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Di-4-catafusenes are defined as catacondensed polygonal systems
consisting of two tetragons each and otherwise only hexagons. Di-
4-catafusenes are enumerated by combinatorial constructions and
by computer programming. For the unbranched systems (nonheli-
cenic + helicenic), as the main result of the present work, a com-
plete mathematical solution is reported. A new algebraic approach
has been employed, which involves a triangular matrix with some
interesting mathematical properties.

INTRODUCTION

Polygonal systems®® are chemical graphs* which represent condensed
polycyclic conjugated hydrocarbons. In precise terms, a polygonal system is
a system consisting of simply connected polygons, where any two polygons
either share exactly one edge or are disjoint. Many subclasses of polygonal
systems have been defined. For instance, biphenylenoids® consist of exactly
one tetragon each and otherwise only hexagons. A similar subclass of polygo-
nal systems is introduced in the present work. Only catacondensed systems,
viz. those without internal vertices, are considered here.

Definition: A di-4-catafusene is a catacondensed polygonal system con-
sisting of exactly two tetragons and otherwise only hexagons (if any).

A prototype of di-4-catafusenes is C,;gH;, [3]phenylene or terphenylene,
which has been synthesized both in the angular®” and in the linear form.%-!1

* Dedicated to Professor Nenad 13-i¢!, on the occasion of his appointment to the position of
Editor-in-Chief of this Journal.
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Many theoretical investigations have been conducted on different polygo-
nal systems with di-4-catafusenes among them.?2-3% These works deal with
conjugated circuits, Kekulé and algebraic structure counts, local aromaticity,
total n-electron energy, cyclic conjugation, etc. Some of them are devoted to
[A]phenylenes, but none of them treat exclusively the systems defined here
as di-4-catafusenes.

In the present work, the di-4-catafusenes were generated, enumerated
and classified. Different methods were employed: combinatorial construc-
tions, computer programming, and algebraic deductions. In particular, a
complete mathematical solution was achieved for the unbranched systems
by means of a new approach, which led to a special triangular matrix. The use-
ful formulation in terms of generating functions®3! is applied to some extent.

The number of polygons (or rings) in a di-4-catafusene is identified by
the symbol r. Then, the chemical formula reads C,,_,H,,.

COMBINATORIAL CONSTRUCTIONS

The smallest di-4-catafusenes (see Figure 1) were constructed by system-
atic drawings. Hereby the different positions of the two tetragons in relation
to each other were considered. One might speak about »stratum« in analogy
with the generation of double coronoids.>?

COMPUTER PROGRAMMING

The method of combinatorial constructions described above is not par-
ticularly convenient for computerization. Instead, a computer algorithm was
based on the generation of catacondensed benzenoids or catabenzenoids
(consisting of hexagons only), followed by a conversion of two hexagons in each
system to tetragons. A more detailed description of the procedure follows.

In a catabenzenoid, mark the L, and L, mode hexagons,?33 viz. the ter-

minal and linearly annelated ones. Convert two of these hexagons to
tetragons in all possible ways, assuring that isomorphic systems are avoided
if the catabenzenoid has a symmetry higher than C, viz. Dy, Cg, or Cy,.
Hereby the A, mode (angularly annelated) hexagons are neglected, since a
conversion to tetragon will straighten out the system so that it becomes iso-
morphic with one already generated from conversion of L,. Finally, an A4
mode (branching) hexagon cannot be converted to a tetragon at all.

The described algorithm is illustrated in Figure 2. Symmetrically non-
equivalent L; and L, mode hexagons are indicated by asterisks, the rest of
them by dots. The numerals indicate how many nonisomorphic di-4-
catafusenes are generated from each of the catabenzenoids.
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Figure 2. Generation of the 10 di-4-catafusenes with r = 4 by conversion of hexagons
to tetragons in catabenzenoids.

TABLE I

Numbers of nonhelicenic unbranched di-4-catafusenes

r D2h C2h C2u Cs Total
2 1 0 0 0 1
3 1 0 2 0 3
4 2 1 3 3 9
5 2 1 9 17 29
6 3 6 1 78 98
7 3 6 29 308 346
8 4 25 33 1148 1210
9 4 25 86 4105 4220
10 5 91 90 14290 14476
1 5 91 260 48759 49115
12 6 314 262 163791 164373
13 6 312 796 543181 544295
14 7 1043 776 1781948 1783774
15 7 1035 2464 5791224 5794730
TABLE II

Numbers of nonhelicenic branched di-4-catafusenes

r Dy, Coyy, Cy, Cq Total

4 0 0 1 0 1
5 0 0 2 5 7
6 0 1 10 42 53
7 0 1 18 297 316
8 1 10 54 1736 1801
9 1 10 99 9391 9501
10 2 71 252 47819 48144
11 2 74 472 234663 235211
12 6 414 1078 1119630 1121128
13 6 435 2120 5236497 5239058
14 10 2188 4547 24118027 24124772
15 10 2310 9320 109798460 109810100
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The numerical results are collected in Tables I and II for the unbranched
and branched di-4-catafusenes, respectively. It is emphasized that the num-
bers pertain to geometrically planar or nonhelicenic®® systems only. Nonheli-
cenic di-4-catafusenes are systems that can be generated from nonhelicenic
catabenzenoids. On the other hand, helicenic di-4-catafusenes can be gener-
ated in the same way (by conversion of hexagons to tetragons) from cata-
condensed helicenes (helicenic catafusenes).35

ALGEBRAIC SOLUTION FOR UNBRANCHED SYSTEMS

Outline of the Method

A complete mathematical solution was deduced for the numbers of un-
branched di-4-catafusenes, nonhelicenic and helicenic systems taken to-
gether. Basically, the same principles were used as on the classical enumera-
tion of unbranched catafusenes by Balaban and Harary,?® which has been
revisited elsewhere.3%3” The method®® has been described under the name
»stupid sheep counting« (where »stupid« refers to the counting not to the
sheep).33® The term »crude total« belongs to this description. The main line
of the stupid sheep counting applied to the unbranched di-4-catafusenes is
specified in the following.

For a given number of polygons (r), the crude total, ¢/,, counts the Dy,
systems once, the Cy, and Cy, systems twice, and the C, systems four times.
Hence,

J, =D, + 2C, + 2M, + 4A, (1)

where D,, C,, M, and A, pertain to the symmetry groups in the same order
as specified above. The total number of systems, say I,, is simply

I.=D,+C,+M,.+A,. (2)

On eliminating A, from Egs. (1) and (2), the following is obtained:
I = i(Jr + 3D, + 2C, + 2M,) . (3)

Hence, in order to solve the problem, one has to enumerate specifically the
symmetrical (Dy,, Cy;, and C,,) systems, in addition to finding the crude to-
tals.

The generating functions for the numbers of Eq. (3) are defined by:
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I0=2. Lo, Jw)=), J,«, D)=, D,

r=2 r=2 r=2
(4)
Caw)=2, Cox', M) =2, M.x" .
r=4 r=3
Triangular Matrices
Define the numbers:
au = 1, a(i+1)j= 2aij+ai(j_1) (5)

while a;y = 0, @;; = 0 when j > i. Collect these numbers into a triangular A
matrix as:

ilj 1 2 3 4 5 6
1 1

2 ) 1

3 4 4 1

4 8 12 6 1

5 16 32 24 8 1

6 32 80 80 40 10 1

Additional sets of numbers are defined similarly by:
b1 =1,b, 1=2b;+ b1y + G4 1 (6)

while b,, = 0, b;; = 0 when j > i. Here, §,, is the Kronecker delta: 5,, = 0 when
u #v,d,, = 1. Another triangular matrix B is constructed:

ilj 1 2 3 4 5 6
1 1

2 2 2

3 4 6 3

4 8 16 12 4

5 16 40 40 20 5

6 32 96 120 80 30 6



DI-4-CATAFUSENES 183

The A and B matrices are closely related; it was proved that:

1
bij=§a(i+1)j . (7)

Crude Total

Elements of the A matrix are chosen so that the sum along a row gives
the crude total for unbranched catafusenes® with i + 1 hexagons;

a;=8-1, (8)

In matrix notation:

A{l1,1,1,1,.}={1,3,9,27,..} . (9)

Furthermore, the individual a;; elements count the systems where r = i + 1
and j + 1 is the number of the L, and L, mode hexagons taken together.
Therefore,

i

g = [ngja,.j. (10)

J=1

holds for the crude totals of unbranched di-4-catafusenes; in matrix notation:

BHHOY S bsmns  w

The pertinent generating function in expanded form is

J(x) = 22 + 5x3 + 22x* + 90x° + 351x6 + 1323x7 + ... (12)

where any number of the coefficients is accessible from the above relations.

Dihedral and Linear Mirror-Symmetrical Systems

The dihedral (D) systems under consideration are linear, and their
numbers are

D,=|r/2] (13)
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whenLX | (the floor of X) is the largest integer not larger than X. The corre-
sponding generating function is:?

Dx) = x2(1 —2) 11— 221 = 22 + 2% + 2¢* + 2% + 3x% + 3" + ... (14)
Let L, be the number of linear mirror-symmetrical systems; they form a sub-

class of the M, systems, which belong to C,,. Then, by a little bit of combi-
natorics, where the stupid sheep counting can be evoked again, the following

is found:
L =—1{[rj—1r/21} (15)
ro|\g) -

and the associated generating function

L(x) = x3(1—x)2(1=x2)! = 2% + 2x* + 4x% + 625 + 9x7 + 1228 + ... (16)

Centrosymmetrical Systems

In the enumeration of the C, centrosymmetrical (Co;,) systems, the B ma-
trix comes into operation. The sum along a row of B gives the numbers of
unbranched Cy, catafusenes®® with 2i + 2 and with 2i + 3 hexagons:

i
1 .
Z bij=§(3l -1). 17
J=1
In matrix notation:
B{1,1,1,1, ..} = {1, 4, 13, 40, ...} . (18)

Now, it is found for the di-4-catafusenes under consideration that

i

i
: 1 .
CZi+2=CZi+3=Z Jbij=§Z JAG 1) - (19)
j=1 J=1

In matrix notation:
B {1, 2, 3,4, ..} ={1, 6, 25, 92, ...} (20)

or
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%(A -D{1,2,3,4,5,..} ={0, 1, 6, 25,92, ...} (21)

where I is the identity matrix.

With regard to the formalism of generating functions, it is expedient to
introduce c; as expression (19), and

0

c(x) = Z cxt = x + 6x2 + 25x% + 92x* + 321x5 + 109046 + ... (22)
=1

In terms of this function, one finds that

Clx) = x%(1 + 2)e(x®) = x* + x% + 6x8 + 627 + 2548 + 2529 + ... (23)

Mirror-Symmetrical Systems

The mirror-symmetrical (C,,) unbranched di-4-catafusenes with num-
bers M), are divided into three subclasses according to

Mk=Lk+Ck+Kk' (24)

The numbers L, pertain to the linear systems, which are treated above. The
C), systems stand in a one-to-one correspondence to the centrosymmetrical
systems as cis/trans isomers.

There remains a class of K, systems, which comes up for odd r values
only. In a similar way as in the case of C,, the following was found:

i

Ky i1 =Z Ja; (25)
-1
Afl,2, 3,4, ..} ={1,4,15,54, ..} . (26)

In the formalism of generating functions, introduce k; as expression (25).
Consequently,

<o}

k@)= D ki =x+ 4+ 155 4 Bdat 4 . @7
=1

and
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[ee]

K=, Kx'=xh(@®) =25+ 45 + 1527 + 542 + 18911 + .. (28)

r=3

Further Developments

The expressions in Eqgs. (19) and (25) were obtained in explicit forms by
a lengthy derivation, which will not be included here; the result is:

Coira=Cora=gl G +3)F 1=+ 1) (29)

Ky 1=(1+2)3"2, (30)

In consequence, functions c(x) and k(x) of Egs. (22) and (27), respectively, are
obtainable in explicit forms. The following results were deduced:

elx) = x(1 — 2x — x2)(1 — x) %1 — 3x)2 (31)

k(x) = x(1 - 2x)(1 — 3x)2 . (32)

Also, the crude total Eq. (10) was deduced in explicit form by tedious com-
binatorial considerations. Here, we only give the result:

g,y = %(i + 1) +8) 3-8 (33)

The corresponding generating function (12) is

J(x) = 22 (1 — 4x + 4x®)(1 — 3x)2 . (34)

Complete Solution

The above analysis made it possible to express the I, numbers of un-
branched di-4-catafusenes by finite summation in terms of the a;; elements,
which are accessible through Eq. (5). The result is:

r-1 r/2] r-1)/2
1y [j+1 AR .
L=7 2 ( 5 jﬂ(r-nﬁ@ *3 2 Jaymi+ Y, Jao_nizg| - (35)
J=1 j=1

j=1

It is understood that a,; is equal to zero if ¢ is not an integer; therefore,
the last summation in Eq. (29) is effective only for r = 3, 5, 7,... . The sum-
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TABLE III

Numbers of unbranched di-4-catafusenes
(nonhelicenic + helicenic)

r Dy, Coyy, Csy, Cs Total
2 1 0 0 0 1
3 1 0 2 0 3
4 2 1 3 3 9
5 2 1 9 17 29
6 3 6 12 78 99
7 3 6 30 312 351
8 4 25 37 1183 1249
9 4 25 95 4313 4437
10 5 92 112 15388 15597
11 5 92 306 53928 54331
12 6 321 351 186651 187329
13 6 321 1005 639033 640365
14 7 1090 1132 2168938 2171167
15 7 1090 3326 7305104 7309527

mations can be substituted by virtue of relations (29), (30), and (33), yielding
the following result:

I- %{%r(r Tt @ v ir/2 e 2f3enrey %[1 ~ -1y [r + 3)3¢- 5>/2}. (36)

This formula is explicit in r. Finally, we give the corresponding genera-
tion function:

I(x) = %xZ[(l —4x +4x%)(1-3x) 3 + B —x)(1 —2) 21 - x2)L +

(37
+40%(1 - 2x¢% - 2H)(1 - 2711 - 2H)71(L - 3% 2 + 2x(1 - 2x2)(1 - 3x%)2] .

Numerical values of I,, including the distributions of these numbers into dif-
ferent symmetry groups, are collected in Table III.

BACK TO COMBINATORIAL CONSTRUCTIONS

The totals in Tables I — III display the rapidly increasing series of inte-
gers when r increases. Very soon, these numbers seem to exceed all imag-
inable needs in organic chemistry. Nevertheless, the integer series of this
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TABLE 1V
Numbers of helicenic unbranched di-4-catafuse-
nes
r Csp, (o Cs Total
6 0 1 0 1
7 0 1 4 5
8 0 4 35 39
9 0 9 208 217
10 1 22 1098 1121
11 1 46 5169 5216
12 7 89 22860 22956
13 9 209 95852 96070
14 47 356 386990 387393
15 55 862 1513880 1514797

kind have considerable interest in mathematical chemistry and in pure
mathematics.? In order to be really useful, it is important that the deduced
numbers are exact, no matter how large. This feature is important for sev-
eral reasons. Firstly, subclasses of different systems are often enumerated
in one way and may include small numbers even of chemical interest, but
they may add up to large totals enumerated in a different way. Then, a
check of the first calculations would be meaningless if one could not trust
the large numbers to be exact. Secondly, enumerations may involve rela-
tively small differences between large numbers. Examples of this case are
treated in the following.

It is observed that the computer-generated numbers in Table I and the
numbers from algebraic solutions in Table III are identical up to r = 5. This
is as it should be and already a good check, since the smallest helicenic
catafusene®36 is known to occur at r = 6. In general, the numbers of the
helicenic systems under consideration are obtained by subtracting the num-
bers of Table I from those of Table III. The results are entered in Table IV.
Here, for instance, the totals 39 and 217 (r = 8, 9) emerge from the differ-
ences 1249 — 1210 and 4437 — 4220, respectively.

O

1 3 1

Figure 3. Generation of the 5 helicenic unbranched di-4-catafusenes with r = 7 by
conversion of hexagons to tetragons in catafusenes.
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The method of combinatorial constructions (see above) was used to gen-

erate all the helicenic unbranched di-4-catafusenes for < 9. This was a rela-
tively easy task since the forms of the corresponding catafusenes are avail-
able.3® As a pleasing fact, the relevant numbers of Table IV were indeed
reproduced. The procedure is exemplified for r = 7 in Figure 3. It should be
compared with Figure 2 with regard to the marking of hexagons and indi-
cated numbers. However, representation in terms of dualists?35:3641 is em-
ployed in Figure 3.
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SAZETAK
Di-4-catafuzeni: nova klasa poligonskih sustava koji

predstavljaju policikliéke konjugirane ugljikovodike

Sven J. Cyvin, J. Brunvoll i Bjorn N. Cyvin

Di-4-katafuzeni definirani su kao katakondenzirani poligonski sustavi koji se sa-

stoje od Sesterokuta i to¢no dva getverokuta. Di-4-katafuzeni prebrojani su kombi-
natornim i raéunalnim postupcima. Kao glavni rezultat u radu, prikazano je cjelovito
matemati¢ko rjeSenje za nerazgranate sustave (helicinske i nehelicinske, zajedno).
Pri tome je upotrijebljen nov algebarski pristup koji ukljucuje trokutastu matricu
zaminljivih matematilékih svojstava.
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