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The Monster Graph describing a rapidly reversible degenerate
Cope rearrangement of bullvalene molecule is considered. Some
global properties of this 1209600-vertex reaction graph, such as
shell counts, properties of geodesics connection enantiomers etc.,
are discussed.

INTRODUCTION

The Cope rearrangement of bullvalene C,oH,, is the most famous example
of a degenerate rearrangement. The existence of this highly unusual molecule
was predicted by Doering and Roth! in 1963, and bullvalene was synthesized
the very next year by Schroder.? The reaction graph of bullvalene describing a
fast Cope rearrangement is extremely large. It contains as many as 1209600
vertices and, for this reason, it was named »Monster Graph«.3-3

The first reaction graphs treated in the literature were rather small,
containing up to 20 or 30 vertices.5 The largest reaction graph treated rela-
tively completely in the literature is the reaction graph describing the in-
tramolecular rearrangement of the P;3- ion.? This reaction graph has 1680
vertices. Though this graph is almost two orders of magnitude larger than
reaction graphs previously considered in the literature, it is still three or-
ders of magnitude smaller than the Monster Graph! Not surprisingly, very
little is known about the Monster Graph. Oth, Muller, Gilles and Schroder’
report the following properties of this graph:

— Each point of the graph is common to three minimal cycles.
— Each line is common to two minimal cycles.

— The graph is most likely nonplanar.

— The shortest cycle (graph girth) counts 14 points.

— The graph consists of 10!/3 = 1209600 points.
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The only non-obvious statement, that about the dimension of the short-
est cycle, is not correct! As shown by Randi¢, Oakland and Klein,? the Mon-
ster graph contains some cycles of size 12. Even the connectivity of the Mon-
ster Graph is not firmly established. Thus Klin, Tratch and Zefirov consider
three different models for a Cope rearrangement of bullvalene.* One of these
models (model ITA) implies that the Monster graph contains two connectiv-
ity components containing 10!/6 = 604800 vertices each.

Figure 1 shows the bullvalene skeleton and a Cope-type mechanism of
breaking and forming bonds. This is a standard mechanism assumed by
most authors, and it corresponds to model IIB of Klin et al.* Each structure
¢ is represented as an ordered string of ten labels that correspond to ten
bullvalene carbon atoms. Thus, ¢ = abc de fg hi j represents the initial ar-
rangement of Figure 1. Following Randié et al.,® we call such strings codes.
Code labels are grouped in one triplet, three doublets and one singlet: the
triplet (abc) describes three atoms of the bullvalene base ring, and by con-
vention atoms a, b and c are listed clockwise, if one looks at a bullvalene
molecule from the direction of the base ring; doublets (de), (fg) and (ki) de-
scribe the three bullvalene double bonds in such a way that atoms d, f, and 2
are adjacent to the base triangle atoms a, b and c, respectively; finally, the
last label belongs to the carbon atom at the apex of the structure. Since the
three atoms describing a base ring can be cyclically reordered, there is some
ambiguity in the structure notation. In perticular, the three codes

abc de fg hi j
bea fg hi de j (1)
cab hide fg j

Figure 1.
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represent the same structure. This ambiguity is fixed with the requirement
that the first label of the triplet is alphabetically the first. With such a con-
vention, there is a unique code for each bullvalene structure.

Granting the above convention, the three rearrangements shown in Fig-
ure 1 are:

A(abc de fg hi j) = gji fb ed hc a
Blabce de fg hi j) = eij da he gf b (2)
Clabc de fg hij) =ejgdaih fbc.

One easily finds that these rearrangements effect permutations (of carbon
atoms) of odd parity. Further, the convention that the first lable of a triplet
should be alphabetically the first does not cause any ambiguity concerning
structure parity. This follows from the fact that the three codes Eq. (1) which
differ only in a cyclic permutation of a base ring and which represent the
same structure, are of the same parity. Hence, each structure has a well de-
fined parity, and structures connected by Cope rearrangements are of the
opposite parity. We also note that the code ¢ = acb de hi fg j corresponds to
the enantiomer of the structure ¢ = abc de fg hi j, and that structures ¢ and
¢ are of the opposite parity.

SOME PROPERTIES OF THE BULLVALENE MONSTER GRAPH

In a Monster graph G, each vertex represents one bulvalene structure,
while each bond represents one Cope-type rearrangement. As shown above,
each vertex has a well defined parity, and each bond connects vertices of the
opposite parity. The bullvalene Monster Graph is so huge, that it is impos-
sible to draw this graph, as this is the case with small reaction graphs con-
taining a few tens of vertices.>® Hence, one has to describe this graph in
terms of some global properties, such as the graph diameter (largest dis-
tance between two graph vertices), graph connectivity (is a Monster Graph
connected?), »radial« distribution of neighbours at different shells (dis-
tances) from the the initial vertex, distance between enantiomers, graph
girth (dimension of the shortest cycle), cyclic and ring structure, etc. Here,
we present some of these properties.

The most important global property of_.a Monster graph is probably its
shell distribution. This is a radial distribution of neighbours, as seen from
the initial »seed« vertex. A Monster Graph is regular of degree three, and
all its vertices are equivalent. It is, hence, of no consequence which vertex
is chosen as the initial seed vertex. Without loss of generality, one can
choose the initial vertex to be ¢ = abc de fg hi j. Starting from this initial
vertex, we build various shells at continuously increasing distances. Thus,
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TABLE I
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Shell structure of a Monster graph. In the k-th shell there are Py;
vertices with i predecessors, and the total number of vertices is Ny.

Shell Pki Pkg Pk3 Nk
0 0 0 0 1
1 3 0 0 3
2 6 0 0 6
3 12 0 0 12
4 24 0 0 24
5 48 0 0 48
6 90 3 0 93
7 171 6 0 177
8 330 9 0 339
9 633 18 0 651

10 1200 42 0 1242

11 2214 111 2 2327

12 4143 198 0 4341

13 7599 438 3 8040

14 13737 936 9 14682

15 24315 1989 39 26343

16 42360 3999 87 46446

17 69627 9090 304 79021

18 105336 19239 1510 126085

19 141708 37617 4323 183648

20 153633 66792 11272 231697

21 116217 89796 26083 232096

22 47472 72945 42956 163373

23 8436 26931 35197 70564

24 624 3978 11741 16343

25 18 282 1548 1848

26 9 39 77 125

27 0 6 15 21

28 0 3 0 3

29 ' 0 0 1 1

the 0-th shell contains only one vertex, the initial vertex ¢. The first shell
contains three vertices which are at distance one from the initial vertex, etc.
In general, the k-th shell contains N, vertices. These are all the vertices that
are at distance k from the initial vertex. Since each bond connects vertices
of the opposite parity, the Monster Graph is bipartite, all vertices in the k-th
shell have the same parity, and no two vertices of the k-th shell are mutually
connected. Out of N, vertices contained in the k-th shell, P, vertices are
connected to only one vertex of a previous shell, P,, vertices are connected
to two vertices of a previous shell, and P,3 vertices are connected to three



BULVALLENE REACTION GRAPH 219

vertices of a previous shell. Since there is no connection between vertices of
the same shell, and since each vertex is connected to exactly three other ver-
tices, one has Pj,; + Py, + Py3 = N, (k # 0). The case k = 0 is excluded, since
a single vertex ¢ contained in the initial shell is connected to no previous
vertex.

The shell distribution of a Monster Graph is shown in Table I. This table
contains a lot of information about the Monster Graph.

First, one easily finds that the sum of all counts N, equals the total num-
ber of vertices in a Monster Graph. This graph is hence connected. Next,
since according to Table I, the Monster Graph has 30 shells, the graph di-
ameter is D = 29. Further, a single vertex in a shell 29 can be shown to cor-
respond to the enantiomer ¢ = acb de hi fg j of the structure representing
the initial vertex ¢ = abc de fg hi j. We call enantiomers at the maximal dis-
tance antipodal.® Vertices in shells 0 and 29 are thus antipodes, and the dis-
tance between each pair of enantiomers equals the graph diameter 29. One
also observes in Table I that shell 6 contains (for the first time) vertices con-
nected to two vertices of the previous shell. Since Py, = 3, there are three
such vertices, and these three vertices must complete three cycles of size 12.
This confirms the result obtained by Randi¢, Oakland and Klein that the
girth of a graph is 12. In the next shell, there are six such vertices. Hence,
at this level, one completes six cycles. Three out of these six cycles should

TABLE II

Shell counts of vertices incident to geode-
sic lines connecting antipodes ¢ and §.
The total number of such vertices is 12548.

k M, k M,
0 1 15 1272
1 3 16 1188
2 6 17 1068
3 12 18 918
4 24 19 684
5 48 20 477
6 93 21 303
7 177 22 177
8 303 23 93
9 477 24 48

10 684 25 24

11 918 26 12

12 1068 27 6

13 1188 28 3

14 1272 29 1
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TABLE III

An example of a geodesic connecting antipodes
o =abcdefghijand § =acb de hi fgj

abc de fg hi j — gji fb ed hc a —> acd bf hi ¢j g —
fijg ba ed ih ¢ —» chd ab ig ej f > bjf ac ed gi h —
dhi ej ca gf b — abf ch je gi d — die hc gf jb a —
acb fg hd je i — eigjb dh fac —» ahc fg di bj e —»
egj id fa bc h — chd bj af ie g — efg id ah jb ¢ —»
bhc jg af di e — eif gj dc ah b — bjh cd ge af i —
diecb fagih —> abh ficd jge > eigdcfajhb >
bch af de jg i — fgi ab jh ed ¢ — bdc af ei hj g —
gji fahced b — adb fg ei ch j — hij cb ed gfa —
abf de ch gj i —» eji da gf hc b — acb de hi fg j —

correspond to three 12-cycles initiated at shell 1, while the remaining three
should complete a 14-cycle. There are, hence, three 14-cycles containing the
initial vertex. In addition, since the Monster graph is bipartite, all cycles in
the bullvalene reaction graph are even. A more detailed discussion of the cy-
clic and ring structure of the Monster Graph will be given elsewhere.?

Besides shell distribution, another important feature of a reaction graph
is the structure of geodesics (the shortest path connecting two vertices) con-
necting antipodes ¢ and ¢ in shells 0 and 29, respectively. Let G, be a graph
which is a subgraph of a reaction graph G, and which contains all the ver-
tices contained in at least one geodesic connecting ¢ and ¢. Graph G, contains
the initial vertex ¢ and its antipode ¢, as well as all geodesics connecting these
two vrtices. Out of N, vertices contained in the k-th shell, only M, are contained
in a graph G,. Quantities M, are shown in Table II. Since all vertices are
equivalent, the pattern of geodesic lines as seen from the initial vertex ¢ is
identical to this pattern as seen from its antipode ¢. Hence, M} = Myg ;. One
further finds that the sum of all M, equals 12548, wich is the order of graph
G,. Graph G, is almost a hundred times smaller than the reaction graph G.
This shows that only about 1% of all bullvalene structures participated in the
shortest conversion path of the initial structure ¢ to its enantiomer ¢.

In Table III, an example is given of a geodesic © connecting the initial
structure ¢ with its antipode ¢. The first structure in this Table is the initial
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structure ¢, while the last structure is its antipode. Following the rearrange-
ment rules shown in Figure 1, one can easily verify that 30 structures shown
in this Table really form a path connecting the initial structure to its an-
tipode. Since this path is geodesic, it represents the shortest conversion
pathway between two enantiomes.

Replacing each structure in path = by its antipode, one forms an an-
tipode path 7. This path is another geodesic connecting structures ¢ and .
Following the reasoning similar to the one given in Ref. 3, one can show that
paths 7 and 7 close a 58-ring.® This is the largest ring theoretically possible
in the Monster Graph.

CONCLUSION

This is a preliminary report on a bullvalene rearrangement graph,
known as Monster Graph. A more detailed account of this graph, as well as
a description of the computer program that was used to derive various graph
properties, will be given elsewhere.® Though the Monster Graph contains as
many as 1209600 vertices, this program developed by the author, runs quite
successfully on a 386-PC under DOS.
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. In Ref. 3, there is a Conjecture stating that for an arbirary reaction graph (subject
to some mild conditions) the distance between enantiomers equals diameter D of
the isomerization graph. If true, this Conjecture would imply that each enantio-
mer pair is antipodal. As shown in the present paper, this is the case of the Mon-
ster Graph, and this is also the case of the reaction graph that was studied in
Ref. 3 and which describes rearrangement of the P7% ion. However, this conjec-
ture is not generally true, and reaction graphs can be constructed where the di-
stance between enantiomers is smaller than the graph diameter.® There are, hen-
ce, genuine enantiomer pairs that are not antipodal.
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SAZETAK
Reakcijski graf bulvalena
Tomislav P. Zivkovié

Razmatran je tako zvani »graf monstrum« koji opisuje reverzibilnu Copeovu pre-
gradnju molekule bulvalena. Diskutirana su neka globalna svojstva tog reakcijskog gra-
fa koji sadrzi 1209600 verteksa, kao na primjer statistika ljusaka koja opisuje radijalnu
raspodjelu susjedstva, svojstva geodetskih linija koje povezuju enantiomere, itd.
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