IVAN LONČAR Varaždin

BILJEŠKA O PROJEKCIJAMA APROKSIMATIVNOG LIMESA

A NOTE ON THE PROJECTIONS OF AN APPROXIMATE LIMIT

The main purpose of this paper is to prove that if $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an approximate inverse system of locally compact topologically complete (|A|) - compact) spaces and perfect bonding mappings, then the projections are perfect. An example which shows that the local compactness cannot be omitted is also given.

Keywords: Approximate inverse system and limit, perfect mapping. Classification: 54B25,54D30.

Introduction

A space means a Tychonoff space and a mapping means a continuous (not necessarily surjective) mapping. The cardinality of a set X will be denoted by |X|.

Cov(X) is the set of all normal coverings of a topological space X. For other details see [1].

In this paper we study the approximate inverse system in the sense of S. Mardešić [6].

DEFINITION 1.1. An approximate inverse system is a collection $\mathbf{X} = \{X_a, p_{ab}, A\}$ where (A, \leq) is a direct preordered set, X_a , $a \in A$, is a to pological space and $p_{ab}: X_b \to X_a$, $a \leq b$, are mappings such that $p_{aa} = id$ and the following condition (A2) is satisfied:

(A2) For each $a \in A$ and each normal cover $\mathcal{U} \in Cov(X_a)$ there is an index $b \ge a$ such that $(p_{ac}p_{cd}p_{ad}) \prec \mathcal{U}$, whenever $a \le b \le c \le d$.

Other basic notions, including approximate mapping, the limit of an approximate inverse system and approximate resolution are defined as in [6] and [7].

The inverse systems in the sens [3, p. 135.] we call a usual inverse systems.

The main theorem

A topological space (X,t) is said to be *topologically complete* (od Dieudonné complete [3, p. 568.] iff there is a uniformity \mathcal{U} such that (X,\mathcal{U}) is complete and topology t is the \mathcal{U} -uniform topology. A topological space X is topologically complete iff X is a Tychonoff space and the universal uniformity Cov(X) [3, pp. 536, 568] on the spece X is complete. Each paracompact space is topologically complete. Topological completness is hereditary with respect to closed subsets and is multiplicative. The limit limX of an approximate system X of topologically complete spaces is topologically complete [7, Theorem (1.17)].

A space X is called *m*-compact [10, p. 177.] (where m is a infinite cardinal number) provided either of the following conditions holds: (i) for every filter-base F on X, if $|F| \le m$, then $\operatorname{ad}_x F = \bigcap \{ \operatorname{ClF}: F \in F \} \neq \emptyset$, or (ii) every open cover $\mathcal{U}_r |\mathcal{U}| \le m$, has a finite subcover. \aleph_0 -compact space are called *countably compact*. It is obvious that each m-compact space is countably compact.

A continuous mapping $f : X \rightarrow Y$ is *perfect* if X is a Hausdorff space, f is a closed mapping and all fibers $f^{-1}(y)$ are compact subsets of X [3, p. 236].

Let X be a locally compact space. By αX the Alexandroff compactification [3, p.222] of X is denoted. The remainder $\alpha X \setminus X$ by ω_x is denoted. Thus, $\alpha X = X \bigcup \{\omega_x\}$.

Let X and Y be locally compact spaces: If $f: X \to Y$ is a surjective perfect mapping, then there exists and extension $\alpha f: \alpha X \to \alpha Y$ of f such that $\alpha f(\omega_x) = \omega_y$ [2, p. 160].

Let f,g:X \rightarrow Y be mappings between Tychonoff spaces. If cX and cY are arbitrary Tychonoff extensions of X and Y such that cf and cg exist, and if f and g are V|Y-near, then cf and cg are U-near, where U, $v \in Cov(Y)$, stv < U (Lemma 2.8 [4]). If $X = {X_a, p_{ab}, A}$ is an approximate inverse system of Tychonoff spaces X_a such that cp_{ab} exist, then $cX = {cX_a, cp_{ab}, A}$ is an approximate inverse system. The proof is the same as the proof of Lemma 2.9 of [4]. Let $X = {X_a, p_{ab}, A}$ be an approximate inverse system of locally compact noncompact spaces and surjective perfect mappings p_{ab} . If αX_a is the Alexandroff compactification of X_a with one-point remainder ω_a , then for each, $a,b \in A$ there is the extension αp_{ab} of p_{ab} such that $\alpha p_{ab}(\omega_b) = \omega_a$. Thus, we have an approximate inverse system $\alpha X = {\alpha X_a, \alpha p_{ab}, A}$.

In the sequel the projections of $\lim X$ into X_a by p_a are denoted. Similarly, the projections of $\lim \alpha X$ into αX_a by P_a are denoted.

The following theorem is the main theorem of this section.

THEOREM 2.1 Let $X = \{X_{ax}p_{abx}, A\}$ be an approximate inverse system of non-empty locally compact noncomapct topologically complete (|A| - compact) speces and surjective perfect bonding mappings. Then the projections pa : $X \to X_a$, $a \in A$, are surjective and perfect and $X = \lim X$ is a non-empty topologically complete (|A| - compact) locally compact space. Moreover, $\alpha \lim X$ is homeomorphic to $\lim \alpha X$.

Proof. The proof is broken into several steps.

Step 1. We consider the approximate system $\alpha \mathbf{X} = \{\alpha \mathbf{X}_a, \alpha \mathbf{p}_{ab}, A\}$. The bonding mappings $\alpha \mathbf{p}_{ab}: \alpha \mathbf{X}_b \to \alpha \mathbf{X}_a$ are onto mappings such that $\alpha \mathbf{p}_{ab}(\omega_b) = \omega_a$. This means that the projections $\mathbf{P}_a: \lim \alpha \mathbf{X} \to \alpha \mathbf{X}_a$ are onto [7, Corollary 4.5.].

Step 2. The projections p_a , $a \in A$, are onto. Let x_a be any point of X_a . By virtue of Step 1. there exists a point $x \in Y = \lim \alpha X$ such that $P_a(x) = x_a$. From the definition of the

thread it follows that there exists a b≥a such that for c≥ b $\alpha p_{ac} P_c(x)$ is in X_a since X_a is open in αX_a . We infer that $P_c(x) \in X_c$ since $\alpha p_{ac}(\omega_c) = \omega_a$. Let C = {c : c≥b}. Then C is cofinal in A and { $P_c(x) : c \in C$ } is a thread in the approximate inverse system { X_c, p_{cd} , C}. If the spaces X_b , b∈A, are topologically complete, then by virtue of Theorem 1.19 of [7] the thread { $P_c(x) : c \in C$ } induces a thread in $X = {X_a, p_{ab}, A}$. If the spaces X^b , b∈A, are |A| - compact, then for each b∈A, $\mathcal{N} = {p_{bc}(P_c(x)) : c \in C}$ is a Cauchy net in X_b [7, p. 597]. There exists a cluster point $x_b \in X_b$ of the net \mathcal{N} since X_b is |A| - compact. On the other hand, \mathcal{N} is convergent in αX_b . It follows that \mathcal{N} converges to x_b . In both cases we infer that x is a thread in $X = {X_a, p_{ab}, A}$. Since this is true for each x with $P_a(x) = x_a$, we infer that $P_a^{-1}(x_a)$ is a compact non-empty subset of X. Clearly, $P_a^{-1}(x_a) = p_a^{-1}(x_a)$. This means that p_a , a∈A, are surjective.

Step 3. The projections p_a , $a \in A$, are perfect. From Step 2. it follows that $P_a^{-1}(X_a) = X = \lim X$ is non-empty. Since $p_a = P_a | \lim X$ and P_a is closed, it follows from [3], Proposition 2.1.4] that p_a is closed and, consequently, perfect.

Step 4. Local compactness of lim**X** follows from Theorem 3.7.24 of [3]. From [7, Theorem (1.17)] it follows that lim**X** is topologically complete. Similarly, by a straightforward modification of the proof of Theorem 3.7.2 [3] we obtain that lim**X** is |A| - compact.

Step 5. Let us prove that adimX is homeomorphic to $\lim \alpha X$. It is clear that $\lim \alpha X$ is a compactification of limX since the projections p_a are onto. Let us prove that the remainder $Z = \lim \alpha X \setminus \lim X$ is non-empty and contains a single point. By virtue of $p_{ab}(\omega_b) = \omega_a$ it follows that $\omega = (\omega_a : a \in A)$ is a point of Z, i.e., Z is non-empty. Suppose that there exists a point $z \in Z \setminus \{\omega\}$. There exists an $a \in A$ such that $p_a(z) \neq p_a(\omega) = \omega_a$. We infer that $p_a(z)$ is in X_a . This is impossible since $P_a^{-1}(X_a) = \lim X$ (see Step 2). It is known that $\alpha \lim X$ is the smallest element of the family C (limX) of all compactifications of $\lim X$ [3, p. 222, Theorem 3.5.11]. This means that there is a continuous mapping f: $\lim \alpha X \to \alpha \lim X$ such that $f(\omega) = \Omega$ and f(x) = x for each $x \in \lim X$ [3, p. 222], where Ω is the remainder $\alpha \lim X \lim \lim X$. It is clear that f is a homeomorphism. The proof is completed.

If $X = {X_a, p_{ab}, A}$ is a usual inverse system of T₂-spaces and perfect bonding mappings, then the projections are perfect [9, Theorem 7]. The following example shows that the local compactness cannot be omitted in Theorem 2.1.

EXAMPLE 2.2. Let \mathbb{R}^2 be the Euclidean plane endowed with the ordinary rectangular coordinate system Oxy. We define the space X as the union of the subsets $I_1, I_2, ..., I_n, ... I_{\infty}$, such that, for each $n \in \mathbb{N}$, $n \ge 1$,

$$I_n = \left\{ (x, 1 - \frac{1}{n}) : 0 \le x \le \frac{1}{n}, x \text{ is a rational number} \right\}$$

and

$$I_{\infty} = \{(0,1)\}$$

It is clear that X is not locally compact. For each $n \in \mathbb{N}$ we define the homeomorphism $h_n: X \to X$ as follows. If $(x, y) \in I_{n+1} \cup ... \cup I_{\infty}$, then $h_n(x,y) = (x,y)$. For $(x,y) = (x, 1 - 1/m) \in I_m$, $1 < m \le n$, let $h_n(x,y) = (z, 1 - 1/(m - 1)) \in I_{m-1}$ such that the point (0,1, (x, 1 - 1/m) and (z, 1 - 1(m - 1)) are collinear. This means that

$$z: x = \left(1 - \frac{1}{m-1}\right): \left(1 - \frac{1}{m}\right)$$

or

$$z=\frac{m(m-2)}{(m-1)^2}x.$$

Thus

$$h_n(x,y) = \left(\frac{m(m-2)}{m-t^2}x_1 - 1/(m-1)\right).$$

Finally, let $h_n(x,0) = ((n - 1)x/n, 1 - 1/n)$, for $(x, 0) \in I_1$.

Let $\mathbf{X} = \{X_n, p_{nm}, I\!\!N\}$ be an approximate inverse sequence such that $X_n = X$ for each $n \in I\!\!N$. The bonding mapping $p_{nm}: X_m \to X_n$ is defined by $p_{nm}((x,y)) = (x,y)$ for each $m \ge n > 1$ and n = m = 1. The mappings $p_{1n}, n \in I\!\!N$, n > 1, are defined such that $p_{In}(x, y) = h_n(x,y)$ for each $(x,y) \in X_n$.

Let us prove that \dot{X} satisfies (A2). It suffices to prove that (A2) is satisfied for each normal cover \mathcal{U} of X_1 . Let U be a member of \mathcal{U} which contains the point (0,1). There exists a ε -ball B ((0,1), ε) about the point (0,1) such that B((0,1), ε) \subseteq U. The following claim is obvious.

Claim. There exists a $n_0 \in \mathbb{N}$ such that $I_n \subseteq B$ ((0,1), ε) for each $n \ge n_0$.

Nov, we prove that (A2) is satisfied for \mathcal{U} . We consider the following cases.

- 1. Let $(x,0) \in I_1 \subseteq X_m$ and let $n_0 \le m \le n$. Then $p_{1n}(x,0) \in I_n$ and $P_{mn}(x,0) = (x,0) \in X_m$. Hence $p_{1m}p_{mn}(x,0) = p_{1m}(x,0) \in I_m$. We infer that $p_{1n}(x,0)$ and $p_{1m}p_{mn}(x,0)$ are in $B((0,1), \varepsilon) \subseteq U$ since I_m and I_n are subsets of $B((0,1), \varepsilon)$ for $m, n \ge n_0$ (see Claim). Thus, $p_{1n}(x,0)$ and $p_{1m}p_{mn}(x,0)$ are in some member of U.
- 2. Let (x, 1 1/k) be a point of I_k , $1 < k \le m$. Nov, $p_{1n}(x, 1 1/k) = \frac{m(m-2)}{(m-1)^2}x, 1 1/k$ (k-1)) and $p_{1m}p_{mn}(x, 1 - 1/k) = p_{1m}(x, 1 - 1/k) = \frac{m(m-2)}{(m-1)^2}x, 1 - 1/(k-1)) = \frac{m(m-2)}{(m-1)^2}x, 1 - 1/(k-1)$

 $p_{1n}(x, 1 - 1/k)$. Each member of \mathcal{U} which contains $p_{1m}p_{mn}(x, 1-1/k)$ contains $p_{1n}(x, 1 - 1/k)$.

- 3. If $(x, 1 1/k) \in I_k$, $m < k \le n$, then $p_{1n}(x, 1 1/k) = (h_n(x), 1 1/(k 1))$ and $p_{1m}p_{mn}(x, 1 1/k) = p_{1m}(x, 1 1/k) = (hm(x), 1 1/k)$. This means that $p_{1n}(x, 1 1/k) \in I_{k-1} \subseteq B((0,1), \varepsilon)$ and $p_{1m}p_{mn}(x, 1 1/k) \in I_k \subseteq B((0,1), \varepsilon)$, i.e., the points $p_{1n}(x, 1 1/k)$ and $p_{1m}p_{mn}(x, 1 1/k) \in U$.
- 4. If $(x1 1/k) \in I_k$, k > n, then $p_{1n}(x, 1 1/k) = (x, 1 1/k)$ and $p_{1m}p_{mn}(x, 1 1/k) = (x, 1 1/k)$. Thus, $p_{1m}p_{mn}(x, 1 1/k) = p_{1n}(x, 1 1/k)$.

5. Finally, if $(x,1) \in I_{\infty}$ then we have again that $p_{1m} p_{mn} (x,1) = p_{1n}(x,1)$. All these imply that (A2) is satisfied for \mathcal{U} .

The limit of the sequence X is the space X. This follows from the fact that the sequence X has the subsequence $\{X_n, p_{nm}, 1 \le m \le \infty\}$ which is a usual inverse sequence with limit homeomorphic to X. Now, applying [7, Theorem (1.19)] we conclude that limX is homeomorphic to X. This means that for each point $z = (z_n) \in \lim X$ we have $z_n = (x,y)$, $n \ge 1$, where (x,y) is some point of X. Moreover, $p_{mn}(z_n) = z_m$ for m,n > 1. This means that only $z_1 = \lim \{p_{1n}(z_n) : n > 1\}$. This is true iff $z = (x,0) \in \lim X$. One can readilly see that if $0 \le x \le 1$, then $\{z_n : n > 1\}$ converges to $(0,1) \in X_1$. We infer that $p_1^{-1}(0,1) = \{(0,1)\} \cup \{(x,0) : 0 \le x \le 1\}$ contains only the rational numbers. Thus, p_1 is not perfect.

QUESTION. Is it true that topological completeness (|A| - compactness) cannot be omitted in Theorem 2.1?

LEMMA 2.3. Let $X = \{X_a, p_{ab}, A\}$ be an approximate inverse system as in Theorem 2.1. Then for each pair F,G of disjoint compact subsets of $X = \lim X$ there exists an $a \in A$ such that $p_b(F) \cap p_b(G) = \emptyset$ for each $b \ge a$.

Proof. Consider the approximate inverse system $\alpha \mathbf{X} = \{\alpha X_a, \alpha p_{ab}, A\}$. The sets F and G are closed in $\lim \alpha \mathbf{X} = \alpha \lim \mathbf{X}$. By virtue of [4, Lemma 2.17] there exists an $a \in A$ such that $P_b(F) \cap P_b(G) = \emptyset$, $b \ge a$. It follows that $p_b(F) \cap p_b(G) = \emptyset$. The proof is completed.

We close this section by the following theorem.

THEOREM 2.4 Let $\mathbf{X} = \{X_n, p_{mn}, I\!N\}$ be an approximate inverse sequence of separable locally compact metric spaces with surjective perfect bonding mapping. Then there exist:

a) a cofinal subset $M = \{n_i : i \in \mathbb{N}\}$ of \mathbb{N} ,

b) an usual inverse sequence $\mathbf{Z} = \{Z_i, q_{ij}, M\}$ such that $Z_i = X_{ni}$ and $q_{ij} = p_{n_i n_{i+1}} p_{n_i, n_{i+2}} \cdots p_{n_{j-1} n_j}$ for each $i, j \in \mathbb{N}$,

c) a homeomorphism $h : lim X \rightarrow lim Z$.

Proof. Now, $\mathbf{X} = \{\alpha X_n, \alpha p_{nm}, I\!\!N\}$ is an approximate inverse sequence of compact metric spaces since $\mathbf{w}(\alpha X_n) = \mathbf{w}(X_n)$ [3, p.222, Theorem 3.5.11]. By virtue of Theorem 2.11 [5] there exists:

A) a cofinal subset $M = \{n_i : i \in \mathbb{N}\}$ of \mathbb{N} ,

B) an usual inverse sequence $\mathbf{Y} = \{\alpha \mathbf{Y}_i, \mathbf{Q}_{ij}, \mathbf{M}\}$ such that $\mathbf{Y}_i = \mathbf{X}_{ni}$ and $\mathbf{Q}_{ij} = \alpha \varphi_{n_i n_{i+1}} \varphi_{n_i, n_{i+2}} \dots \varphi_{n_{i-1} n_i}$ for each $i, j \in \mathbb{N}$,

C) a homeomorphism H : $\lim \alpha X \rightarrow \lim Y$.

such that if $\mathbf{x} = (\mathbf{x}_n) \in \lim \alpha \mathbf{X}$, then $\mathbf{H}(\mathbf{x}) = (\mathbf{y}_{n_i}) \in \lim \mathbf{Y}$ with $\mathbf{y}_{n_i} = \lim \{\mathbf{Q}_{ik} \mathbf{p}_{n_k}(\mathbf{x}) : \mathbf{k} \in I \mathbf{N}\}$. If $\mathbf{x} = (\omega_n)$, then $\mathbf{y}_{n_i} = \lim \{\mathbf{Q}_{ik} \mathbf{p}_{n_k}(\omega_{n_k}) : \mathbf{k} \in I \mathbf{N}\} = \lim \omega_{n_i} : \mathbf{k} \in I \mathbf{N}\} = \omega_{n_i}$ since $\mathbf{Q}_{ik} \mathbf{p}_{n_k}(\omega_{n_k}) = \omega_{n_i}$. Thus H: $\lim \alpha \mathbf{X} \to \lim \mathbf{Y}$ is the homeomorphism which maps the remainder of $\alpha \lim \mathbf{X}$ on the remainder of $\alpha \lim \mathbf{Y}$. Let $\mathbf{h} = \mathbf{H} | \lim \mathbf{X}$. Then \mathbf{h} : $\lim \mathbf{X} \to \lim \mathbf{Z}$ is a homeomorphism. The proof is completed.

Applications

We start with the following lemma.

LEMMA 3.1. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of normal spaces with limit X. Let F be a closed subset of X_{a_0} and let U be any open neighbourhood of F. Then there exists :

- **a**) a normal cover U_1 of X_{a_0} such that st $U_1 < U_0 = \{U, X \setminus F\}$,
- **b**) a set C of the pairs (a, v) where $v \in Cov(X_{an})$ and $st^2 v < U_1$,
- c) a family $W = \{W_c : c \in C\}$ of subset of X which is directed by inclusion such that d) $p_{a_0}^{-1}(F) = \bigcap \{W_c : c \in C\}.$

Proof. It is clear that \mathcal{U}_0 is a normal cover of X_{a0} since it is a finite cover of the normal space X_{a0} [3, p. 379]. It follows that \mathcal{U}_1 exists. We define C as the set of all pairs C = (a, v), where $v \in Cov(X_{a0})$ st² $v < \mathcal{U}_1$ and a satisfies the equation

$$(p_{a_0a_1}, p_{a_1a_2}, p_{a_0a_2}) < \nu \quad for \ a_2 > a_1 > a.$$
(1)

We define Z_c by

$$Zc = Cl\left[p_{a_0a}^{-1}(st(F,stv))\right] \subseteq X_a,$$

and W_c by

$$Wc = p_{a}^{-1}(\mathbf{Z}_{c}).$$

Now, we shall prove that the family $W = \{Wc : c \in C\}$ is directed by inclusion, i.e. that for each finite family $\{W_{ci}, i = 1, ..., n\}$ of the members of W, where $c_i = (a_i, v_i)$, there exists a member $W_c \in W$ such that $W_c \subseteq W_{ci}$, i = 1, ..., n. Let $v = \land \{v_i : 1 = 1, ..., n\}$ be the intersection cover [1, p. 13], i.e. the family of all $V_1 \cap ... \cap V_n$, where $V_i \in v_i$, i = 1, ..., n. Let v' be a normal cover of X_{a0} such that st v' < v. Consider the set D of all pairs $d = (a', v') \in C$. We claim that $p_{a'}(W_d) \subseteq Z_{ci}$. Let x be any point of $p_{a'}^{-1}(p_{a0a'}^{-1}(st(F, stv')))$. This means that $p_{a'}(x) p_{a_0a'}^{-1}(st(F, stv'))$. We infer that there exists a V' \in stv'such that $p_{a0a'}p_{a'}(x) \in v'$ and $F \cap V' \neq \emptyset$. Since st $v' < v_i$, for each i = 1, ..., n, we infere that there exist a $V_1^{-i} \in v_i$, i = 1, ..., n, such that $V' \subseteq V_1^{-i}$, i = 1, ..., n. Hence, $p_{a0a'}p_{a'}(x) \in v_1^i$, $F \cap V_1^i \neq \emptyset$, i = 1, ..., n. It is clear that $V_1 = V_a^i \cap ... \cap V_1^n$ is a member of v. Since a'>a, it follows from (1) that there exists a $V_2^i \in v$ such that $p_{a0a'}p_{a'}(x), p_{a0a_i}p_{a_ia'}p_{a'}(x) V_2^i$, i = 1, ..., n. We infer that $p_{a0a_i}p_{a_ia'}p_{a'}(x) \in st(F, st v_i)$. This means that

$$\mathbf{p}_{a_ia'}\mathbf{p}_{a'}(\mathbf{x}) \in p_{a_0a_i}^{-1}\left(st(F, st\mathbf{v}_i)\right),\tag{2}$$

i.e.,

$$p_{a_ia'}(p_{a_0a'}^{-1}(st(F,stV'))) \in p_{a_0a'}^{-1}(st(F,stV_i)), i = 1, ..., n.$$
(3)

Let $d = (a', v') \in D$ be such that (AS) [7, p. 592] is satisfied for each a_i and each normal cover $p_{a_0a_i}^{-1}(v_i)$, i=1, ..., n. This means that

$$(\mathbf{p}_{a_i}, \mathbf{p}_{a_i b} \mathbf{p}_b) < p_{a_0 a_i}^{-1}(\mathbf{v}_i), i = 1, ..., n, b \ge a'.$$
 (4)

From (2) it follows that there exists a pair V_i^1 , $V_i^2 \in p_{a_0a_i}^{-1}$, V_i such that $p_{a_ia'}p_{a'}(x) \in V_i^2$, $V_i^2 \cap V_i^1 \neq \emptyset p_{a_0a_i}^{-1}(F) \cap V_i^1$. Then from (4) it follows that there exists a $V_i^3 \in p_{a_0a_i}^{-1}$, V_i such that $p_{a_ia'}p_{a'}(x)$, $p_i(x) \in V_i^3$ and V_i^3 intersects V_i^2 , i = 1, ..., n. We infer that $p_{a_i}(x) \in p_{a_0a_i}^{-1}$ (st(F, st $V_i)$), i = 1, ..., n. This means that $x \in p_{a_i}^{-1}(p_{a_0a_i}^{-1}(st(F, st <math>V_i)))$. From the continuity of the projections p_a it follows $W_d \subseteq \bigcap \{W_{ci} : i = 1, ..., n\}$. Finally, let us prove d). If $x \in \bigcap \{W_c : c \in C\}$, then $p_c(x) \in Z_c$. This means that $p_{a_0a_0}p_a$ (x) \in st(F, stV), where c = (a, V). From (4) it follows that $p_{a_0}(x) \in$ st(f, stV). Since this is true for each normal cover, we infer that $p_{a_0}(x) \in F$, i.e., $x \in p_{a_0}^{-1}(F)$. Thus, $p_{a_0}^{-1}(F) \supseteq \bigcap \{W_c : c \in C\}$. Conversely, if $x \in p_{a_0}^{-1}(F)$, then $p_{a_0}(x) \in$ st(F, stV) for each V. By (4) it follows that $p_a(x) \in Z_c$, for each c = (a, stV). This means that $x \in \bigcap \{W_c : c \in C\}$, i.e., $p_{a_0}^{-1}(F) \subseteq \bigcap \{W_c : c \in C\}$. Finally, we have $p_{a_0}^{-1}(F) = \bigcap \{W_c : c \in C\}$, as desired. The proofs is completed.

THEOREM 3.2 Let $\mathbf{X} = \{X_{av} \ p_{abv} \ A\}$ be an approximate inverse system of locally compact noncompact topologically complete (|A| - compact) spaces and surjective perfect bonding mappings. If all spaces X_a are locally connected and if all bonding mappings p_{ab} are monotone, then the projections $p_a : X \to X_a$, $a \in A$, are monotone and $X = \lim \mathbf{X}$ is a locally connected space.

Proof. Let $a_0 \in A$ and let x_{a_0} be any point of X_{a_0} . Let us prove that $p_{a_0}^{-1}(x_{a_0})$ is connected. Let $F = \{x_{a_0}\}$. Applying Lemma 3.1 we see that $p_{a_0}^{-1}(x_{a_0}) = \bigcap \{W_c : c \in C\}$. By virtue of the local connectedness of X_{a_0} we may assume that each st(F, stV) is connected. This means that each Z_c is connected since every p_{a_0a} is perfect and monotone. Now, suppose that $p_{a_0}^{-1}(x_{a_0}) = \bigcap \{Wc : cC\}$ is disconnected. This means that there exists disjoint closed sets G, H such that $p_{a_0}^{-1}(x_{a_0}) = G \cup H$. By virtue of Theorem 2.1 the set $p_{a_0}^{-1}(x_{a_0})$ is compact. We infer that G and H are compact. Thus, there exist the open subsets U, V of X such that $G \subseteq U$, $H \subseteq V$ and $C \mid U \cap C \mid V = \emptyset$ because of local compactness of X. Moreover, we may assume that ClU and ClV are compact. Since

 $G \cup H = \bigcap \{W_c : c \in C\}$ and the family $\{Wc : c \in C\}$ is directed by inclusion, it follows that there exists a $c_1 \in C$ such that $W_c \subseteq U \cup V$ and $W_c \cap U \neq \emptyset W_c \cap V$ for each $c \in C$ with $W_c \subseteq W_{c1}$. By virtue of Lemma 2.3 there exists an $a \in A$ such that $p_b(C|U) \cap p_b(C|V) = \emptyset$ for each $b \ge a$. Let b and V be such that $c = (b, V) \ge c_1$. Then $p_b(C|U)$ and $p_b(C|V)$ are disjoint closed subsets of X_b which contains Z_c and both intersects Z_c . This is impossible since Z_c is connected. Hence, $p_{a_0}^{-1}(x_{a_0})$ is connected. At the end of the proof, let us prove that X is locally connected. Let x be any point of X and let U be a neighbourhood of X. By virtue of the definition of a base in X, there exists an $a \in A$ and an open set U_a containing $p_a(x)$ such that $x \in p_a^{-1}(U_a) \subseteq U$. By virtue of the local connectednes of X_a we may assume that U_a is connected. This means that $p_a^{-1}(U_a)$ is connected [3, p. 441, Theorem 6.1.29] since p_a is perfect and monotone. Since, $x \in p_a^{-1}(U_a)$, we infer that X is locally connected. The proof is completed.

The following example shows that the local connectedness of the spaces X_a in Theorem 3.2 cannot be omitted.

EXAMPLE 3.3 Let X be the space as in the example 2.2 and let Y be the closure of X in \mathbb{R}^2 . This space is locally compact, topologically complete but not locally connected at the point (0,1). Set $Y_n = Y$ and $Y = \{Y_n, q_{mn}, \mathbb{N}\}$, where q_{mn} are defined by the same equations as p_{mn} in the example 2.2. As in 2.2. we infer that $q_1^{-1}(0,1) = \{(0,1)\} \cup \{(x,0) : 0 \le x \le 1\}$. Thus, $q_1^{-1}(0,1)$ is not connected and q_1 is not monotone.

REFERENCES

- [1] Alò R.A. and Shapiro H.L., Normal topological spaces, Cambridge Univ. Press, 1974.
- [2] Burbaki N., Obščaja topologija (osnovnye struktury), Nauka, Moskva, 1968.
- [3] Engelking R., General Topology, PWN, Warszawa, 1977.
- [4] Lončar I., Approximate limits of m-compact spaces, Glasnik Matematički 30 (50) (1995), 73 84.
- [5] Lončar I., A note on approximate limits, Zbornik radova Fakulteta organizacije i informatike 19(1995), 1 - 21.
- [6] Mardešić S., On approximate inverse systems and resolutions, Fund. Math 142(1993), 241-255.
- [7] Mardešić S. and Watanabe T., Approximate resolutions of spaces and mappings, Glasnik Mat. 24(4) (1989), 587-637.
- [8] Matijević V., A note on limit and resolution of (nongauged) approximate inverse systems, Glasnik Matematički 28 (48) (1993), 111 - 122.
- [9] Puzio E., Limit mappings and projections of inverse systems, Fund. math. 80(1973), 57 73.
- [10] Stephensen R.M., Products of initially m-compact spaces, Transactions of the Amer. Math. Soc. 196(1974), 177-189.

Fakultet organizacije i informatike Pavlinska 2 42000 Varaždin CROATIA Lončar I., Bilješka o projekcijama aproksimativnog limesa.

SAŽETAK

Ako je $X = \{X_a, p_{ab}, A\}$ običan inverzni sistem T_2 - prostora sa savršenim veznim preslikavanjima, tada su i projekcije $p_a : \lim X \to X_a$ savršene [9, Theorem 7]. Primjerom 2.2 dokazuje se da to nije istina za aproksimativne inverzne sisteme. Glavni teorem rada (Theorem 2.1) tvrdi da su projekcije p_a savršene ako su prostori X_a lokalno kompaktni topološki kompletni (A - kompaktni) a vezna preslikavanja savršena. Spomenuti primjer 2.2 pokazuje da se lokalna kompaktnost u teoremu 2.1 ne može izostaviti. Autoru nije poznato da li se topološka kompletnost (|A| - kompaktnost) može izostaviti.

Primljeno: 1996-12-20