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A characterization of chemical structures based on counting self-
returning walks in a molecular graph is found to be degenerate for
certain pairs of isospectral graphs. On the basis of endospectral
graphs, we present (without proof) two theorems for constructing
pairs of nonisomorphic graphs with identical atomic counts of self-
returning walks.

INTRODUCTION

Chemical graph theory has attracted an increasing research interest in
recent years.!™® Among the large variety of topics treated, the graph isomor-
phism problem has received considerable attention. The identification and
recognition of identical chemical structures (graph isomorphism problem) re-
mains one of the central problems in many chemical studies involving the
chemical species generation and enumeration, computer storage and re-
trieval of chemical compounds, computer-assisted organic synthesis, chemi-
cal data-bases, chemical similarity and structure-property relationships.
Out of the large class of graph invariants, we mention here the graph
theoretic polynomials and spectra, spectral moments, topological indices,
distances, walks and paths in graphs.

By removing all hydrogen atoms from the chemical formula of a chemical
compound containing covalent bonds, one obtains the hydrogen-depleted
graph (or molecular graph) of that compound, whose vertices correspond to
non-hydrogen atoms. In the particular case of hydrocarbons, the vertices of
the molecular graph denote carbon atoms.
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A number of useful graph definitions will be introduced. Let G = (V,E)
be a graph G with N vertices, without loops and multiple edges. The adja-
cency matrix of graph G, A = A(G), is the square N x N symmetric matrix
which contains information about the connnectivity of the vertices in G. Its
entries are defined as:

1, for vertices i, j adjacent
(A)ij =
0, otherwise

A walk in a graph is a sequence of edges which can be continuously tra-
versed, starting from any vertex and ending on any vertex. Repeated use of
the same edge or edges is allowed. A self-returning walk is a walk starting
and finishing at the same vertex. The length of a walk is the total number
of edges that are traversed.

Self-returning walks of length £ may be computed by considering the
diagonal elements of the first £ powers of the adjacency matrix A, due to
the fact that each diagonal element (A*); of matrix A* can be interpreted
as the sum of all self-returning walks of lengths % from/to vertex i.1%1! The
sequence of integers {(Al);,(A4?),;,...,(AY);} defines the self-returning
walk atomic code (SRWAC) of atom i in a molecule.!> The SRWAC charac-
terizes the environment of a given atom in a molecule.

Randié!? conjectured that the atomic codes defined on the basis of self-
returning walks are a complete set of graph invariants, i.e. there is no pair
of nonisomorphic graphs with the same collection of atomic codes.

The characteristic or spectral polynomial Ch(%,x) of the molecular graph G
is the characteristic polynomial of its adjacency matrix:!3

Ch(G, x) = det (xI - A) (1)

where I is the N x N unit matrix. Although it was initially conjectured that
the characteristic polynomial might be used as a unique descriptor of
graphs, nonisomorphic graphs with the same characteristic polynomial were
found,#2° and called isospectral or cospectral graphs.

An important connection between the characteristic polynomial of a mo-
lecular graph and the count of walks in the graph is stated by the Cayley-
Hamilton theorem.?! According to this theorem, if Ch(x) is the characteristic
polynomial of matrix A, then:

Ch4)=0. (2)
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Scheme 1

For example, the characteristic polynomial of tree T; (Scheme I) is
Ch(T;) = x° — 8x7 + 2025 — 173 + 4x . (3)

From the Calyley-Hamilton theorem, the following equation is satisfied
for the corresponding elements (Ak)ij of powers of the adjacency matrix of
tree T;:

The structural code of vertex i (SC;) was defined as:??

N
k=1

Based on the SC, Barysz and Trinajsti¢?? defined the ordered structural
code (OSC) as the ascending ordered sequence of SCs in a molecule.

As an example, the SRWACs and SCs of vertices in tree T; are given in
Table I. Only even-length walks are given, because in trees there are no odd-
length self-returning walks.

For tree T, the OSC sequence is given below:

OSC(T,) = {22, 30, 57, 63, 90, 107, 107, 143, 219} .

On the basis of the OSC, Barisz and Trinajsti¢ proposed the following con-
jecture: Two trees are isomorphic if and only if they have identical ordered
structural codes.

In certain cases nonequivalent vertices in a molecular graph have iden-
tical SRWACs.232¢ Such vertices are termed endospectral vertices, and the
corresponding graph is termed an endospectral graph.

The concept of endospectral graphs appeared in connection with the
problem of the graph isomorphism problem?528 and isospectral graphs (dis-
tinct graphs with identical spectrum, spectral moments and characteristic
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TABLE I

Self-returning walk atomic codes and structural counts of tree T;

Walk length
Vertex 2 4 € 8 SC
1 1 2 6 21 30
25 2 6 21 78 107
3 3 11 42 163 219
4 2 7 27 107 143
6 2 6 19 63 920
7 2 5 14 42 63
8 1 2 5 14 22
9 1 3 11 42 57

polynomial).2’-3" For example, tree T,, studied by Schwenk,?® has two en-
dospectral vertices, namely 2 and 5; any subgraph attached to either vertex
2 or vertex 5 produces a pair of isospectral graphs. The endospectral vertices
are depicted as distinct circles.

As a consequence of the Cayley-Hamilton theorem, if the SRWACs of two
nonequivalent vertices in a graph are identical up to the Nth power of the
adjacency matrix, they will present identical values also for higher powers
of the adjacency matrix.

Recently, the collection of irreducible endospectral trees up to 16 vertices
was reported.?! Endospectral graphs are responsible for the occurence of a
great number of isospectral trees, leading to, when one considers trees of
increasing size, the situation that led Schwenk?® to give the proposition:

Proposition. — If P, denotes the probability that a random tree on n vertices
has another tree cospectral with it, then P, tends to one as n tends to infinity.

The simplest way of producing a pair of isospectral graphs from tree T,
is to connect a vertex by a single edge to either vertex 2 or vertex 5. Trees
T, and Ts, obtained by the above procedure from tree T; (Scheme II), exhibit
the same characteristic polynomial:

W

T2 T3
Scheme 11



ON THE CONSTRUCTION OF ISOCODAL GRAPHS 67
Ch(T,) = Ch(T3) = x1° — 98 + 2625 — 27x* + 8x2 (6)

Isocodal vertices can also occur in different graphs, as illustrated in Fig-
ure 1 for trees T, — T};, where isocodal vertices are represented as black en-
larged circles. The SRWACs of the isocodal vertices of the graphs in Figure
1, corresponding to even-length walks up to the 20th power of the adjacency
matrix, are presented below:

SRWAC(T,,v) = SRWAC(T5,v) = {2 6 20 68 232 792 2704 9232 31520 107616}
SRWAC(Tg,v) = SRWAC(T,,v) = {3 11 43 171 683 2731 10923 43691 174763

699051}
SRWAC(Tg,0) = SRWAC(To,0) = {2 7 29 124 533 2293 9866 42451 182657
‘ 785932 }
SRWAC(Ty0,0) = SRWAC(T,;,0) = {2 6 22 86 342 1366 5462 21846 87382
349526 }

If one connects with an edge two isocodal vertices in two different
graphs, an endospectral graph is obtained. This procedure, if applied to the
four pairs of trees in Figure 1, gives the four irreducible endospectral trees

)\/ ANAAN
T4 Ts

//\\/l\J/\\

T7

e
PN

(O

Tg

2

T10 T11

Figure 1. Pairs of trees with isocodal vertices; isocodal vertices are represented as
black enlarged circles.
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with adjacent endospectral vertices from the collection of endospectral
trees.3! This is a simple method for constructing pairs of endospectral
graphs. A systematic search for isocodal vertices in trees up to 16 vertices
revealed the existence of a great number of pairs of nonisomorphic trees
with isocodal vertices.?

ISOCODAL GRAPHS

As stated above, the characteristic polynomial of a molecular graph is
not a unique structural descriptor. The analysis of the structural causes of
its degeneracy led to the characterization of molecular structures using
SRWAC!? and OSC.?2 Recently, a graphical procedure for obtaining pairs of
isocodal graphs, i.e. graphs with identical atomic codes, was presented.32 Us-
ing the graphical procedure, a pair of 5-trees (graphs with the highest vertex
degree 5) with 22 vertices was obtained, which is the smallest pair of isocodal
trees generated. A pair of isocodal 3-trees with 26 vertices was also generated.
This is a remarkable fact from the organic chemical viewpoint because the mo-
lecular graphs of organic compounds have degrees of at most four.

The negative answer to the conjecture that atomic codes are a complete
set of invariants is not the end of interest in SRWAC. First, because its rela-
tive low degeneracy makes it fit for practical purposes, and deserves further
development for unsaturated and heteroatom containing molecules. Second,
further studies, revealing the structural conditions of the apparition of de-
generate atomic codes may lead to the development of new, more selective
graph-theoretical invariants.

In the present paper, we report some more general results concerning
isocodal graphs. Two theorems concerning the graphical construction of iso-
codal graphs are presented and exemplified for trees and cyclic graphs.

b1

al a2

b1=a1 a2= b2 b2 =aj a2= b1

G1 G2
Scheme III
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Scheme IV

Theorem 1. — Let A be a graph with two endospectral vertices a; and a,.
Let b, be a vertex in a graph B; and b, a vertex in a graph B, such that
vertices b; and b, have the same walk-based atomic codes, i.e. the same
numbers of self-returning walks for each length of walk (Scheme III).

If G, is the graph constructed from A, B; and B, by identifying vertices
a, with b; and identifying a, with b, and G, is the graph constructed from
A, B, and B, by identifying vertices a; with b, and identifying a, with b,,
then there exists a one-to-one correspondence of the self-returning walk
atomic code for vertices from G, and G,.

A similar constructive rule was used to obtain pairs of graphs with an
identical distance degree sequence and distance sum sequence.3?

Theorem 1 enables one to generate a pair of isocodal 4-trees with 19 ver-
tices, namely Ty and T;3 (Scheme IV), by connecting the isocodal vertices

TABLE II

Self-returning walk atomic codes of the isocodal trees Ti9 and T;3

Walk length
Vertex 2 4 6 8 10 12 14 16 18
1 10 1 4 20 105 560 3016 186377 89580 493196
25 4 20 105 560 3016 16377 89580 493196 2731049
3 3 13 66 357 1981 11114 62689 354705 2011226
4 & 9 47 259 1455 8235 46763 266015 1514939
6 14 17 2 8 37 185 962 5108 27493 149378 817953
7 15 18 2 5 16 64 297 1492 7796 41593 224768
8 16 19 1 2 5 16 64 297 1492 7796 41593
9 1 3 13 66 357 1981 11114 62689 354705
11 3 12 56 281 1460 7732 41465 224512 1225384
12 13 1 3 12 56 281 1460 7732 41465 224512
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of trees T, and Tj, respectively, to the two endospectral vertices of tree T,.
The atomic codes of the vertices in the isocodal trees T,y and T,5 are pre-

sented in Table II.

When the pair of trees with isocodal vertices T, and Ty are connected to
the two endospectral vertices of graph C;, a pair of isocodal cyclic graphs,
Cy and Cj, are generated (Scheme V). The atomic codes of the vertices in

the isocodal graphs C, and C; are presented in Table III.

C1

Scheme V

TABLE III
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Self-returning walk atomic codes of the isocodal monocyclic graphs Cy and Cs

Walk length

Vertex 2 4 6 8 10 12 14 16 18
5 2 7 34 187 1074 6267 36794 216547 1275714

4 2 8 41 228 1275 7270 41735 240806 1395031

3 7 4 20 106 574 3150 17474 97846 552410 3141126

6 3 14 74 412 2348 13536 78528 457352 2670744

8 9 1 4 20 106 574 3150 17474 97846 552410

10 3 12 56 282 1478 7934 43298 239302 1336426
11 12 1 3 12 56 282 1478 7934 43298 239302
13 16 2 8 37 186 978 5276 28940 160704 901248
14 17 2 5 16 64 298 1510 7998 43426 2395568
15 18 1 2 5 16 64 298 1510 7998 43426
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aj=ci1 a=c2

ap=c2 az=c1
A
c
Hi H3

Scheme VI

Theorem 2. — Let A be a graph with two endospectral vertices a; and as.
Let C be a graph with two endospectral vertices ¢; and ¢, (Scheme VI).

If H, is the graph constructed from A and C by identifying vertices a,
with c; and identifying a, with ¢, and H, is the graph constructed from A
and C by identifying vertices a, with ¢, and identifying a, with c;, then there
exists one-to-one correspondence of the self-returning walk atomic code for
vertices from H; and H,.

A pair of isocodal monocyclic graphs with 16 vertices, C, and Cs, is ob-
tained when the procedure stated by Theorem 2 is applied to two trees T,
(Scheme VII). The atomic codes of the vertices in the two isocodal graphs
C4 and Cj are presented in Table IV. Graphs C, and Cj; represent the small-
est pair of known isocodal graphs.

Scheme VII
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TABLE IV

Self-returning walk atomic codes of the isocodal monocyclic graphs C4 and Cj

Walk length
Vertex 2 4 6 8 10 12 14 16
1 10 1 4 20 108 608 3520 20784 124416
2 5 4 20 108 608 3520 20784 124416 751808
3 11 3 13 68 388 2300 13872 84384 515696
4 12 2 9 49 288 1740 10620 65088 399680
6 14 2 8 37 188 1016 5724 33184 196208
7 15 2 5 16 64 300 1552 8528 48688
8 16 1 2 5 16 64 300 1552 8528
9 13 1 3 13 68 388 2300 13872 84384

CONCLUDING REMARKS

Two theorems, representing methods of constructing isocodal graphs, are
presented, along with some examples of pairs of isocodal graphs.

A pair of isocodal 4-trees with 19 vertices and a pair of isocodal mono-
cyclic graphs with 16 vertices were obtained. They represent the smalest
known isocodal graphs representing trees and cyclic graphs, respectively.
Since no exhaustive search for isocodal graphs was made, we do not claim that
there are no smaller pairs of isocodal trees and cyclic graphs, respectively.

Acknowledgement. — We thank the Ministry of Research and Technology for fi-
nancial support of this research under Grants 572B TA4 and TB11.
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SAZETAK

Karakterizacija kemijskih struktura évornim brojevima zatvorenih
Setnji: O konstrukciji izokodalnih grafova

Ovidiu Ivanciuc i Alexandru T. Balaban

Poznato je da opis kemijske strukture brojanjem zatvorenih Setnji u molekular-
nom grafu daje degenerirane rezultate za odredene parove izospektralnih grafova.
Na osnovi endospektralnih grafova prikazana su dva teorema (bez dokaza) za kon-
strukciju parova neizomorfnih grafova s identiénim &vornim brojevima zatvorenih
Setnji.
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