Chemie von α-Aminonitrilen. XVII.* Oligo(nukleodipeptamidinium)-Salze**

Peter Lohse, \# Berndt Oberhauser,"\# Barbara Oberhauser-Hofbauer, \#\#\# Gerhard Baschang,\#\#\#\# und Albert Eschenmoser
Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16, CH-8092 Zürich

Received December 14, 1995; accepted January 15, 1996
Experiments directed towards a chemical etiology of nucleic acids aim at uncovering facts that may help us to rationalize Nature's choice of the RNA structure in the evolution of a genetic system. A strategy towards finding such facts is to synthesize potential nucleic acid alternatives and to systematically compare their functional properties (base pairing, nonenzymic replication, sequencespecific catalysis) on the chemical level with those of RNA. Nucleic acid alternatives are chosen by the criterion of whether their potential for constitutional self-assembly without enzymes is judged by chemical reasoning to be comparable to, or greater than, that of RNA. Alternatives which turn out to be functional could have (but have not or may have only temporarily) been chosen as a genetic system. Alternatives that are found to be non-functional can be dropped from the list of hypothetical RNA-competitors.
Parallel to our work on nucleic acid alternatives based on hexopyranose sugars, we have studied potential pairing systems that contain dipeptide derivatives instead of sugar phosphates as building blocks of their backbones. Oligo-nucleodipeptamidinium salts of the constitutional type shown in Figure 3 can be interpreted as representing oligomers of corresponding nucleodipeptide nitriles which, in turn, can be derived from dipeptidic serine ni-

[^0]triles. This paper summarizes our observations on the synthesis and properties of thyminyl- and adenyl-derivatives of (L)-oligo-nucleodipeptamidinium salts (up to decamers) belonging to the constitutional type shown in Figures 9 and 10. Such oligomers are soluble in aqueous medium but turn out to be sensitive to hydrolysis at pH -values above 4 (half life of dimers at $\mathrm{pH}=6,1-3 \mathrm{~h}$ at room temperature, $c a .30 \mathrm{~h}$ at $0^{\circ} \mathrm{C}$). Neither in UV-spectroscopically determined mixing curves ($c \approx 11 \mu \mathrm{M}, \mathrm{pH}=4,4^{\circ} \mathrm{C}, 1 \mathrm{M} \mathrm{NaCl}$) of mixtures of hexamers that contain complementary bases, nor in CDspectra of (1:1) mixtures of the corresponding decamers (similar conditions) could we observe signs of adenine-thymine base pairing. Although these observations must be considered as preliminary since they are rather limited with regard to structural variations, conditions and observation methods, the properties observed for these materials discourage the view that such oligonucleodipeptamidinium salts might have been competitors to RNA.

EINLEITUNG

"Sie (die Naturstoffe) sind das Ergebnis einer drei Milliarden Jahre dauernden Entwicklung der lebendigen Welt und haben während einer langen Zeit die Auslese der Evolution überstanden. Ich bin überzeugt, dass sie immer eine Botschaft enthalten, und dass es unsere Aufgabe ist, diese zu entziffern." (V. Prelog)

Dieses Bekenntnis zur Chemie der Naturstoffe hat Vlado Prelog vor einigen Jahren in seiner persönlichen Rückschau »Gedanken nach 118 Semestern Chemiestudium ${ }^{3}{ }^{3}$ abgelegt. Es ist das Credo eines Chemikers, der - mag man ihn auch heute vorwiegend als Stereochemiker sehen sein wissenschaftliches Werk letztlich aus der Quelle der Chemie der organischen Naturstoffe schöpfte. Die einzigartige Stellung, die der Jubilar innerhalb der organischen Chemie seiner Zeit einnahm, gründete indessen nicht zuletzt darin, dass er dank der ungewöhnlichen Adaptibilität seiner Forschungsinteressen und der thematischen Breite seiner Forschungserfolge das Kunststück fertig brachte, zum »harten Kern" von zwei mächtigen Organiker-Clans gleichzeitig zu gehören, zum Clan der Naturstoffchemiker und zu dem der physikalischen Organiker. Die Naturstoff-Magnaten Robert Robinson und Robert Burns Woodward waren ebenso seine Freunde wie die Potentaten der physikalisch-organischen Chemie Christopher Ingold und Saul Winstein es waren. Da konnte es vorkommen, dass Prelog die Rolle eines Vermittlers wahrzunehmen hatte wenn es darum ging, bei Vertretern des einen Clans mehr Verständ-
nis für die Bedeutung der Chemie des andern zu schaffen. Und so tönt das obige Bekenntnis wie ein Nachhall auf eine von Prelog oft erzählte, denkwürdige Episode aus jener Zeit: Saul Winstein habe bei einem seiner Besuche an der ETH während eines lebhaften chemischen Gedankenaustausches in seinem Büro ihm, Prelog, die Frage gestellt »Vlado, why do you waist your time with natural products?« Prelog, nicht verlegen, erinnerte den Protagonisten der amerikanischen physikalisch-organischen Chemie daran, dass es schliesslich die systematische Erforschung von Naturstoffen gewesen sei, welche die meisten wirklich bedeutenden Fortschritte in der organischen Strukturtheorie hervorgebracht hätten, und dass er, Saul Winstein, übrigens ja auch mit Derivaten von Naturstoffen arbeite, denn das [2,2,1]-Bicycloheptan-System sei ja schliesslich das Grundgerüst des Campher-Moleküls.*

Aus heutiger Sicht und insbesondere aus dem Blickwinkel einer chemischen Aetiologie biomolekularer Strukturen heraus hört sich Prelog's Credo an die Botschaft, welche die Naturstoffe in sich trügen und die es zu entziffern gelte, als prophetisch an. In einer chemischen Aetiologie der Naturstoffe fragt man nach dem Ursprung ihrer Strukturen, nicht danach wie, sondern warum die Natur diese Strukturen macht, warum es die und nicht andere sind, welche in der sonst unabsehbaren Welt möglicher molekularer Strukturen dadurch ausgezeichnet sind, als Biomoleküle auf uns gekommen zu sein. Bezieht man sich dabei auf die Strukturtypen der biologisch fundamentalen Naturstoff-Familien, d.h. der Nukleinsäuren, Proteine, Zucker und Cofaktoren, so sind solche Warum-Fragen Teil einer chemischen Aetiologie des Lebens selbst.

Zu einer wissenschaftlichen Aetiologie von Naturstoffen kann solches Fragen allerdings nur dann führen, wenn es von einer Strategie zum Experiment begleitet ist. Eine solche ist die systematische chemische Untersuchung von Biomolekül-Alternativen. ${ }^{4,5}$ Es sind dies Strukturen aus der Umgebung eines gegebenen Biomoleküls im Strukturraum der organischen Moleküle, welche nach chemischem Ermessen eine vergleichbare, oder gar höhere Chance der Selbstkonstituierung unter natürlichen Bedingungen als die entsprechende Biomolekülstruktur selbst gehabt haben sollten. Die experimentelle Strategie besteht darin, solche Alternativstrukturen mit Methoden der chemischen Synthetik herzustellen, ihre im Hinblick auf die biologische Funktion der betreffenden Biomolekülstruktur relevanten chemischen Eigenschaften festzustellen und dieselben mit den entsprechenden Eigenschaften des Biomoleküls (oder Molekültyps) systematisch zu vergleichen. Daraus wird entscheidbar, ob solche Alternativen nicht nur bezüglich ihrer Bildungschance, sondern auch funktionell zu Biomolekülen hätten werden können.

[^1]Erweist sich eine Alternativstruktur auf chemischer Ebene als nichtfunktionell, so bedeutet dies eine Falsifizierung der Hypothese, dass die Struktur im Laufe der Evolution anstelle der betreffenden Biomolekülstruktur hätte selektioniert werden können. Was aber, wenn sich das Umgekehrte herausstellt, d.h. eine Alternativstruktur sich der Biomolekülstruktur auf chemischer Ebene als funktionell überlegen erweist? Von einem darwinistischen Standpunkt aus wäre eine solche Möglichkeit eigentlich gar nicht vorzusehen, denn wie soll eine Alternativstruktur einem Biomolekül funktionell überlegen sein? Wenn aber doch, dann würden sich zahlreiche, aetiologisch unter Umständen ertragreiche Fragen anstellen: solche über den Zusammenhang zwischen Struktur und Funktion, über den Unterschied zwischen funktioneller Überlegenheit auf chemischer und auf biologischer Ebene, oder Fragen über die Determinanten der biologischen Evolution, »den Gesetzen und den Ereignissen«; jedenfalls würden wir in einem solchen Fall der betreffenden Naturstoffstruktur näher getreten sein, so, dass wir vielleicht die »Botschaft, die sie in sich trägt« zu vernehmen vermögen.

Im Zuge der systematischen Bearbeitung von Alternativen des Strukturtyps der natürlichen Nukleinsäuren sind wir in unserem Laboratorium tatsächlich auf ein Alternativsystem gestossen, das auf chemischer Ebene bezüglich der relevanten Eigenschaften, nämlich Stärke und Selektivität der Basenpaarung sowie Befähigung zur (nicht-enzymatischen) Replikation, der natürlichen RNA überlegen zu sein scheint. ${ }^{6,7,1}$ Was sich hieraus für die Aetiologie der natürlichen RNA ergeben wird, muss der Fortgang der experimentellen Bearbeitung der Chemie der p-RNA zeigen. Die aetiologische Brisanz der Alternativ-Struktur p-RNA liegt vorab in ihrer Funktionstüchtigkeit auf chemischer Ebene, dann aber vor allem auch darin, dass sie zwar eine zur RNA unterschiedliche Konstitution besitzt, aber aus den gleichen Bausteinen wie diese besteht, und dass im Laufe der Evolution jeglicher Weg einer Erstkonstituierung des Strukturtyps der RNA ganz nahe am Strukturtyp der p-RNA vorbeiführen musste, ja eigentlich nach chemischem Ermessen mit vergleichbarer, wenn nicht grösserer Chance auch zu letzterem hätte führen können.

Sozusagen als Gegenstück zur »erfolgreichen« Alternative p-RNA gibt es den seinerzeit ebenfalls in unserem Laboratorium bearbeiteten, aber als RNA-Alternative (wenigstens bislang) "erfolglos" gebliebenen Strukturtyp der Oligo(nukleodipeptamidinium)-Salze. Den Begriffen "erfolgreich" und "erfolglos« ist im vorliegenden Zusammenhang mit problemgerechten Vorbehalten zu begegnen. Es ist im Grunde für den Aufbau einer chemischen Aetiologie der natürlichen Nukleinsäuren wenn nicht ebenso, dann doch ebenfalls wichtig, das Spektrum der bereits auf chemischer Ebene "erfolglosen" und damit als evolutionäre Konkurrenten der RNA nicht in Frage gekommenen Alternativ-Strukturtypen zu kennen, als gegebenenfalls nur die "erfolgreichen« und damit auf Grund ihrer Funktionstüchtigkeit auf chemi-
scher Ebene als solche Konkurrenten in Frage gekommenen Strukturvarianten. ${ }^{5}$ Es ist dies für uns einer der Gründe, hier einige Ergebnisse der in unserem Laboratorium im Zeitraum 1986-912,8,9,10 über peptidische Nukle-insäure-Alternativen durchgeführten Arbeiten zusammenzufassen; ein weiterer Grund ist die Tatsache, dass in der Zwischenzeit eine Reihe von Arbeiten aus anderen Laboratorien erschienen sind, wo aetiologisch möglicherweise relevante Eigenschaften sowohl oligoamidischer wie auch oligopeptidischer Nukleobasen-Paarungssysteme beschrieben werden. ${ }^{11,12,13}$ Die Zusammenfassung unserer Arbeiten erfolgt hier mittels Reaktionsschemata, Tabellen und dokumentierenden Figuren; für die detaillierte Beschreibung sämtlicher zugehöriger Experimente wird auf die im Druck erschienene Dissertation von P.L. ${ }^{2}$ verwiesen.*

OLIGOPEPTIDISCHE NUKLEINSÄURE-ALTERNATIVEN

Am Ausgangspunkt unserer Arbeiten über Nukleinsäure-Alternativen im Jahr 1986^{15} hatte die Frage gestanden. „Warum Pentose-, und nicht Hexose-Nukleinsäuren?« Im Laufe dieser Untersuchungen hat sich diese Fragestellung als Folge der angefallenen Ergebnisse sukzessive ausgeweitet zu »wenn eine Pentose, warum dann von den vier möglichen Pentosen die Ribose?« - und schliesslich zu »warum die Ribofuranose und nicht die Ribopyranose?« Von Beginn an war auch klar gewesen, dass hinter diesen auf Zuckerbausteine sich einschränkenden Fragen eine weiter ausgreifende Frage steht: »Warum überhaupt ein Zucker, und nicht α-Aminosäuren als «Nukleinsäure«-Bausteine?« Gerade zuvor hatten wir damals die Arbeit über Oligo(dipeptamidinium)-Salze ${ }^{16}$ abgeschlossen gehabt. Diese war von der arbeitshypothetischen Vorstellung einer gegenseitigen Hilfestellung bei der Selbstkonstituierung von Oligo-nukleotidketten durch Oligo-dipeptamidiniumketten, und umgekehrt, der Selbstkonstituierung von Oligo-peptidketten via (positiv geladene) Oligo-dipeptamidiniumketten ausgegangen, und war durch einen, bis dahin anscheinend nicht explizit erkannt gewesenen konstitutionellen Zusammenhang zwischen den Biopolymerklassen der Proteine und der Nukleinsäuren inspiriert, nämlich: »Die jeweilige Anzahl kovalenter Skelettbindungen zwischen aufeinanderfolgenden Amid-inium-Gruppen in Poly(dipeptamidinium)-Salzen und zwischen aufeinanderfolgenden Phosphat-Gruppen in natürlichen Polynukleotiden ist identisch. Polykationische Poly(dipeptamidinium)-Salze und polyanionische Polynukleotyde stellen konstitutionell und elektrostatisch komplementäre Polyelek-

[^2]

Abb. 1. Konstitutionelle und elektrostatische Komplementarität zwischen Oligo(di-peptamidinium)-Salzen und Oligonukleotiden. ${ }^{16}$
trolyte dar« ${ }^{16}$ (Abb. 1). Hintergründig hatte uns dabei die Möglichkeit interessiert, dass diese konstitutionelle Entsprechung zwischen den beiden biologisch fundamentalen Strukturtypen der Nukleinsäuren und Proteine nicht einfach zufällig ist.

Abb. 2. Ein Oligonukleodipeptid-Konstitutionstyp. ${ }^{8}$

$\mathrm{H}_{3} \stackrel{\mathrm{~N}}{\mathrm{~N}}^{+} \mathrm{COO}^{-}+\stackrel{\mathrm{H}_{\mathrm{N}}^{\mathrm{N}} \mathrm{CN}}{ }$
Abb. 3. Formale Herleitung des Konstitutionstyps der Oligo(nukleodipeptamidi-nium)-Salze durch Oligomerisation von Nukleodipeptid-nitrilen.

1234567

1234567
Abb. 4. Arbeitshypothetische Watson-Crick-Basenpaarung zwischen Oligonukleotiden und Oligo(nukleodipeptamidinium)-Salzen.

Zu jener Zeit vorgenommene Modellbetrachtungen schienen darauf hinzuweisen, dass die konstitutionelle Entsprechung zwischen der DipeptidRepetiereinheit der Oligopeptide und der Mononukleotid-Repetiereinheit der Oligonukleotide auch konformationell zutreffen kann: in einem DNADoppelhelixmodell liess sich einer der Oligonukleotid-Stränge ohne offensichtliche Schwierigkeiten unter Aufrechterhaltung der Basenpaarung durch eine Oligo(alanyl-glycin)-Dipeptidkette ersetzen, in welcher die Methylgruppe jeder Alanin-Einheit jeweils einen 9-Purinyl-bzw. 1-Pyrimidinylrest trug. Hieraus ging eine von G. Baschang ${ }^{8}$ gegen Ende des Jahres 1986 (im Hinblick auf die gerade damals aufgekommene Antisense-Problematik) in den Laboratorien der Ciba-Geigy AG durchgeführte Untersuchung über die Synthese und die Paarungseigenschaften von β (1-Thyminyl)-L-alanyl-glycin-Oligodipeptiden (Abb. 2) hervor. Da das octamere Dipeptid dieser Reihe nach UV-spektroskopischen Kriterien keine Basenpaarung mit Polyadenosin zeigte, ${ }^{8}$ wurde damals die Frage nach der Existenz von DNA-Paarungspartnern auf Oligo-nukleodipeptidbasis hintan gestellt und im ETH-Laboratorium die Bearbeitung der aus aetiologischer Sicht zu jener Zeit uns besonders interessierenden Problemstellung der Oligomerisation von Nukleodipeptidnitrilen zu Oligo(nukleodipeptamidinium)-Salzen (Abb. 3) in Angriff genommen. ${ }^{2}$ Aetiologisch relevant schien diese letztere Verbindungsklasse deshalb zu sein, weil sie zusätzlich zur elektrostatischen Komplementarität zwischen Oligo-nukleotidketten und Oligo-dipeptamidiniumketten die Voraussetzung für eine Basenpaarung des Watson-Crick-Typs in sich zu tragen (Abb. 4) und damit eine Nukleinsäure-Alternative darzustellen versprach, nämlich ein kationisches und damit wasserlösliches, auf NukleodipeptidBausteinen sich gründendes Paarungssystem. Vor allem aber schien die Verbindungsklasse den Produkttyp eines besonders einfachen Selbstkonstituierungswegs zu verkörpern, nämlich den einer potentiell templatkontrollierten Oligomerisation von Nukleo(dipeptidnitril-ammonium)Salzen zu Oligo(nukleodipeptamidinium)-Salzen ${ }^{16}$ (vgl. Abb. 3). Wir berichten hier über die von diesen Vorstellungen ausgelösten experimentellen Untersuchungen, nämlich über die Methoden der präparativen Herstellung, die chromatographische und spektroskopische Charakterisierung, sowie über das chemische Verhalten in wässeriger Lösung einiger homodipeptidischer Vertreter der Substanzklasse der Oligo(nukleodipept-amidinium)-Salze.

Die kürzlich bekannt gewordenen oligoamidischen ${ }^{11,12}$ OligonukleotidAnaloga, die mit natürlichen Oligonukleotiden paaren, sowie die inzwischen beschriebenen (z.T. mit sich selbst paarenden) oligopeptidischen Oligonuk-leotid-Analoga ${ }^{13,14}$ weisen in ihrer konstitutionellen Repetiereinheit sechs kovalente Bindungen auf (wie dies bei repetierenden Dipeptideinheiten der Fall ist) und entsprechen damit dem für die konstitutionelle Komplementarität von Oligonukleotiden und Oligo(dipeptamidinium)-Salzen betonten Zusammenhang ${ }^{16}$ (vgl. hierzu auch eine neulich erschienene Arbeit von Stork ${ }^{17}$).

SYNTHESEN VON BAUSTEINEN FÜR OLIGO(NUKLEODIPEPTAMIDINIUM)-SALZE

Die Vorstellung, wonach Oligo(dipeptamidinium)-Salze von aetiologischer Relevanz sein könnten, rührt nebst der Ableitbarkeit ihres Konstitutionstyps durch Oligomerisation von Nukleodipeptid-nitrilen auch daher, dass letztere sich auf einfache Weise aus potentiell präbiotischen Vorläufern, nämlich aus Dipeptid-Derivaten des Serin-nitrils bezw. dessen Dehydratisierungsprodukt, dem Dehydroalanin-nitril, herleiten lassen. Wir haben zu Beginn unserer Untersuchungen den Kern dieser Vorstellung, nämlich die basenkatalysierte Addition von freien Nukleobasen an (NH_{2}-geschützte) De-hydroalanin-nitrile sowie Glycyl-dehydroalanyl-nitrile experimentell überprüft und, wie nachfolgend zusammenfassend kurz dokumentiert (Abb. 5 und 6), im wesentlichen als zutreffend befunden. Weil aber diese (sozusagen "natürliche«) Art der Konstituierung von Nukleodipeptid-nitrilen durch einen chirogenen Reaktionsschritt zustandekommt und demzufolge (in Abwesenheit eines nicht-racemischen chiralen Katalysators) zu Produkt-Racematen führt, haben wir die Bausteine für die präparative Herstellung von Oligo(nukleodipeptamidinium)-Salzen auf einem »unnatürlichen", dafür enantioselektiven Reaktionsweg gewonnen (Abb. 7 und 8). Er ist im übrigen nicht (wie der erste Weg) in Richtung auf Glycyl-nukleodipeptid-nitrile hin angelegt, sondern auf die Bildung der (zur obigen isomeren) Reihe der Nu-kleoaminosäure-acyl-glycin-nitrile ausgerichtet. Der Grund hierfür war die in orientierenden Versuchen beobachtete Labilität am Chiralitätszentrum der Nitrilform der untersuchten Nukleoaminosäuren unter basischen Bedingungen. Dass an sich aus den beiden konstitütionellen Varianten sich ableitende Oligo(dipeptamidinium)-Salze gegebenenfalls in ihrem Paarungsverhalten unterschiedlich sein könnten, war zwar in Betracht zu ziehen, doch in jenem Stadium der Untersuchung nicht weiter zu differenzieren.

Basenkatalysierte Addition von Nukleobasen an N -(tert-Butyloxycarbonyl)-dehydroalanin-nitril und N -(tert-Butyloxycarbonylglycyl)-dehydroalanin-nitril (vgl. Abb. 5 und 6)

Frühere Untersuchungen über die Chemie des 2-Amino-2-propennitrils ${ }^{18,19}$ hatten uns gelehrt, dass β-Additionsreaktionen von Nukleophilen an die Methylidengruppierung des 2-Amino-2-propennitrils nur dann beobachtet werden, wenn der Enamincharakter der Verbindung durch N-Acylgruppen zurückgedrängt ist (vgl. z.B. die Bildung von N-Benzoyl-trypto-phan-nitril aus Indol und dem N-Benzoyl-Derivat des 2 -Amino-2-propennitrils ${ }^{20}$). Zur orientierenden Überprüfung des Konzepts, wonach Nukleodipeptid-nitrile des hier interessierenden Typs durch regioselektive nukleophile Addition von Pyrimidin- und Purinbasen an entsprechende Dehydroalanyl-dipeptidnitrile sich bilden könnten, haben wir das Modellsubstrat N-(tert-Butyloxy-

(L)-N-BOC-serin-nitril
(vgl. Diss. A. Steiger ${ }^{21)}$ S. 161)

Nuklobase	Reaktionszeit	Produkte		Ausbeute
$\mathrm{HB}=$ Adenin	2 Tage	2 a (N-9)	somer	75\%
Guanin	4	2b (N-9)	"	4\%
2,6-Diaminopurin	3 "	2c (N-9)	"	78\%
Cytosin	1 Tag	$2 \mathrm{~d}(\mathrm{~N}-1)$	"	56\%
Uracil	4 Tage	2e ($\mathrm{N}-1$)	"	77\%
Thymin	3	2 f ($\mathrm{N}-1$)	"	59\%

für experimentelle Details vgl. Diss. P. Lohse ${ }^{2)}$ S. 118 ff .
Abb. 5. Regioselektivität der nukleophilen Addition von Nukleinsäurebasen an N -BOC-Amino-2-propen-nitril.
carbonyl)-2-amino-2-propennitril 1 verwendet und dieses unter den in Abb. 5 angegebenen Bedingungen systematisch auf sein Additionsverhalten in Gegenwart von Adenin, Guanin, 2,6-Diaminopurin, Cytosin, Uracil und Thymin geprüft. Die Ergebnisse dieser Versuche sind in Abb. 5 tabellarisch zusammengestellt: mit Ausnahme des Guanins gehen alle überprüften Nukleobasen die β-Addition mit bemerkenswert hoher Regioselektivität ein; die Palette dieser Additionsreaktionen ist ein beachtenswertes zusätzliches Beispiel für die in der Literatur aus zahlreichen Fällen (über eine Literaturübersicht vgl. ${ }^{2}$) bekannte, aetiologisch relevante Tatsache, dass die Stellungen ($\mathrm{N}-9$) der Purine und ($\mathrm{N}-1$) der Pyrimidine die in nukleophilen Ad-ditions-bzw. Substitutionsreaktionen intrinsisch reaktivsten Zentren dieser Biomolekül-Bausteine darstellen, wobei es nun eben diese Stellungen, an welchen die Bausteine in die natürlichen Nukleinsäuren sich eingebaut finden.

für experimentelle Details vgl. Diss. P.Lohse ${ }^{2)}$, S. 140 ff.
Abb. 6. Bildung von rac.- N-BOC-Glycil-nukleoaminosäure-nitrilen aus (L)- N-BOC-Glycil-serin-nitril.

Unter den verwendeten Reaktionsbedingungen liessen sich in obigen Additionsreaktionen isomere Additionsprodukte nur in geringen Mengen nachweisen (bei Adenin und 2,6-Diaminopurin ca. 1\% (N-7)-Isomere, 1,3-dialkyliertes Produkt bei Uracil und Thymin $c a .1,5 \%$), ausgenommen im Falle des Guanins, wo aus dem Gemisch der Reaktionsprodukte das (N-9)-Additionsprodukt 2b nur in geringer Ausbeute isoliert werden konnte (auch nach extensiver Variation der Reaktionsbedingungen). Die Konstitutionszuordnung der isolierten Addukte erfolgt im Falle der Pyrimidin-Addukte ((N-1) versus (N-3)-Addition) vor allem durch die Analyse der NOE-Signale im NMRSpektrum, bei den Purin-Addukten ((N-9)- versus (N-7)-Addition) durch Vergleich mit zahlreichen Referenzdaten, die aus anderen Nukleosid-Reihen zur Verfügung stehen (vgl. z.B. Böhringer et al. ${ }^{22}$). Der in Abb. 3 angedeuteten Möglichkeit der Konstituierung von Oligo(nukleodipeptamidinium)Salzen aus dipeptidischen Derivaten des Dehydroalanin-nitrils (bzw. α-Aminosäuren und Aziridin-2-carbonitrils) entsprechend haben wir den Reaktionstyp der nukleophilen Addition von Nukleobasen Adenin und Cytosin auch am Modellbeispiel des N -(tert-Butyloxycarbonyl-glycil)-dehydroalanin-nitrils 3
realisiert (Abb. 6). Die experimentellen Details auch dieser orientierenden bzw. illustrierenden Versuche sind in Lit. 2 (Seite 140 ff .) dokumentiert.

Unter den Reaktionsbedingungen ihrer Entstehung erwiesen sich die Additionsprodukte von Nukleobasen an N -Acyl-dehydroalanin-nitrile weder konfigurativ (Chiralitätszentrum in α-Stellung zur Nitrilgruppe) noch konstitutionell als stabil: die Additionsreaktion ist unter diesen Reaktionsbedingungen reversibel.* Unterwarf man z.B. das Uracil-Addukt 2e den Reaktionsbedingungen ($36 \mu \mathrm{Mol}$ in $500 \mu \mathrm{l} d_{6}$-DMSO, $18 \mu \mathrm{Mol} \mathrm{K}_{2} \mathrm{CO}_{3} ; 23{ }^{\circ} \mathrm{C}$) in Gegenwart von ungefähr einem Molequivalent Adenin ($30 \mu \mathrm{Mol}$) unter periodischer NMR-Kontrolle, so enthielt das Reaktionsgemisch z.B. nach 21 Tagen 16% des eingesetzten Uracil-Addukts $\mathbf{2 e}, 43 \%$ des entsprechenden Adenin-Addukts 2a, 33\% des Eliminationsprodukts 1 nebst (ungefähr) entsprechenden Mengen freien Uracils und Adenins. Ein analoger Austausch der Nukleobasen wurde unter gleichen Bedingungen auch ausgehend vom Adenin-Addukt 2a durch Uracil nachgewiesen. Die oben aufgeführten Prozentgehalte entsprechen ungefähr dem eingestellen Gleichgewicht; darin überwiegt das Adenin-Addukt deutlich.

Die in diesen orientierenden Versuchen festgestellte Labilität der Nuk-leodipeptid-nitrile bestimmte den Fortgang der Untersuchung insofern, als man sich in der Folge auf jene Konstitutionsvariante der Nukleo(dipept-amidinium)-Salze festlegte, in welcher die Nitrilfunktion der zu oligomerisierenden Repetiereinheit dem Glycin als Aminosäure-Baustein angehört; des weitern wurde nun der Herstellungsmethode für die benötigten Nuk-leoaminosäure-Komponenten keine aetiologische Relevanz mehr auferlegt; dies zur Vereinfachung der mit der Bearbeitung des Strukturtyps der Oligo(nuk-leodipeptamidinium)-Salze einhergehenden konfigurationellen Probleme.

Präparative Herstellung von N-tert-Butyloxycarbonyl-Derivaten des β (1-Thyminyl)-L-alanins und β (9-Adenyl)-L-alanins (Abb. 7)

Einheitliche L-Enantiomeren der beiden gennanten Nukleoaminosäuren haben wir in Anlehnung an die von Baschang ${ }^{8}$ erarbeiteten Erfahrungen durch nukleophile Ringöffnung von (-)- N-BOC-L-serin- β-lacton mit Adenin bzw. Thymin in Analogie zur Herstellung stereochemisch einheitlicher, β substituierter α-Aminosäuren durch β-Serinlacton-Ringöffnung mit Nukleophilen nach Arnold et al. ${ }^{23}$ hergestellt. Reaktion von N-BOC-L-Serin- β-lacton, mit einem Überschuss an Thymin und DBU in DMSO umgesetzt, lieferte nach wässeriger Aufarbeitung das (-)-BOC- β (1-Thyminyl)-L-alanin (L)-6 in 57% Ausbuete nebst wenig (1.4\%) des an N-3 des Thyminkerns sub-

[^3]stituierten Isomeren. Die Konstitutionszuordnung der beiden Isomeren war durch NOE-NMR-Spektroskopie leicht möglich. ${ }^{2}$ Mit Adenin war die Ringöffnungsreaktion weniger regioselektiv: nach mehrfacher chromatographischer Reinigung und zweimaliger Kristallisation liessen sich (-)-N-BOC- β (9-Adenyl)-L-alanin (L)-7 in 22% Ausbeute und, als mengenmässig bedeutendstes Nebenprodukt, das an N-7 des Adeninkerns substituierte Isomer (L)-8 in 10% Ausbeute isolieren. Die beiden Isomeren (L)-7 und (L)-8 lassen sich auf Grund der für (N-9)- und (N-7)-substituierte Adeninderivate kohärent und charakteristisch unterschiedlichen ${ }^{13} \mathrm{C}-\mathrm{NMR}-\mathrm{Daten}{ }^{24}(\mathrm{vgl} . \mathrm{z} . \mathrm{B}$. auch Lit. 22) eindeutig unterscheiden.

Die Enantiomerenüberschüsse (ee) auf solche Weise gewonnener Präparate lagen für (L)-6 zwischen 93-98\% und für (L)-7 bei 89-96\%; sie wurden durch HPLC-Analyse von entsprechenden, durch (vorsichtige) Kopplung mit N-BOC-L-leucin (bei (L)-6) bzw. N-BOC-L-alanin (bei (L)-7) gewonnenen N-BOC-leucyl (bzw. alanyl)-Dipeptidderivaten (über Details vgl. Lit. 2, S. 43-47) ermittelt.

Das Reaktionsschema in Abb. 8 zeigt die Überführung der beiden Nukleoaminosäuren (L)-6 und (L)-7 via die N-BOC-Dipeptidnitrile (L)-9 und (L)-10 in die N-BOC-Dipeptid-thioamide (L)-11 und (L)-12, die als (letzte stabile)

Abb. 7. Präparative Darstellung der nicht-racemischen Nukleoaminosäure-Derivate (L)-6 und (L)-7; vgl. Diss. P. Lohse, Lit. 2, S. 148 und 177.

(L) - 11
e.e. 95.6% (HPLC)
(L) - 7

1) $\mathrm{DCC} / \mathrm{HOSu}$ DMF, $-10^{\circ} \mathrm{C}$
2) $\mathrm{NCCH}_{2} \mathrm{NH}_{2} \mathrm{HCl}$

Diethylanilin, $0^{\circ} \mathrm{C}, 7 \mathrm{~h}$

$95 \% \left\lvert\, \begin{aligned} & \mathrm{H}_{2} \mathrm{~S} / \mathrm{NEt}_{3} \\ & \mathrm{MeOH} \\ & \mathrm{RT}, 17 \mathrm{~d}\end{aligned}\right.$

(L)-12
e.e. 96.0% (HPLC)

Sämtliche dargestellten Verbindungen wurden als Festkörper erhalten, die sich ab ca. $190^{\circ} \mathrm{C}$ zersetzten. Die Charakterisierung erfolgte durch opt. Drehung, DC, UV, IR, ${ }^{1} \mathrm{H}$ - und ${ }^{13} \mathrm{C}$-NMR und MS.

Abb. 8. Darstellung der nicht-racemischen Nukleodipeptid-thioamide (L)-11 und (L)-12 aus den N-BOC-Nukleoaminosäuren (L)-6 und (L)-7. HOSu $=N$-Hydroxy-succinimid.

Ausgangsprodukte für die Herstellung entsprechender Oligo(nukleodipep-tamidinium)-Salze benötigt wurden. Dabei ist die extrem sauber erfolgende Reaktionsstufe der Anlagerung von Schwefelwasserstoff an die (offenbar schwach aktivierten) Nitrilgruppen der Dipeptide (L)-9 und (L)-10 hervorhebenswert: aus verdünnten Lösungen von (L)-9 und (L)-10 in Methanol, das bei 0° mit $\mathrm{H}_{2} \mathrm{~S}$ gesättigt wurde, kristallisierten in Gegenwart katalytischer Mengen Triethylamin nach zweiwöchigem Stehenlassen in verschlossenem Gefäss direkt die Thioamide (L)-11 und (L)-12 in hoher Ausbeute und hoher konstitutioneller und konfigurationeller Reinheit. Ihre ee-Werte (bestimmt durch HPLC nach säurekatalysierter Hydrolyse zu den freien Nukleoamonisäuren und Kopplung mit N-BOC-L-leucin bzw. N-BOC-L-alanin ${ }^{2}$) lagen um 96%.

OLIGOMERISATION VON THIOIMINOESTER-DERIVATEN VON L-NUKLEOAMINOSÄURE-ACYL-GLYCIN-DIPEPTIDEN ZU OLIGO(NUKLEODIPEPTAMIDINIUM)-SALZEN (ABB. 9 UND 10)

Von der Oligomerisation von Dipeptidnitril-ammonium-Salzen zu entsprechenden Oligo(dipeptamidinium)-Salzen kann erwartet werden, dass es sich dabei unter günstigen Umständen (insbesondere z.B. unter der Templatwirkung von kationischen Oligonukleotid-Strängen) um einen exergonischen Prozess handelt. In frühen Arbeiten von Moser ${ }^{25,16}$ und Steiger ${ }^{21}$ in unserem Laboratorium hatten wir festgestellt, dass die Oligomerisation von Dipeptidnitrilen durch Thiole (z.B. Cystein) katalysiert wird. Dies führte zu einer eingehenden Untersuchung des sowohl stufenweisen Aufbaus, als auch der Bildung von Oligo(dipeptamidinium)-Salzen durch Oligomerisation aus Dipeptidnitrilen via entsprechende Thioiminoester-Derivate, die ihrerseits nebst Ihrer Herleitung aus den Nitrilen präparativ am einfachsten aus den entsprechenden Thioamiden durch S-Alkylierung hergestellt werden.

Erste Versuche zur Überführung der Nukleodipeptid-thioamide (L)-11 und (L)-12 durch selektive S-Alkylierung mit Triethyloxonium-hexafluorophosphat unter bewährten Reaktionsbedingungen ${ }^{16,21}$ scheiterten an der Schwerlöslichkeit der Edukte. Dadurch war man gezwungen, die Alkylierung in (potentiell ebenfalls alkylierbarem) Dimethylsulfoxid (DMSO) in Gegenwart eines entsprechenden Überschusses an Alkylierungsreagens durchzuführen. Tatsächlich gelingt die Reaktion, wenn man im Falle von (L)-11 dieses in möglichst wenig DMSO löst, anschliessend mit der Lösung überschüssigen Triethyloxonium-Salzes in Methylenchlorid versetzt und nach 3 Min . mit wässeriger NaHCO_{3}-Lösung wäscht. Entfernung des Methylenchlorids am Vakuum bei $0{ }^{\circ} \mathrm{C}$ hinterlässt den N-BOC-Thioiminoester-(L)- 13 als farblosen, empfindlichen Festkörper. Seine Identität liess durch (sehr rasch erfolgende) säurekatalysierte Hydrolyse zum entsprechenden Thioester-Derivat (L)-14 belegen.

Versuchte man diese Bedingungen der selektiven S-Alkylierung auf das Adenin-Derivat (L)-12 (Abb. 10) zu übertragen, so fand man (mittels FABMassenspektroskopie des Reaktionsgemisches nach Hydrolyse zum Thioestergemisch), dass nebst S-Alkylierung auch Alkylierung der Adeninbase stattfindet (zu einem Ausmass von ca. 30\%). Hier erinnerten wir uns an eine frühere, bei unserem extensiven Einsatz von Iminoester-Zwischenprodukten zur Synthese von Corrinkomplexen gemachte Erfahrung, ${ }^{26}$, 27 wonach bei der S-Alkylierung von solchen Thioamid-Verbindungen, die gleichzeitig noch basische Zentren enthalten, letztere durch transiente Protonierung vor Alkylierung durch Oxonium-Salze geschützt werden können. Tatsächlich gelang es, das Adenin-Derivat (L)-12 in Gegenwart von Trifluoressigsäure selektiv am Thioamidschwefel zu alkylieren; die hohe Reinheit des entsprechenden Thioesters (L)-18 nach säurekatalysierter Hydrolyse des rohen Alkylierungsprodukts belegte dies (vgl. Abb. 10).

(L) 11

(L) $\mathbf{- 1 3}{ }^{\prime} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6})

1) TFA, RT, 1 h
2) $\mathrm{TsOH} / \mathrm{MeOH}$ $\mathrm{Et}_{2} \mathrm{O}$
Reinhcit nach HPLC (267nm): 96\%

(L)-16 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O} / 0.1 \mathrm{TFA}\right)$
FAB pos. (3-NOBA)
Reinheit nach HPLC (267nm): 63%

$$
\mathbf{a} \mathbf{T}_{\mathrm{n}}(\mathrm{n}=1-10)
$$

FAB pos. (3-NOBA), UV, CD

Abb. 9. Darstellung von (L)-Oligo(thymil-dipeptamidinium)-Salzen $\mathrm{aT}_{n}(n=1-10)$.

ca. 34%
Reinheit nach HPLC (257 nm): 65%

FAB pos. (3-NOBA), UV, CD
Abb. 10. Darstellung von (L)-Oligo(adenyl-dipeptamidinium)-Salzen $\mathrm{aA}_{n}(n=2-10)$. Beachte den Schutz des Adeninkerns in (L)-12 vor N-Alkylierung durch transiente Protonierung.

In der früheren Arbeit über Oligo(dipeptamidinium)-Salze ${ }^{16}$ hatten wir eine Methode des schrittweisen Aufbaus der Oligomeren ausgearbeitet (Kondensation von N-BOC-alanyl-(bzw. phenylalanyl)-glycin-thioiminoestern mit Alanyl-(bzw. phenylalanyl)-glycin-amidinium-Salzen, Entfernung der BOCSchutzgruppe und Wiederholung des Kondensationsschritts am NH_{2}-Ende), wobei es sich herausstellte, dass die Kondensation auf sterische Behinderung durch grosse Substituenten in Nachbarschaft der NH_{2}-Gruppe empfindlich ist. Nach dieser Methode wurden in der Reihe der Oligo(nuk-leodipeptamidinium)-Salze Kopplungsausbeuten erzielt, die nicht höher als 40% lagen. Damit schien eine präparative Herstellung höherer Oligomeren auf diesem Wege kaum eine Chance zu haben. Deshalb konzentrierten wir uns auf die ursprünglich ebenfalls von Moser ${ }^{25,16}$ ausgearbeitete und später durch Steiger ${ }^{21}$ weiter untersuchte Methodik der direkten Oligokondensation von ungeschützten Dipeptidthioiminoestern.* Die Bereitung der hierzu benötigten, an der endständigen NH_{2}-Gruppe ungeschützten Thioiminoester (L)-15 und (L)-19 erfolgte auf die in den Reaktionsschemata der Abb. 9 und 10 resümierten Weise: Frisch hergestellte Proben der N-BOC-thioiminoester (L)-13 wurden während einer Stunde unter Argon bei Raumtemperatur reiner Trifluoressigsäure (TFA) ausgesetzt, das nach Abziehen der TFA erhaltene, klare Harz in wenig Methanol durch Zusatz von Toluolsulfonsäure (als Hydrat) gelöst und (L)-15 als Ditosylat aus wasserfreiem Äther als farbloser, amorpher, hygroskopischer Festkörper ausgefällt (Gehalt indirekt durch HPLC-Analyse des Hydrolyseprodukts (L)-16 bestimmt). Weitergehende Reinigungsversuche führten zu teilweiser Zersetzung, so dass das Präzipitat jeweils direkt zur Oligokondensation eingesetzt wurde. Auf analoge Weise stellte man das Adenin-Derivat (L)-19 (Abb. 10) dadurch her, dass man eine frisch bereitete Lösung von (L)-17 in trockenem $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ bei 0° mit HCl begaste, den resultierenden Niederschlag mit $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in Methanol löste, das Tritosylat (L)-19 aus wasserfreiem Äther fällte und nach Isolierung durch Zentrifugation direkt zur Oligokondensation einsetzte.

Die Oligokondensation der Thioiminioester-Salze (L)-15 bzw. (L)-19 erfolgte (nach Optimierung der einzusetzenden Collidin-Menge) unter den in der früheren Arbeit ${ }^{16}$ im Detail beschriebenen Bedingungen. Im Fall des Thymin-Derivats (L)-15 (Abb. 9) erstarrte die Reaktionslösung nach 4 Std. zu einer gallertigen Masse; sie wurde in saurer wässeriger Lösung ($0,1 \%$ TFA) aufgenommen und der chromatographischen Auftrennung unterworfen. Diese gelang (nachdem Vorversuche am Kationen-Austauscher unbefriedigend waren) schliesslich an einer RP-C18-Säule mit einem Wasser-Acetonitril-0,1\% Trifluoressigsäure Gradienten. Das in Abb. 11 reproduzierte Chromatogram

[^4]zeigt die Anwesenheit des Monomeren aT T_{1} bis zum Decameren aT_{10} in sukzessive abnehmender Konzentration. In einem zweiten HPLC-Durchgang wurden die separierten Oligomere unter isokratischen Laufmittelbedingungen individuell gereinigt. Die nach Gefriertrockung als hygroskopischer Flaum anfallenden Proben der Oligo(thyminyl-dipeptamidinium)-Salze $a T_{1}-a T_{10}$ zeigten im FAB pos-Massenspektrum jedes für sich das entsprechende einfach positiv geladene Molekülion ($\mathrm{M}+\mathrm{H}^{+}$), vgl. die Spektren für die Oligomeren aT_{6} und aT_{10} in Abb. 12.

Bei der Oligokondensation des adeninhaltigen Thioiminoester-Salzes (L)-19 wurde gleich verfahren wie in der Thymin-Reihe; Abb. 13 zeigt die chromatographische Auftrennung der Oligomeren aA_{2} bis aA_{10} und Abb. 14 den massenspektroskopischen Konstitutionsbeleg für das Hexamere aA_{6} und das Decamere aA_{10}.

Insbesondere das HPL-Chromatogramm der adeninhaltigen Oligomere (Abb. 13) weist durch die regelmässige Verteilung der Oligokondensat-Banden darauf hin, dass die Oligokondensation den erwarteten konstitutionell einheitlichen Verlauf nimmt und nicht z.B. auch die freie Aminogruppe des Adeninkerns als Nebenreaktion einbezieht. Der Reinheitsgrad des Gesamtoligomerisats in der aA-Reihe ist bezüglich seines Konstitutionstyps auch durch das ${ }^{1} \mathrm{H}$-NMR-Spektrum dokumentiert (Abb. 15). Zu dessen Aufnahme wurde das zur Pufferung des Oligokondensations-Mediums verwendete Collidin HPL-chromatographisch abgetrennt, das verbleibende Eluat lyophilisiert und vom Rückstand das Spektrum (400 MHz) in $\mathrm{D}_{2} \mathrm{O} / 0,1 \%$ TFA- d_{1} aufgenommen. Es zeigt die Signale des Adeninkerns um 8,2 und 8,5 ppm (HC-2 und HC-8), zwischen 4,0 und $5,3 \mathrm{ppm}$ finden sich die $\mathrm{HC}(\mathrm{C}-\alpha)$ und $\mathrm{H}_{2} \mathrm{C}(\mathrm{C}-\beta)$ des Nukleoaminosäure-Bausteins sowie des Glycinbausteins (nebst $\mathrm{H}_{2} \mathrm{O}$-Signal), und bei 1,2 bzw. 2,9 ppm erscheinen die Thioethyl-Sig-

Abb. 11. HPLC des aT ${ }_{n}$-Oligokondensats: RP-C18, $0,1 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}, 10-25 \% \mathrm{CH}_{3} \mathrm{CN}$ in 60 min .

Abb. 12. FABpos.-MS (3-NOBA) von aT_{6} und aT_{10}.
nale der (durch Hydrolyse der Thioiminoestergruppen gebildeten) ThioesterEndgruppen oder Oligomeren. Die letzteren Signale wurden zur Abschätzung des mittleren Oligomerisationsgrades herangezogen; die Intensität der Summe der $\mathrm{H}(\mathrm{C}-8)$ und $\mathrm{H}(\mathrm{C}-2)$-Protonen der Adeninkerne relativ zur Intensität des $\mathrm{H}_{2} \mathrm{C}$-Protonen der Thioethylrests entspricht einem mittleren Oligomerisationsgrad von $n=4,5$, was mit der durchschnittlichen Oligomerenverteilung, wie sie durch das HPLC (Abb. 13) des Oligokondensats

Abb. 13. HPLC des aA ${ }_{n}$-Oligokondensats: RP-C18, $0,1 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}, 10-25 \% \mathrm{CH}_{3} \mathrm{CN}$ in 50 min .
repräsentiert wird, übereinstimmt. Die für die Massenspektren berechneten und mit den Beobachtungen übereinstimmenden Massenzahlen gehen von der Thioethylestergruppe als Kopfgruppe sämtlicher Oligomeren aus. Die restlichen im ${ }^{1} \mathrm{H}$-NMR-Spektrum noch auftretenden Signale (AA'BB'-System bei $7,55 / 7,24 \mathrm{ppm}$ sowie Singlett bei $2,3 \mathrm{ppm}$) stehen für verbleibene Toluolsulfonsäure.

Abb. 14. FABpos.-MS (3-NOBA) von a_{6} und a_{10}.

Abb. 15. ${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} / 0,1 \%$ TFA- d_{1}) des Oligokondensats a A_{n}.

ORIENTIERENDE UNTERSUCHUNGEN ÜBER DIE EIGENSCHAFTEN DER OLIGO(NUKLEODIPEPTAMIDINIUM)-SALZE

Bereits bei den Vorarbeiten zur Frage eines möglichen Paarungsverhaltens von Oligo(nukleodipeptamidinium)-Salzen wurde klar, dass solche Untersuchungen durch ein generalles Handicap behindert sein werden, nämlich durch eine hohe Instabilität der Substrate unter den Messbedingungen. HPL-chromatographisch verfolgte Stabilitätstests an aT_{2} und aA_{2} in wässerigen Pufferlösungen verschiedener pH -Werte zeigten, dass diese Amidiniumsalze bei Raumtemperatur bei $\mathrm{pH}=3$ zwar über Tage stabil sind, bei $\mathrm{pH}=4$ jedoch Halbwertzeiten von nur noch $c a .30$ Std. $\left(\mathrm{aT}_{2}\right)$ bzw. $c a .20$ Std. $\left(\mathrm{aA}_{2}\right)$ aufweisen, und schliesslich bei $\mathrm{pH}=6$ sich rasch (Halbwertzeiten 1 bzw. 3 Std.) durch (vermutlich) Hydrolyse verändern. Bei $0^{\circ} \mathrm{C}$ und $\mathrm{pH}=6$ liegen die Halbwertzeiten um 30 Std. Dementsprechend zeigte die an den Hexameren aT_{6} und aA_{6} vorgenommene Bestimmung der relativen Extinktion der UV-Absorptionsbande bei $267 \mathrm{~nm}\left(\mathrm{aT}_{6}\right)$ bzw. $258 \mathrm{~nm}\left(\mathrm{aA}_{6}\right)$ in Abhängigkeit zur Temperatur nur bei pH -Werten von 2 und 3 ein bezüglich Erhitzen bzw. Abkühlen der Messproben $\left(0^{\circ} \Leftrightarrow 60^{\circ}\right)$ reversibles (und deshalb interpretierbares) Verhalten; ab pH -Werten von 4 waren diese Bestimmungen durch Zersetzung der Substrate gestört. Im reversiblen pH -Bereich stellte man bei beiden Substraten eine mit der Temperatur im wesentlichen linear ansteigende, bescheidene Hyperchromie fest (ca. 2 bzw. 6\%). Tendenziell erwiesen sich in diesen Tests die adeninhaltigen Oligomeren als deutlich

Abb. 16. CD-Spektren von $\mathrm{aT}_{6}(6,7 \mu \mathrm{M})$, $\mathrm{aT}_{10}(4 \mu \mathrm{M})$, beide Messungen in 10 mM $\mathrm{HCOOH} / \mathrm{NaOH}$ bei $\mathrm{pH}=4,1 \mathrm{M} \mathrm{NaCl}, 4^{\circ} \mathrm{C}$.
labiler als die thyminhaltigen. Generell stabiler erwiesen sich Lösungen der Oligo(dipeptamidinium)-Salze zudem bei erhöhter Salzkonzentration (z.B. 1 M NaCl), weshalb Messungen in der Regel bei hoher Salzkonzentration durchgeführt wurden.

Abb. 17. CD-Spektren von $\mathrm{aA}_{2}(20 \mu \mathrm{M}), \mathrm{aA}_{4}(10 \mu \mathrm{M}), \mathrm{aA}_{6}(6,6 \mu \mathrm{M}), \mathrm{aA}_{8}(5 \mu \mathrm{M}), \mathrm{aA}_{10}$ $(4 \mu \mathrm{M})$, alle Messungen in $10 \mathrm{mM} \mathrm{HCOOH} / \mathrm{NaOH}$ bei $\mathrm{pH}=4,1 \mathrm{M} \mathrm{NaCl}, 4^{\circ} \mathrm{C}$.

Während weder das Hexamer aT_{6}, noch das Decamer aT_{10} bei $\mathrm{pH}=4(1 \mathrm{M}$ NaCl) ein strukturiertes CD-Spektrum aufweisen (vgl. Abb. 16), zeigen die CDSpektren der adeninhaltigen Oligomeren mit ansteigendem Oligomerisationsgrad unter gleichen Messbedingungen eine zunehmende Strukturierung; diese erreicht beim Hexameren eine Form, die im wesentlichen jene des Octameren und Decameren ist. Diese Art unterschiedlichen CD-spektroskopischen Verhaltens ist auch für die DNA-Decameren dT_{10} und dA_{10} beobachtet (vgl. z.B. entsprechende Abbildungen in Lit. 28, S. 85), und ist dahin auszulegen, ${ }^{29}$ dass der adeninhaltige Oligo(dipeptamidinium)-Einzelstrang unter den verwendeten Bedingungen ab dem Hexameren einen durch Purin-Purin-Basenstapelung mitbedingten spezifischen Konformationstyp bevorzugt. Diese konformationelle Strukturierung ist indessen pH -abhängig: Bei $\mathrm{pH}=3$ gleicht das CD-Spektrum des Hexameren aA_{6} signifikanterweise jenem des Dimeren aA_{2}.

Infolge der Unbeständigkeit der Oligo(nukleodipeptamidinium)-Stränge in wässerigen Pufferlösungen bei pH -Werten, welche für eine Basenpaarung in Frage kämen (pH -Werte grösser als 4) konnte die wichtigste Testmethode zum Nachweis der Basenspaarung, nämlich die UV-spektroskopische Bestimmung von Schmelzkurven, hier nicht zur Anwendung gelangen; bei $\mathrm{pH}=3$ indessen zeigten ($1: 1$)-Gemische von aA_{6} und aT_{6} UV-Absorptionswerte, die im Temperaturbereich zwischen 0° und 60° annähernd konstant waren und demzufolge keinen Hinweis auf Basenpaarung ergaben. Der in solcher Situation spezifisch in Frage kommende Basenpaarungstest durch UV-spektroskopische Aufnahme von Mischkurven bei konstanter tiefer Temperatur (Verfolgung der relativen Extinktion der UV-Absorptionsbande bei Variation des Mischverhältnisses der beiden Paarungskomponenten ${ }^{29}$) erbrachte keinen Hinweis auf eine Basenpaarung: Mischkurven von aA_{6} und aT_{6} bei $\mathrm{pH}=4$ und $4^{\circ} \mathrm{C}(1 \mathrm{M} \mathrm{NaCl})$ blieben im gesamten Mischbereich ($0-100 \%$) im wesentlichen linear und ohne Schnittpunkte. Analog verhielten sich unter gleichen Bedingungen Mischkurven mit aA_{6} und poly U. Keinen Hinweis auf Basenpaarung ergaben auch die bei $\mathrm{pH}=4$ und $4{ }^{\circ} \mathrm{C}(1 \mathrm{M} \mathrm{NaCl})$ aufgenommenen CD-Spektren von (1:1)-Gemischen von aA_{10} mit aT T_{10}, von aT_{10} mit poly A , von a T_{10} mit dA_{10} sowie von a T_{10} mit ddA $_{10}$ (Homo-DNA-Reihe ${ }^{5}$); alle diese Gemisch-CD-Spektren zeigten im Vergleich mit den CD-Spektren der Komponenten keine neuen Banden und konnten als Summe der Spektren der Komponenten dargestellt werden. Bei solchen Experimenten wurde übrigens das Phänomen beobachtet, dass sich bei niedriger Salzkonzentration ($0,01 \mathrm{M} \mathrm{NaCl}$) Oligo(nukleodipeptamidinium)Stränge zusammen mit Oligonukleotid-Strängen Niederschläge bildeten, die sich zwar nicht unbedingt durch 0,1 molare, wohl aber durch 1 molare $\mathrm{NaCl}-$ Konzentration (makroskopisch) auflösten.

SCHLUSSBEMERKUNGEN

Obwohl unsere Arbeiten über die chemischen Eigenschaften der in dieser Mitteilung erstmals vorgestellten Oligo(nukleodipeptamidinium)-Salze eigentlich nie über das Stadium von orientierenden Untersuchungen hinausgelangt
sind, und insbesondere die Frage nach den Paarungseigenschaften solcher Systeme zu ihrer schlüssigen Beantwortung weitergehende Versuche erfordern würde (höherer Oligomerisationsgrad, stärker paarende Basen, insbesonders Guanin und Cytosin, andere Bedingungen), erlauben die bisher gemachten Erfahrungen doch zur ursprünglich aufgeworfenen Frage nach einer möglichen Relevanz dieser Stoffklasse für eine chemische Aetiologie des Strukturtyps der natürlichen Nukleinsäuren Stellung zu nehmen. Aus heutiger Sicht erscheint hierfür die Stoffklasse sowohl bezüglich ihrer Bildungseigenschaften, ihrer Beständigkeit in wässeriger Lösung, als auch dem (wenn überhaupt) in ihr steckenden Paarungspotential als viel zu wenig robust, als dass sich im heutigen Stadium eine Weiterbearbeitung aufdrängen würde. Betont bezieht sich diese Feststellung auf die derzeitige Sicht der Dinge und den derzeitigen Stand unserer Erfahrungen über die chemischen Eigenschaften von Nukleinsäure-Alternativen. Zwar würde die ursprünglich ebenfalls implizierte Frage nach der Möglichkeit eines hydrolytischen Übergangs von Oligo(nukleodipeptamidinium)-Salzen in entsprechende Oligo(nukleodipeptid)-Ketten* Interesse erheischen, doch stellen die in letzter Zeit in verschiedenen Laboratorien in Gang gekommenen Arbeiten über Basenpaarungseigenschaften von neutralen Oligo(nukleopeptid)-Systemen ${ }^{11-14,30,31}$ eine direktere und vorderhand mehrversprechende Stossrichtung für eine systematische experimentelle Suche nach peptidischen Nukleinsäure-Alternativen dar.

Dank. - Diese Arbeit wurde von der Ciba AG Basel, der Firmenich \& Cie. Genf sowie vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt.

LITERATUR

1. S. Pitsch, R. Krishnamurthy, M. Bolli, S. Wendeborn, A. Holzner, M. Minton, C. Lesueur, I. Schlönvogt, B. Jaun und A. Eschenmoser, Helv. Chim. Acta 78 (1995) 1621-1635.
2. P. Lohse, 'Synthese und Eigenschaften von oligomeren NukleodipeptamidiniumSalzen', Diss. Nr. 9937, ETH Zürich, 1992.
3. V. Prelog, Naturwiss. Rundsch. 38 (1985) 259-266.
4. A. Eschenmoser, Nachr. Chem. Tech. Lab. 39 (1991) 795-806; A. Eschenmoser, Proc. 37. R. A. Welch Foundation Conference Chem. Res. ' 40 Years of the DNA Double Helix', Robert A. Welch Foundation, Houston, TX, 1993, 201-235.
5. A. Eschenmoser und M. Dobler, Helv. Chim. Acta 75 (1992) 218-259.
6. A. Eschenmoser, Pure Appl. Chem. 65 (1993) 1179-1188.
7. S. Pitsch, S. Wendeborn, B. Jaun und A. Eschenmoser, Helv. Chim. Acta 76 (1993) 2161-2183.

[^5]8. G. Baschang und A. Eschenmoser, unveröffentliche gemeinsame Arbeiten der Ciba-Geigy- und ETH-Gruppe, 1986-1987.
9. B. Oberhauser und B. Oberhauser-Hofbauer, unveröffentliche Arbeiten, ETH, 1986-88.
10. I. Lewis, unveröffentliche Arbeiten, ETH, 1988-90.
11. P. E. Nielsen, M. Egholm, R. H. Berg und O. Buchardt, Science 254 (1991) 1497-1500.
12. C. Böhler, P. E. Nielsen und L. E. Orgel, Nature 376 (1995) 578-581.
13. A. Lenzi, G. Reginato und M. Taddei, Tetrahedron Lett. 36 (1995) 1713-1716; A. Lenzi, G. Reginato, M. Taddei und E. Trifilieff, ibid 36 (1995) 1717-1718.
14. P. Garner und J.U. Yoo, Tetrahedron Lett. 34 (1993) 1275-1278.
15. H.-J. Roth, 'Synthese von Pyranose-Nukleosiden aus Pyrimidin-Basen', Diplomarbeit ETH Zürich, 1986; J. Hunziker, 'Synthese von Purin-Hexose-Nukleosiden', Diplomarbeit ETH Zürich, 1986.
16. H. Moser, A. Fliri, A. Steiger, G. Costello, J. Schreiber und A. Eschenmoser, Helv. Chim. Acta 69 (1986) 1224-1262.
17. G. Stork, C. Zhang, S. Gryaznov und R. Schultz, Tetrahedron Lett 36 (1995) 6387-6390.
18. G. Ksander, G. Bold, R. Lattmann, C. Lehmann, T. Früh, Yi-Bin Xiang, K. Inomata, H.-P. Buser, J. Schreiber, E. Zass und A. Eschenmoser, Helv. Chim. Acta 70 (1987) 1115-1172.
19. E. Wagner, Yi-Bin Xiang, K. Baumann, J. Gück und A. Eschenmoser, Helv. Chim. Acta 73 (1990) 1391-1409.
20. K. Baumann, Postdoktorat ETH 1984-86, unveröffentliche Arbeiten mit A. Eschenmoser, vgl. auch A. von Planta, 'Beiträge zur Chemie der α-Aminonitrile', Diss. Nr. 9266, ETH Zürich, 1990.
21. A. Steiger, 'Oligomerisation von Dipeptidnitrilen', Diss. Nr. 8376, ETH Zürich, 1987.
22. M. Böhringer, H.-J. Roth, J. Hunziker, M. Göbel, Ravichandran Krishnan, A. Giger, B. Schweizer, J. Schreiber, C. Leumann und A. Eschenmoser, Helv. Chim. Acta 75 (1992) 1416-1477.
23. L. D. Arnold, T. H. Kalantar und J. C. Vederas, J. Am. Chem. Soc. 107 (1985) 7105-7109.
24. M.-T. Chenon, R. J. Pugmire, D. M. Grant, R. P. Panzica und L. B. Townsend, J. Am. Chem. Soc. 97 (1975) 4627-4636.
25. H. Moser, 'Synthese und Eigenschaften von oligomeren Di- und Tri-peptamidi-nium-Salzen', Diss. Nr. 7925, ETH Zürich, 1985.
26. E. Bertele, H. Boos, J. D. Dunitz, F. Elsinger, A. Eschenmoser, I. Felner, H. P. Gribi, H. Gschwend, E. F. Meyer, M. Pesaro und R. Scheffold, Angew. Chem. 76 (1964) 393-399; Angew. Chem., Int. Ed. Engl. 3 (1964) 490-496.
27. I. Felner-Caboga, 'Darstellung von Zwischenprodukten zur Synthese von CorrinKomplexen', Diss. Nr. 3950, ETH Zürich, 1967, Seiten 22 und 53-54.
28. Vgl. H.-J. Roth, 'Homo-DNS: Herstellung, Paarungseigenschaften und Struktur von Adenin-/Thymin-haltigen Oligonukleotiden', Diss. Nr. 9591, ETH Zürich, 1991.
29. C. R. Cantor und P. R. Schimmel, The behavior of biological macromolecules, in: W. H. Freeman (Ed.), Biophysical Chemistry: Part III, New York, 1980, p. 1109 ff.
30. I. Lewis, Tetrahedron Lett. 34 (1993) 5697-5700.
31. U. Diederichsen, Angew. Chem. 108 (1996) 458-461; U. Diederichsen and H. W. Schmitt, Tetrahedron Lett. 37 (1996) 475-478.

SAŽETAK

Oligo(nukleodipeptamidinijeve) soli

Peter Lohse, Berndt Oberhauser, Barbara Oberhauser-Hofbauer, Gerhard Baschang i Albert Eschenmoser

Pokusi usmjereni prema kemijskoj etiologiji nukleinskih kiselina imaju za cilj razotkriti činjenice, koje nam mogu pomoći racionalizirati Prirodin odabir strukture RNK u evoluciji genetskog sustava. Strategija prema pronalaženju takvih činjenica jest sintetiziranje potencijalnih alternativa nukleinskih kiselina i sistematsko uspoređivanje njihovih funkcionalnih svojstava (sparivanje baza, neenzimska replikacija, kataliza ovisna o sekvenciji) na kemijskoj razini s onima RNK. Alternative nukleinskim kiselinama izabrane su po kriteriju da li je njihov potencijal za neenzimsko samoorganiziranje (prosuđen kemijskim zaključivanjem) usporediv ili veći, nego onaj RNK. Alternative koje se pokažu funkcionalnima mogle bi (ali nisu ili smiju samo privremeno) biti izabrane kao genetski sustav. Alternative koje se pronađu nefunkcionalnima mogu se ispustiti iz liste hipotetskih konkurenata RNK.

Paralelno našem radu na alternativama nukleinskih kiselina, temeljenim na heksopiranoznim šećerima, proučavali smo potencijalne sustave sparivanja koji, kao građevne elemente svoga kostura sadrže dipeptidne derivate umjesto šećernih fosfata. Oligo-nukleodipeptamidinijeve soli, konstitucijskog tipa prikazanog na Slici 3 mogu se interpretirati kao oligomeri odgovarajućih nukleodipeptid-nitrila koji, opet, mogu biti izvedeni iz dipeptidnih serin-nitrila. Ovaj rad sažima naša zapažanja o sintezi i svojstvima timinil- i adenil-derivata (L)-oligo-nukleodipeptamidinijevih soli (do dekamera), koji pripadaju konstitucijskom tipu prikazanom na Slikama 9 i 10. Takvi su oligomeri topljivi u vodenom mediju, ali su osjetljivi na hidrolizu kod vrijednosti pH iznad 4 (vrijeme poluraspada dimera pri $\mathrm{pH}=6$, iznosi $1-3 \mathrm{~h}$ pri sobnoj temperaturi, oko 30 h pri $0^{\circ} \mathrm{C}$).

Niti u UV-spektroskopski određenim krivuljama miješanja ($c \approx 11 \mu \mathrm{M}, \mathrm{pH}=4$, $4^{\circ} \mathrm{C}, 1 \mathrm{M} \mathrm{NaCl}$) smjesa heksamera koji sadrže komplementarne baze, niti u CDspektrima ($1: 1$) smjesa odgovarajućih dekamera (slični uvjeti) u usporedbi sa spektrima jednolančanih komponenata nismo mogli opaziti signale sparivanja baza ade-nin-timin. Ta opažanja moraju se uzeti u razmatranje kao preliminarna, jer su ona prilično ograničena u odnosu na strukturne varijacije, uvjete i metode zapažanja; ipak, ono što smo eksperimantalno naučili o tim materijalima ne ide u prilog gledištu da bi oligo-nukleodipeptamidinijeve soli mogle biti konkurenti RNK.

[^0]: * Mitt. XVI, Lit. ${ }^{1}$
 ** Vlado Prelog zu seinem 90. Geburtstag gewidmet.
 \# Doktorat 1987-92, vgl. ${ }^{2}$
 \#\# Postdoktorat ETH, 1986-88.
 \#\#\# Postdoktorat ETH, 1988.
 \#\#\#\# Vormals Ciba-Geigy AG, Basel

[^1]: * Dass daraufhin Saul Winstein die Rückfrage gestellt habe, „ob denn Campher ein Naturstoff sei?", ist vermutlich eine apokryphe Eskalation der Story.

[^2]: * Dort findet sich auch eine umfassende Literaturübersicht über frühere Untersuchungen zur Synthese und Eigenschaften von nukleoamidischen und nukleopeptidischen Oligomeren (S. 7-9), vgl. hiezu auch Lit. 14.

[^3]: * Hier dürfte der Grund für die geringe Ausbeute an Additionsprodukt im Falle des Guanins liegen.

[^4]: * Die aus aetiologischer Sicht interessierende, thiolatkatalysierte Oligomerisation von Dipeptidnitrilen zu Oligodipeptamidinium-Salzen ist u.a. am Beispiel des glycyl-serin-nitrils studiert worden, vgl. Diss. A. Steiger. ${ }^{21}$

[^5]: * Nach Beobachtungen in unserem Laboratorium ${ }^{25,21}$ können Oligo(dipeptamidinium)-Salze in nicht-sauren wässerigen Medien unter teilweisem Strangbruch zu Oligopeptid-Bruchstücken hydrolysieren.

