
 

 

  

 
To obtain better accuracy, we have to split ,   - 

into   subintervals and use the trapezoidal 

approximation (Figure 6) on each subinterval. If we 
take a uniform partition                
     with the step      

 , we get the 
approximation 

 

∫ ( )   ∑ ∫  ( )  
  

    

 

   

 

 

 

   ∑(       )( (    )   (  )) 
 

   
 

that is, 
 

  ∫ ( )         
 

 

 

  
 
, ( )   ( )   ∑  (  )   

   - (Eq. 4) 
 
 

 
Figure 6: The trapezoidal rule with one (sub)interval (a) and five 
subintervals (b) (web 4). 

Slika 6: Trapezno pravilo s jednim (pod)intervalom (a) i s pet 
podintervala (b) (poveznica 4). 

 
If     (the second derivative of  ) is continuous 

on ,   -, then the error is bounded by 
 

|       |  
 
  (   ) 

      ,   -|   ( )| 
 (Eq. 5) 

 
Since the error term for the trapezoidal rule 

involves    , this rule gives the exact result for 
polynomials of degree 1. 

 
3.2. Simpson’s rule 
 
This method of evaluating the integral ∫  ( )   

  
is based on approximating the curve    ( ) by a 
parabola; that is, a polynomial of degree 2 passing 
through the points (   ( )) (   ( )) (   ( ))  
where    

 (   )  Then we get 
 

∫  ( )    
 (   ) 0 ( )    .

   
 /  

 
 

 ( )1     (Eq. 6) 
 

In practice, we usually divide (Figure 7) the 
interval ,   - into    subintervals 
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                      of the 
same length      

    Applying Simpson’s rule to the 
intervals ,         - for         we get  

 
∫  ( )    

 (         ), (     )  
   
     

  (     )   (   )-   
so that 

∫ ( )   ∑ ∫  ( )  
   

     

 

   

 

 

 

   ∑(   
 

   
      ), (     )
   (     )   (   )- 

and eventually, 
 
  ∫  ( )         

 
 

 
 , ( )   ( )  

 ∑  (   )   ∑  (     ) 
   

   
   -   (Eq. 7) 
 

 
Figure 7: Simpson’s rule with two subintervals (a) and with 
     subintervals (b) (web 4). 

Slika 7: Simpsonovo pravilo s dva podintervala (a) i s 2n = 6 
podintervala (b) (poveznica 4). 

 
If  (  )  (the fourth derivative of  ) is continuous 

on the interval ,   -  then the error is bounded by 
 

|       |  
 

    (   ) 
  

     ,   -| (  )( )|  (Eq. 8) 
 

For the trapezoid rule the error depends on    
(see Eq. 5), whereas the error for Simpson’s rule 
depends on    (see Eq. 8). It shows that the error in 
Simpson’s rule goes to zero much more quickly than 
for the trapezoidal rule when   is reduced. As we can 
see from Eq. 8, the error term for Simpson’s rule 
involves  (  ), so the rule gives the exact result when 
applied to polynomials of degree less than or equal to 
3, since the fourth derivative of such polynomials is 
identically zero.  

 

4. Prismoidal formula and its applications 

A prismatoid is a polyhedron whose vertices all 
lie in one or the other of the two parallel planes. If 
both planes have the same number of vertices, and 
the lateral faces are either parallelograms or 
trapezoids, it is called a prismoid. The faces that lie in 

the parallel planes are called the bases of the 
prismatoid. The midsection is the polygon formed by 
cutting the prismatoid by a plane parallel to the bases 
halfway between them. The perpendicular distance 
between the bases is called the altitude or the height 
of the prismatoid. Families of prismatoids include 
pyramids, wedges, prisms etc. (e.g., Nelson, ed., 
1998). The volume   of a prismatoid (Eq. 9) is given 
by the prismoidal formula 

 

      (        )  
(Eq. 9) 

 
where   is the altitude,    and    are areas of the 

bases and   is the area of the midsection. This 
formula follows immediately by integrating the area 
parallel to the two planes of vertices by Simpson’s 
rule (Eq. 6), since that rule is exact for integration of 
polynomials of degree up to 3, and in this case the 
area is a quadratic function in the height. The proof 
of the prismoidal formula obtained by using the solid 
geometry methods can be found in e.g. Day Bradley, 
1979 or Halsted, 1907.  

Frustum of a right circular cone is a portion of 
right circular cone included between the base and a 
section parallel to the base not passing through the 
vertex (Figure 8). 

 

 
Figure 8: Frustum of a right circular cone (web 1). 

Slika 8: Pravilni krnji stožac (poveznica 1). 

 
Since in this case the area of cross-section by a 

plane parallel to the bases is also a quadratic function 
in the height, the volume of a frustum of a right 
circular cone can be calculated by applying 
prismoidal formula. If   is lower base radius,   is 
upper base radius, and   is the perpendicular distance 
between the two bases, then the area    of lower 
base, the area    of upper base and the area   of 
midsection are given in Eqs. 10 as: 

 

                .    /
 
  (Eq. 10) 

 
Substituting the above expressions in Eq. 9, we 

get a formula Eq. 11 for calculating the volume of a 
frustum of a right circular cone: 
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      ( 
       )     (Eq. 11) 

 
As we have already mentioned, the prismoidal 

formula gives exact volume of any solid whose 
boundaries are two parallel planes, and the area of the 
cross-section in any intermediate plane parallel to the 
end planes is a polynomial function of degree up to 3. 
Most regular convex symmetrical geological 
structures could be approximated with a frustum of a 
right circular cone. However, the prismoidal formula 
can be used with a fair degree of accuracy for solids 
that do not satisfy the specified conditions, due to 
irregularities (e.g., Figure 9). The highly irregular 
surfaces may be divided into portions for which the 
formula holds. 

 

 
Figure 9: Irregular brachianticline with different margin dips 
(from Malvić and Novak Zelenika, 2014, taken from Malvić and 
Velić, 2008; Brod and Jeremenko, 1957). 

Slika 9: Nepravilna brahiantiklinala s različitim nagibima (iz 
Malvić i Novak Zelenika, 2014, preuzeto iz Malvić i Velić, 2008; 
Brod i Jeremenko, 1957). 

 

5. Application of the trapezoidal and 
Simpson’s rule in hydrocarbon reservoir 
volume calculation 

The Simpson’s rule is regularly applied for 
hydrocarbon reservoir volume calculation, when the 
structure is close to a regular anticline. Such 
approximation is weaker in case of very irregular or 
faulted anticline, folded monocline and uplifted part 
of recumbent fold. It is why these are simultaneously 
calculated by both the trapezoidal and Simpson’s rule 
and their difference (Eq. 12) is a criterion of 
method’s applicability. If 

 
|           |              (Eq. 12) 
 
then the volume calculated by Simpson’s rule can 

be accepted. An example of successful reservoir 

volume calculation using the trapezoidal and 
Simpson’s rule for irregular anticline, uplifted over 
the larger monocline, is shown at Figures 10, 11 and 
12. The reservoir is delimited by structural top, roof 
plane and fluid’s contact. Accuracy depends on 
equidistance, i.e., the number of isopachs, the areas 
of which have been measured by using a planimeter. 

 

 
Figure 10: Reservoir top structural map with oil-water contact 
(equidistance is 20 m). 

Slika 10: Strukturna karta po krovini ležišta te ucrtanim kontaktom 
nafte i vode (ekvidistancija je 20 m). 

 

 
Figure 11: Geological section across structural map on Figure 
10. 

Slika 11: Geološki profil duž strukturne karte na slici 10. 
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Figure 12: Reservoir isopach map (equidistance is 10 m). 

Slika 12: Karta izopaha ležišta (ekvidistancija je 10 m). 

 
There are five isopachs (Figure 12) that cut the 

reservoir, the structure of which is close to a frustum 
of a right circular cone. Isopach areas are, 
retrospectively:  
              , 
            ,  
            ,  
              
           . 

 
The equidistance is       . The application of 

Simpson’s rule (Eq. 7) gives the volume  
 

      
 
 (                 ) 

            
 
As the structure is not real frustum, the volume 

     of its top with height        (less than 
equidistance  ) is calculated as the average of 
volumes: 
 

      
    
                         

      
    
      

             
 

Thus, 
 

     
 
 (           )          

    
 
The total volume is 
 

                         

 
The volume of a structural top usually adds only a 

few percent in total volume; here it is only 1.3%.  
By the trapezoidal rule (Eq. 4), we get 
 

      
 
 (                 )  
              

 
The difference between volumes obtained by the 

trapezoidal and Simpson’s rule is about 15% of 
     , which is significant, but acceptable.  

 

6. Conclusions 

The calculation of geological structures’ volumes 
appears in many modelling tasks of subsurface as 
well as surface areas. Most of them are based on 
advanced software packages where the basic theory 
of applied methods is deeply hidden in the code and 
sometimes partially explained in handbooks. 
However, there is a strong need for students, 
scientists and engineers to be well educated in rules 
that lead to results in volume calculation. With this 
paper we have tried to improve their ability to apply 
numerical integration techniques to geological 
problems, such as hydrocarbon reservoir volume 
calculation. Understanding these rules is also crucial 
for avoiding significant calculation errors, since 
fieldwork and in-class tasks still include manual 
planimetring and the use of calculator in volume 
calculation, without any computer support.  
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