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Abstract 

Statistical information for empirical analysis is very frequently available at a higher level of aggregation 
than it would be desired. Economic and social indicators by income classes, for example, are not 
always available for cross-country comparisons, and this problem aggravates when the geographical 
area of interest is sub-national (regions). In this paper we propose entropy-based methodologies that 
use all available information at each level of aggregation even if it is incomplete. This type of 
estimators have been studied before in the field of Ecological Inference. This research is related to a 
classical problem in geographical analysis called to modifiable area unit problem, where spatial data 
disaggregation may give inaccurate results due to spatial heterogeneity in the explanatory variables. 
An empirical application to Spanish data is also presented. 
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1. Introduction 
 
One relatively frequent limitation for empirical economics is the lack of data available at an 
appropriate spatial scale. Although the target, in principle, would be to work at a smaller 
geographical scale, the non-availability of geographically disaggregated information usually 
limits the conclusions of the analysis at an aggregate level. There is a growing need to 
produce economic and social indicators at a disaggregate geographic scale and this kind of 
information has become a focus of recent academic enquiry and planning policy concerns. In 
this paper we propose entropy-based methodologies that use all available information at 
each level of aggregation even if it is incomplete. This type of estimators have been studied 
before in the field of Ecological Inference (EI) (see Judge et al., 2004; Fernandez-Vazquez et 
al., 2013, Peteers and Chasco, 2006; Bernardini Papalia, 2013, Bernardini Papalia et al., 
2013). Generally speaking, EI is the process of estimating disaggregated information from 
data reported at aggregate level. The foundations of EI were introduced in the seminal 
works by Duncan and Davis (1953) and Goodman (1953), whose techniques were the most 
prominent in the field for more than forty years, although the work of King (1997) supposed 
a substantial development by proposing a methodology that reconciled and extended 
previously adopted approaches.  
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Within the set of techniques used for EI problems,  the estimation procedures based on 
entropy econometrics are gaining weight. Recent applications can be found in Judge et al. 
(2004), Peeters and Chasco (2006) or Bernardini Papalia (2010). This research is related to a 
classical problem in geographical analysis called to modifiable area unit problem, where 
spatial data disaggregation may give inaccurate results due to spatial heterogeneity in the 
explanatory variables. On this background, our proposal is to address within an IT framework 
the research question of how to exploit all the available aggregate information in order to 
improve the estimation of disaggregated economic/social indicators. In such a situation, we 
propose to approach the EI problem by using distributional data to estimate a weighted 
regression that will be estimated  by Generalized Cross Entropy. The proposed estimators 
present the advantages to produce disaggregated indicators by balancing the costs and 
errors of the disaggregation for a study area of interest. The methods also account for spatial 
effects of data autocorrelation and heterogeneity. Autocorrelation is where certain variables 
included in the model as determinants are related in space, and hence violate traditional 
statistical independence assumptions, and heterogeneity is where the associationss between 
variables change across space. The proposed estimators present the advantages to produce 
disaggregated indicators by balancing the costs and errors of the disaggregation for a study 
area of interest. The methods also account for spatial effects of data autocorrelation and 
heterogeneity. Autocorrelation is where certain variables included in the model as 
determinants are related in space, and hence violate traditional statistical independence 
assumptions, and heterogeneity is where the associationss between variables change across 
space. The paper is divided into five further sections. The next section presents the 
estimation of disaggregated data in terms of a Distributionally Weighted Regression (DWR). 
The use of entropy econometrics in the context of DWR estimators that account for 
parameter heterogeneity is presented in section three. Section four evaluates the 
performance of this type of estimators by means of a numerical simulation under several 
scenarios. Section four presents an empirical application with Spanish data. The last section 
presents the main conclusions and possible further lines of research.  
 
 
2. Distributionally weighted regression: an overview 
 
Consider a geographical area that can be divided into          smaller spatial sub-areas. 
Further to this geographical division, suppose that there is another dimension on which we 
would like to observe some variable or indicator. Consider that this second dimension is the 
classification into         different classes (for example, population classified by income, 
age, etc.). The objective of the estimation problem would be to recover the values of the 
variable disaggregated by sub-areas and by classes, from aggregate information.    
We start by paying attention to some indicator of interest which is observable at the level of 
the         geographical areas,     In the context of a DWR,    is usually defined as a 
weighted sum of the latent indicators    . i.e.: 

    ∑      

 

   

           (1) 

where     stands for the observable weights given to class j in area i defined as population 

shares: 
          ⁄  (2) 
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Being     ∑    
 
   . In DWR, the relations between the (latent) disaggregated indicators     

and the (observable) aggregates     are only contained in equation (1). However, other 
possible relations between disaggregate and aggregate information could be observable as 
well. Sometimes, aggregate indicators across the   geographical areas for each one of the 
  classes are available as well and they could be incorporated to the estimation process. 
Consider the aggregate indicator     defined as:  

    ∑      

 

   

           (3) 

where     stands for the observable weights given to the area   in class   defined now as 

population shares: 
          ⁄  (4) 

where     ∑    
 
   . Note that the additional information considered here are just the   

aggregates defined in equation (3), since the weights     are, by definition, observable if the 

    weights are observable too.  

 
Next, the values for the unobservable indicators     are modeled as functions of   

observable explanatory variables for the class   in each area   (   , which can include a 

specific intercept for each class   in area  ) and   aggregate covariates observable at the 
level of the         geographical areas (  ). Assuming a linear relation between the 
indicator of interest and the covariates, but without loss of generality, this function is 
defined as: 

    ∑           
 
       ∑         

 
         , (5) 

where     and    are the vectors with the parameters to be estimated and     is a residual.3  

 
 
3. Entropy econometrics 
 
The estimation of DWR models like (5) can be based on the use of Entropy Econometrics (EE) 
for estimating linear models. Generally speaking, EE techniques are used to recover 
unknown probability distributions of random variables that can take M different known 
values. The estimate  ̃ of the unknown probability distribution   must be as similar as 
possible to an appropriate a priori distribution  , constrained by the observed data. 
Specifically, the Cross-Entropy (CE) procedure estimates  ̃ by minimizing the Kullback-Leibler 
divergence  ( ‖ ) (Kullback, 1959): 

   
 
 ( ‖ )  ∑   

 

   

  (
  
  
) (6) 

The divergence  ( ‖ )  measures the dissimilarity of the distributions   and  . This 
measure reaches its minimum (zero) when   and   are identical and its minimum is reached 
when no constrains are imposed. If some information (for example, observations on the 
variable) is available, each piece of information will lead to an update of the a priori 
distribution  . When   is set as uniform (a situation without a priori information to favour 
some of the results), minimizing () is equivalent to maximizing the Shannon’s entropy: 
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 Note that in this specification the parameters are allowed to vary across the   areas and   classes.   
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 ( )   ∑   

 

   

  (  ) (7) 

And the CE procedure is turned into a Maximum-Entropy (ME) problem.  
 
The same underlying idea can be applied for estimating the parameters of general linear 
models, which leads us to the so-called Generalized Cross Entropy (GCE). The point of 
departure consists in assuming the parameters to be estimated (    and   ) as discrete 

random variables that can take values considered in some supporting vectors with     

possible values (namely,    and   ) with respective unknown probabilities    and   . The 
    errors are treated in terms of a discrete random variable with unknown probability 

distribution as well. The uncertainty about the realizations of these errors is introduced in 
the problem by considering each element     as a discrete random variable with     

possible outcomes, contained in a supporting vector    {           }. The unknown 
probability distribution for the support vectors will be denoted as  . 
 
In general, the support spaces for parameters and errors are constructed as discrete, 
bounded entities, but it is possible to construct unbounded and continuous supports within 

the same framework (Golan, Judge and Miller, 1996). The support points in vectors    and 
   for the parameters are chosen on the basis of some a priori information4. However, such 
knowledge is not always available, and symmetric parameter supports around zero are 
generally used in the presence of scarce prior information about each parameter. The set of 
possible values for the     errors in vector    are usually assumed to be symmetric (    

  ) and centered on zero. With regard to the bounds in this support vector for the errors, 
the “three-sigma rule” can be used (Golan, 1996). This rule implies to set as upper and lower 
bounds   three times the standard deviation of the dependent variable in a regression 
model, which in this case is the observable indicator    . The a priori distribution for the 

parameters (namely,    and   ) and the error (  ), without any additional prior 
information, can be naturally set as uniform and the GCE solution reduces to the Generalized 
Maximum Entropy (GME) one. 
 
Under a GCE framework, the full distribution of each parameter and each error (within their 
support spaces) is simultaneously estimated under minimal distributional assumptions, by 
means of the following program:  
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Subject to:  

∑      
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 The choice of  , and the choice of continuous support spaces and different priors, is discussed in Golan, 

Judge and Miller, (1996). 
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(10) 

In the case that only the aggregate indicators considered in (2) are available, the sample 
information is contained in (10). If, additionally, aggregate information across the T areas for 
each one of the K classes is available as in (3), the following additional constrain can be 
included in the GCE program: 
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(11) 

Once estimated the coefficients in (5), the estimates of the indicators for each class   in each 
area   will be given by: 

 ̂   ∑  ̂         

 

      

 ∑  ̂       

 

     

   ̂  (12) 

The optimal solutions depend on the prior out-of-sample information (the a priori 
distributions and supporting vectors), the data in (10) and (11) and the normalization 
constrains in (9), which should be found by means of numerical optimization techniques.  
 
 
4. A numerical simulation 
 
In this section we try to find some empirical evidences, by means of some numerical 
simulations, on the comparative performance of the DWR estimator to recover a set of 
(   ) disaggregated latent indicators. The point of departure of the experiment is the 
unknown elements of a target matrix, which are drawn from a log-normal distribution with 
mean 10 and standard deviation 2. The choice of a log-normal to simulate the target variable 
is motivated because economic variables like income or productivity often follow this 
distribution. Once these values are generated, they are divided by the (observable) 
corresponding population totals      to obtain the     indicators. 

 
As usual in DWR estimation, regressors to explain the     indicators should be available. In 

order to keep our simulation as simple as possible, we first consider that only one 
disaggregated regressor     is assumed observable. The disaggregated regressor     contains 

some imperfect information on the target indicators. To reflect this idea, in the experiment 
the elements of the (   ) matrix   have been generated in the following way: 

                                (13) 

Where    (      ) and   is a scalar that adjusts the variability of this noise making it 

proportional to the respective element     and it has been set to 0.1. In this context, the 

latent indicators will be modeled by means of a simple linear regression like: 
                   (14) 
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Being     an area and class-specific intercept. Additionally, an aggregate regressor    is 

incorporated into the model, being the values of this aggregate indicator generated in a 
similar way, where: 

                     (15) 
Where    (      ) and   is the same scalar previously defined. In such a case, the DWR 
model to estimate is: 

                        (16) 

The parameters in (14) and (16) will be estimated by the GCE program described in 
equations (8) to (11) with equal supporting vectors for all them (-100 ,0, 100) with    . 
For the error terms, again the support with     values has been chosen applying the 
three-sigma rule with uniform a priori weights.  The a priori probability distributions taken 
for the coefficients are uniform as well, so the CGE estimation is equivalent to a GME 
program.  
 
Two different scenarios with various levels of available aggregate information will be 
assumed: i) the usual situation where only aggregates for each one the   areas     
∑       
 
    are known, and ii) an alternative scenario where, additionally, aggregates for 

each   class      ∑       
 
    are observable as well.  

 
In the experiment we evaluate the performance of the DWR modeling with and without the 
additional constrain considered in (11) under different scenarios. Six different dimensions of 
the target matrix have been considered in the experiment. The six types of matrices reflect 
several situations with different number of regions ( ) and classes ( ). For example, in 
matrices 1, 2 and 3, the number of geographical areas is small (    ), whereas in cases 4, 
5 and 6 more geographical areas are considered (     ). In each one of these simulated 
scenarios several possibilities for the number of classes ( ) have been considered: namely 2, 
4 and 8. In each one of the twelve resulting scenarios 1,000 trials have been carried out and 
the average of two measures of error have been computed: the root of the mean squared 
error (RMSE), and the weighted absolute percentage error (WAPE). Table 1 summarizes the 
results. 

 

 

 Matrix 1 
(    ) 

Matrix 2 
(    ) 

Matrix 3 
(    ) 

Matrix 4 
(     ) 

Matrix 5 
(     ) 

Matrix 6 
(     ) 

WAPE RMSE WAPE RMSE WAPE RMSE WAPE RMSE WAPE RMSE WAPE RMSE 

One 
regressor 

DWR  10.46 120.24 14.36 123.85 23.77 209.69 8.06 75.29 11.81 116.52 21.93 209.65 

DWR with 
additional 
information  

6.22 55.35 9.83 75.85 16.59 123.68 7.74 75.02 11.32 103.01 21.26 203.32 

Two 
regressors 

DWR   5.18 47.93 12.64 117.13 22.74 205.67 6.73 66.65 9.84 96.11 21.38 207.32 

DWR with 
additional 
information 

5.12 44.28 8.68 74.39 15.75 120.33 6.73 66.62 9.19 83.76 20.73 200.86 

Table 1: Results of the numerical experiments (1,000 replications) 
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5. Empirical application   
 
Complementarily to the numerical simulation carried out in the previous section, the two 
approaches are tested in an empirical application using a data set for Spain. Spain is 
administratively divided into 50 provinces for which official data on gross value added by 
industry (classified into 5 different sectors) are regularly published in the Regional Accounts 
by the National Statistical Institute (INE). However, the provincial and sectoral aggregates 
are available much sooner than the disaggregated information, whereas the disaggregated 
data by industry and province are made public with a time lag of several years. In this 
context, it would be interesting the application of an estimation procedure that produce 
disaggregated values quicker than the official ones. The empirical application will be 
conducted taking as reference year 2005. The target variable is the distribution of GVA per 
unit of labor by province and industry (now we aim at a latent indicator-target instead of a 
level-target). The industry aggregates are assumed as observable, as well as additional 
information required to define the weights    . Specifically, for weights we use that data on 

labor units (thousands of workers) by industry and province in year 2005. This is a realistic 
situation, given that the Spanish Labor Force Survey (EPA) publishes estimates of labor by 
industry and province with quarterly and annual frequency. With all this information the 
DWR equation has been estimated by means of GME. Tables 2 and 3 compare the results 
with the actual values by obtaining the absolute percentage error. Table 2 reports the 
average absolute deviations in percentage over the aggregate GVA by province, whereas 
Table 3 shows the same average deviation measures in relative terms to the industry 
aggregates.5 As a first indicator of the accuracy of the DWR technique, the average absolute 
error in the estimation of value added per worker is approximately 16%. The general trend 
that can be observed is that the errors obtained are concentrated in the agriculture and 
energy activities, and they diminish for the industries with a major share in the economic 
structure in Spain (manufacturing and services). In terms of variability in the error of the 
DWR approach across sectors, the biggest provinces in terms of population presented 
deviation that are above the average error (with the exception of Madrid and Valencia). 

 
Province GCE DWR Province GCE DWR 

Albacete 9.33 14.26 Jaén 5.47 9.19 

Alicante 2.59 11.90 León 2.74 16.65 

Almería 11.90 12.06 Lerida 4.18 12.43 

Álava 6.44 8.26 Lugo 11.70 13.45 

Asturias 0.78 13.30 Madrid 1.08 12.60 

Ávila 21.68 13.93 Málaga 11.11 12.44 

Badajoz 12.91 12.42 Murcia 1.59 15.51 

Bal. Islands 10.00 14.02 Navarra 7.46 10.75 

Barcelona 2.20 12.18 Orense 8.82 10.44 

Vizcaya 2.74 11.99 Palencia 11.21 12.06 

Burgos 9.84 7.90 Las Palmas 10.34 12.65 

Cáceres 19.37 10.74 Pontevedra 1.87 11.93 

Cádiz 2.59 14.30 Rioja 6.21 17.31 

Cantabria 2.42 10.40 Salamanca 8.10 10.90 

Castellón 3.60 11.34 Tenerife 9.53 11.05 

Ciudad Real 12.27 15.47 Segovia 15.59 15.71 

Córdoba 3.60 8.37 Sevilla 2.62 13.59 

Coruña 1.66 11.48 Soria 27.56 11.27 

Cuenca 17.00 13.02 Tarragona 5.38 10.05 

Gipuzcoa 10.95 7.95 Teruel 19.71 9.08 

Gerona 4.48 12.00 Toledo 6.79 15.05 

                                                           
5
 The results are weighted averages where each province and industry is weighted by their 

number of workers. 
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Granada 12.19 14.07 Valencia 0.76 13.50 

Guadalajara 14.85 9.74 Valladolid 5.79 11.67 

Huelva 4.43 17.66 Zamora 19.97 14.54 

Huesca 8.52 12.25 Zaragoza 3.78 12.59 

Average percentage abs. error DWR =  12.35 

Table 2: Absolute percentage errors by province (real GDP vs. Estimates) 

 

Industry DWR 

Energy and manufacturing 8.17 

Construction 17.14 

Commerce, trade and transport and communic. services 6.61 

Financial, insurance and real estate services 15.12 

Non-market services 14.71 

Average percentage abs. error DWR = 12.35 

Table 3: Absolute percentage errors by industry (real GVA vs. Estimates) 

 
 
6. Final remarks 
 
In this paper a distributionally weighted regressions (DWR) Entropy-based approach to 
Ecological Inference is formulated in presence of spatial heterogeneity throughout 
simulation experiments and a real data application. If compared to the traditional EI problem 
formulations, our approach is remarkably different and presents two distinctive differences 
in terms of model formulation: (i) spatial heterogeneity of parameters and (ii) data 
contraints for available aggregate information are introduced. The performance of the 
proposed approach is tested by means of numerical simulations under several scenarios. We 
studied the effect of the informative contribution contained in the “non target” variable to 
predict the sub-area values (or sub-area indicators) for target variables. We also evaluated 
the performance of the formulation in presence of different number of classes. The results 
observed in the simulation showed the goods results of the  DWR estimator expecially in 
small samples cases and when additional information at aggregate level is included. The 
application of the proposed approach is illustrated by means of a real-world example with 
data of Spain, where the target is the estimation of GVA per unit of labor by province and 
industry in 2005. The average deviations are similar to those obtained in the numerical 
simulation and, the DWR equation considered reduces the variability of the deviations 
across provinces and industries. In this study we have considered the case of continuous 
target variables. Further work should be done to explore the performance of the competing 
methods: (i) within a panel data framework; (ii) by improving model specification when the 
covariates alone do not succeed in accounting for the spatial heterogeneity; (iii) by exploring 
new IT- based composite estimators. Future research is also needed to evaluate the 
predictive accuracy of the proposed approaches by the use of discrete target variables and 
count data.  
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