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The Szeged index (Sz) is a variant of the well known Wiener index
W. It has been shown that Sz(By) is a third order polynomial in
terms of the sizes of three chains making up a fused bicyclic graph
By. Analytical formulas have been derived for Sz(By).

INTRODUCTION

The Szeged index (Sz) is a graph invariant which was introduced by Gut-
man.! Its definition is based on the original definition of the well known
Wiener index.? According to this definition for an acyclic graph T (where T
refers to a tree, in Wiener's paper an acyclic hydrocarbon), W(T) is equal to
the sum of »bond contributions«:

W(T) = D n, xn, 1
(a,b)

where a and b are adjacent vertices of T and (a,b) denotes the edge connect-
ing vertices a and b, n, and n, denote the number of vertices in the respec-
tive disconnected graphs obtained by removing edge (a,b) from T. Only car-
bons are considered, hydrogens are neglected. The definition is valid for
trees only.

The original definition given by Wiener could be extended to any graph
G, including cycle-containing graphs, by using the fact (which was also
found out by Wiener) that W(G) is equal to the sum of distances between
all pairs of vertices.

W(G) = XD, )

@< -
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Eq. (2) is Hosoya's formula,® where D; i denotes the length of the shortest
path between vertices i and j. The entries D;; are zero.

Since Eq. (2) may be used for cycle-containing structures, and because
of its simplicity, Hosoya's equation, Eq. (2), is used when W has to be cal-
culated. It has to be noted that, many years after Wiener's paper had ap-
peared, the »bond-contribution« picture (Eq. (1)) could be extended for cy-
cle-containing structures, t00.4¢ It was shown that W can be computed as
a sum of bond contributions (i.e. W = £ W,, where W, denotes the contribu-
tion of bond e and the summation has to be performed for all bonds), and
each bond-contribution term is equal to

W, =2 Ky/K, 3
iy

where Kf; denotes the number of shortest paths between vertices i and j
which contain e and Kj; is the total number of the shortest paths between i
and j.

Gutman' proposed a different interpretation of the »bond-contribution«
approach (Eq. (1)). In his approach Eq. (1) remains valid but the definitions
of n, and n, are replaced by the following formulas:

ng, = '{xIDx,a<'Dx,b}| 4)

and

ny = |{x|Dx,b<Dx,a}|' (5)

According to Eq. (4), n, is the number of vertices (including vertex a it-
self) nearer to vertex a than to b, and a similar definition holds for n, (Eq.
(5)). Note that vertices x for which D, , = D, , will not be considered.

The third variant of W, being equivalent to W in trees but different from
it in cycle-containing graphs, is the detour index”® w. w may be obtained
by using an analogue of Eq. (2) in which the distances D, ; are replaced by
entries 4; ;, i.e. by the lengths of the longest paths between vertices i and j.

The fourth possibility of extending W to cyclic structures might be ac-
complished by observing the fact that in trees the sum of the positive eigen-
values of the Laplacian matrix L is equall® to W. Therefore the new invari-
ant, being the sum of positive eigenvalues of L(G), would be equivalent to
W in trees, but would be different from it in cycle-containing graphs.

In 1994, Randi¢ introduced!! the »hyper-Wiener index« WW by modifying
Wiener's definition. Originally, WW could only be obtained for acyclic graphs
but it was later shown that WW may be obtained for cycle-containing graphs
G, too, by using the following formula:!2
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WW(G)=1/2 ) (D, +D?). (6)
isi

Later on, the »hyper« variants of Sz and w were also introduced.!314

A further variant of W was proposed by Rouvray,!® but it was found later
on that this index is equal to 2W. An expanded version of W was introduced
by Tratch et al.,' in which for each pair of vertices i and j, the distance D;;
is multiplied by the number of »superpaths« containing the correspondlng
shortest path between i and j, and the products are added. In cycle-contain-
ing structures each product has to be multiplied by the number of shortest
i~j paths. A special version of W is based on the »resistance distance«!?
model and another one on asymmetric matrices that were obtained from the
distance matrix.!® The mathematical aspects and numerous applications of
W have been reviewed several times.1%22 A special review was devoted to
the distance matrix.2

Because of the importance of W, other closely related graph invariants,
like the Szeged (and the detour) index, are also interesting. In fact, many
interesting mathematical properties of Sz have been discovered thus far.24-29
In particular, it has been demonstrated that Sz(G) = W(G) if and only if
every block of G is a complete graph.?’° The aim of the present paper is to
show that Sz is a third order polynomial in terms of the sizes of chains mak-
ing up a fused bicyclic graph. Formulas for N vertex fused bicyclic graphs
By (Figure 1) have been derived. Sz is also in this respect related to W, w,
WW and the hyper detour index, for which analytical formulas were ob-
tained earlier and these are also polynomials.1430-37

Figure 1. An example of a fused bicyclic graph with 2 = 8, m = 6 and n = 4.

DERIVATION OF THE POLYNOMIAL

Expressions like »graph« and »structural formula«, »valence« and »de-
gree« are synonyms. Therefore, corresponding expressions used in chemistry
and in graph theory, like »chemical bond« and »edge«, »atom« and »vertex«
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will be used interchangeably hereafter. A »graph invariant« is the number
which depends on graph G but does not depend on the numbering of the ver-
tices in G. Hydrogen suppressed graphs will be considered only.

First, it has to be shown that Sz(By) is a polynomial. Consider an ex-
ample of a fused bicyclic graph By (Figure 1). There are three chains — sub-
graphs of By—k, m and n, which connect the branching vertices. 2, m and n
include the branching vertices. Examples: 1. The (hydrogen suppressed)
graph of ethane is a single chain consisting of two vertices (endpoints), 2.
The (hydrogen suppressed) graph of isobutane consists of three chains, each
containing two vertices (the branching atom and the endpoint). Since
branching vertices are considered several times in By, the total number of
vertices N is therefore equal to Z+m+n—4. Note that throughout this paper
letters £, m and n will be used to denote the respective chains and the number
of vertices (which will be referred to as the »size« of the chain) in 2, m and
n, respectively. Throughout this paper it will be assumed that & >m >n.

Figure 1 illustrates a special case but the procedure can easily be ap-
plied to any By. Bonds (12,1), (1,2), (2,3) and (3,4) will be considered only;
a similar procedure could be used for the rest of the bonds of chain % and
for m and n. Observe that k+n—2 denotes the size of a cycle. Two cases will
be distinguished.

Case 1: i+n-1 < (k+n—2)/2, where the running index i refers to the first fig-
ures in the parentheses. Then for bonds (12,1) and (1,2): n, = (k+n—2)/24+m—2
=9 and n, = (k+n-2)/2 = 5, where n, refers to the first figure in the paren-
theses and n; to the second.

Case 2: i+n-1 2 (k+n—2)/2. For bonds (2,3) and (3,4), the following ex-
pressions are valid: n, = (2k+m+n—4)/2—i—1, and n, = (2k+m+n—4)/2—(k—i-1).

In general, in the first case the first vertex is nearer to the both branch-
ing vertices than the second, and in the second case the second vertex is
nearer to one of the branching vertices than the first one.

The product n,n, is a second order polynomial in terms of %, m, n\and
i. The sum of these products is a third order polynomial in terms of numbers
k, m and n and the running index i drops out. Sz(By) is therefore a polyno-
mial in terms of 2, m and n. Although the derivation was given for a special
case, where £, m and n are even, the procedure can be performed for other
cases as well. The following theorem ensures that Sz(By) is always a third
order polynomial.

THEOREM. Sz(By) < N3((N+1)/4 @)

Proof. The proof uses a result by Dobrynin3® according to which for any
graph G, and therefore also for By:
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Sz(By) = 0.25 [, (N-n)? ~ 2. (ng-np)?] ®)
(a,b) (a,b)

where n,; is the number of vertices being equally far from a and b. But:

Sz(By) < 0.25 ) (N-n)? <0.25 ), N2 = 0.25N2(N+1). 9)
(a,b) (a,b)
QED.

Because of this result, Sz(By) cannot be a fourth order polynomial in
terms of 2, m and n, unlike the Szeged index of a complete bipartite graph
which is a fourth order polynomial®® in terms of N.

Derivation of the formulas Sz(By) in terms of 2, m and n was done by
solving a system of 20 simultaneous linear equations with 20 unknowns (A4,
B..T).

Sz(By) = Ak3 + Bm® + Cn® + Dk?m + Ek’n + Fm?n +
+ Gm?k + Hn2k + In’m + Jkmn + Kk2 + Lm? + Mn? +

+ Nkm + Okn + Pmn + Qk + Rm + Sn + T. (10)

The equations were solved for known values of Sz(By) and by using the
values of k3, m%, n3 k2m, etc. and of course the result cannot depend on the
special choice of k2, m and n values. Quite often, however, the matrix com-
posed of powers of k, m and n is singular, therefore we have listed those
combinations of the values of 2, m and n, which did not yield a singular ma-
trix (Table I). The values of Sz were obtained by using an algorithm similar
to that proposed by Zerovnik.3®

Case I. k, m and n are even, or k, m and n are odd.

Sz(By) = (k% + m® + 2k%m + 4k%n + 4m?n + 2m?: + 3n%k +
+ 3n?m + 6kmn — 11k2 — 11m? — 8n2 — 14km — 26kn — 26mn +
+ 36k + 36m + 46n — 48)/4. an

Case II. & and m are even and n is odd, or 2 and m are odd and n is
even.

Sz(By) = (k% + m® + 2k%m + 4k%n + 4m?n + 2m? + 3n2k +
+ 3n2m + 6kmn — 14k2% — 14m?2 - 6n2 — 22km — 32kn — 32mn +
+ 65k + 65m + 60n — 102)/4. a2)

Case III. % is even and m and n are odd or % is odd, and m and n are
even.
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TABLE I
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List of paths and the respective values of Sz used to derive formulas 11-14.

Case 1 Case 2
k m n Szeged index k m n Szeged index
2 2 2 3 5 5 4 198
4 2 2 20 7 5 2 166
6 4 2 132 9 7 4 819
4 4 2 59 9 9 8 2352
6 2 2 63 7 7 6 875
8 4 2 251 9 5 4 562
8 2 2 144 7 3 2 89
10 4 4 723 11 9 4 1591
10 6 2 639 11 5 4 855
8 6 2 408 9 7 6 1252
6 4 4 267 5 5 2 81
6 6 4 446 7 7 4 546
8 6 4 695 9 9 4 1158
8 8 2 627 11 11 2 1401
10 8 6 2002 13 5 4 1238
8 4 4 458 13 7 4 1635
6 6 6 705 11 7 6 1731
8 8 4 1010 13 7 2 1054
8 6 6 1050 3 3 2 9
8 8 8 2016 9 9 6 1707
Case 3 Case 4

k m n Szeged index k m n Szeged index
8 5 3 359 9 6 5 897
10 7 5 1272 11 8 5 1749
8 -7 7 1274 9 8 7 1769
6 5 5 361 11 10 5 2304
4 3 3 40 5 4 3 103
8 7 5 885 13 10 5 2997
8 3 3 216 13 6 5 1809
10 9 3 1192 11 8 3 1208
10 5 5 909 7 6 5 588
8 7 3 564 9 4 3 379
6 5 3 204 15 8 5 3069
10 9 5 1733 15 10 3 2845
12 7 3 1212 15 6 3 1749
12 3 3 624 13 10 3 2180
12 5 5 1318 17 6 5 3193
14 5 3 1268 17 8 3 2939
10 7 7 1779 11 8 7 2382
12 7 5 1761 13 12 3 2799
10 9 7 2366 11 10 7 3079
10 9 9 3091 11 10 9 3958
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Sz(By) = (k% + m® + 2k*m + 4k%n + 4m?n + 2m%k + 3n%k +
+ 3n2m + 6kmn — 13k2 — 12m?2 — 11n? — 18km — 32kn — 34mn +
+ 55k + 56m + 76n — 99)/4. (13)

Case IV. k& and n are even and m is odd or £ and n are odd and m is
even.

Sz(By) = (k% + m® + 2k%m + 4k%n + 4m?n + 2m?% + 3n%k +
+ 3n2m + 6kmn — 12k2 — 13m? — 11n2 — 18km — 34kn — 32mn +
+ 56k + 55m + 76n — 99)/4. (14)

DISCUSSION

All equations were derived by using one set of conditions imposed on £,
m and n (e.g. even values of k2, m and n were used to derive Eq. (11)), but
they remain valid for the second set of conditions as well (in case I, for &,
m and n are odd). Similarly, Eqs. (12)~(14) are also valid for cases fulfilling
the respective second sets of conditions. Example: calculate Sz(k,m,n) for &
=9, m =7 and n = 5. By using Eq. (11), we obtain

82(9,7,5) = (9% + T3 + 2%¥92*7 4 4*Q2*5 4 4*72%5 4 2*%72%Q 4 3*52%9 4
+ 3*B2*T 4 G*QFT*5 — 11%92 — 11*72 — 8*52 — 14%9*7 — 26%9*5 —
— 26*T7*5 + 36%9 + 36*7 + 46*5 — 48)/4 = (729 + 343 + 1134 + 1620 +
+ 980 + 882 + 675 + 525 + 1890 — 891 — 539 — 200 — 882 — 1170 —
— 910 + 324 + 252 + 230 — 48)/4 = 4944/4 = 1236.

Observe that restrictions imposed in Case I and Case II are equivalent
with the statements that the number of vertices is even or odd in both cy-
cles, respectively. In Case III the number of vertices (k+n—2) is odd in the
larger cycle and even (m+n-2) in the smaller cycle, and in Case IV. k+n—2
is even and m+n—2 is odd.

Eq. (11) remains valid if 2 = m = n = 1, and Sz(1,1,1) = 0. This graph
corresponds to a »hypothetical methane« with a single vertex and three
edges starting and ending at this vertex. Because Sz(1,1,1) = 0, the sum of
the coefficients of Eq. 11 must be zero. In fact 1+1+2+4+4+2+3+3+6-11-11
—-8-14-26-26+36+36+46-48 = 0.,

Comparison of the coefficients of Eqs. (11)-(14) shows that the coeffi-
cients of the third order terms are equal. In contrast, in equations obtained

for W(By) and w(By), the coefficients of the second order terms are also
equal.?3%5 Note that n® does not appear in Egs. (11)—(14).
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A formula for Sz(Cy), where Cy denotes an N vertex cycle, may be de-
rived easily:

Sz(Cy) = N(N-1)%/4 (N is odd) (15)

and

Sz(Cy) = N%/4 (N is even). (16)

Comparison of these formulas with Egs. (11) and (13) reveals that Sz(Cy)
is not equal to Sz(By) with £ = N, and m = n = 2, whereas W(Cy) = W(N,2,2),
and also w(Cy) = w(N,2,2).3335

Egs. (11)-(14) can easily be programmed. The result is an example of al-
gebraic expressions derived by using a numerical method. Formulas of
graph invariants may be applied to solve — at least within a given set of
structures — the inverse »QSPR problem«, namely to find structures corre-
sponding to a numerical value of graph invariant.40:4!
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SAZETAK
Szegedov indeks: formule za kondenzirane biciklicke grafove
Istvdn Lukovits

Szegedov indeks (Sz) varijanta je poznatog Wienerova indeksa W. Pokazano je

da je Sz(Bp) polinom tredeg reda u veli¢inama triju lanaca koji grade kondenzirani
bicikli¢ki graf By. Izvedene su analiticke formule za Sz(By).
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