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Staircase voltammetry in differential mode, applied to spherical elec-
trodes of different sizes, is analyzed theoretically. Dependences of peak cur-
rents on the sampling times, the potential step increment, the charge
transfer coefficient and the electrode radius are investigated. Criteria of re-
versibility are proposed. Differential responses of reversible redox reactions
are independent of the sphericity parameter Y = (DIFHYV2r.

INTRODUCTION

Differential staircase voltammetry!- is a newly proposed variation of the well
known electroanalytical technique.*® Its novelty consists of sampling the currents
twice on each tread of the staircase potential-time waveform, after the charging cur-
rent has decayed to a negligible value. The difference between the two sampled cur-
rents is amplified and recorded as the function of electrode potential, resulting in a
bell-shaped current—potential curve with a maximum that is proportional to the con-
centration of an analyte. By this procedure, the background current, which remains
nearly constant, but very noisy, after the decay of the capacitive component, can be
successfully suppressed.

A theory of this method, if it is applied to virtually planar electrodes, can be de-
rived from the theories of the staircase®’ and the differential pulse voltammetry.3°
However, all these theories require numerical calculations of the relationships be-
tween the current responses and the signal parameters. Besides, the method has
been developed to be used, primarily, with the hanging or the static mercury drop
electrodes. So, in this paper, the theory is developed assuming a spherical semiinfi-
nite diffusion towards the surface of both micro- and macro-electrodes. The experi-
mentally observed relationship between the differential peak currents and the
square-roots of the potential step durations! is re-examined and confirmed. It is
demonstrated that there are no sphericity effects in this technique, or that they are
very small, which means that the method is very useful at conventional mercury
drop electrodes, but should not be applied to microelectrodes because the differential
peak currents decrease proportionally to the reduction of the electrode surface area.
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THEORY

A simple redox reaction

Ox + ne” = Red 0))]

is considered assuming spherical diffusion of a soluble reactant and soluble product.
If only the oxidized species is initially present in the solution, and if the diffusion
coefficients of the reactant and the product are equal, reaction (I) can be mathemati-
cally represented by the well-known integral equation:1°

¢ =X exp(-o o) 1 - 1/%(1 + explp)) I° e

where: ¢=i(nFSc,y* (D12,

I° = [g(n(t - ) 2du - a [ exp(a®(t - u)) erfe(a(t - u)*?) du ,
0 0

¢ = nF(E - E°)/RT, a = DY*/r, X = k(Df)"V2 and f = ! is the frequency of the stair-
case excitement signal. The other symbols are defined in the list of symbols.

For numerical integration, Eq. (1) can be transformed to a system of recursive
formulae:11:12

9= Y[(¥/X) expla ) + (1 + exp(oy) S(l)]'l

m-1

O = [Y -1 +exp(p,)) Y. ¢, S(m—i+ 1)] [(Y/X) exp(@ ¢,,) + (1 + exp(e,,)) S(l)]'1
i=1

where Y = (D/INY?/r, ¢,, = nF(E,, — E°)/RT, and ¢,, and E,, are the dimensionless
current density and electrode potential, respectively, at time ¢,, = m d . The ratio
X/Y =r kD is the dimensionless standard charge transfer rate constant of redox
reaction (I). Partial integrals are:

S(1) = 1 — exp(Y%N) erfc(Y/NV2)

S(k) = exp Y4k — 1)/N) erfe(Y(k — 1)VYNY2) _ exp(Y2k/N) erfe(Y(k/N)V2)

where N is the number of time increments d in each staircase period N = 7/d. In
this work, the increment d = (50 f)~! and the potential step increment AE = -5 mV
were used. A scan rate of the staircase signal is defined as v = AE f. Functions of
the type exp(2?) erfc(z) were calculated using Oldham's algorithm.13

If Y — 0, the mass transfer can be interpreted by the planar diffusion model and
the current can be calculated by means of the following set of recursive formulae:!!

¢, = Z [(ZIX) expla ) + 1 + exp(p)]!

m-1

b= [Z -(1+exp(p,) Y. ¢; Sp(m —i+ 1)] [(Z/X) exp(@ ¢,,) + 1 + exp«pm)]‘l

i=1
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where Z = (ntN)%/2 and Sy (k) = kY2 — (k - 1)V2 At a certain fraction of each tread
(/2 < 7y < 1) and at its end (r, = 1), the instantaneous currents were sampled and
substracted: AP.10y = b@) — b, Five different values of the ratio r,/r were used: 0.52,

0.62, 0.72, 0.82 and 0.92. Besides, the realistic current sampling procedure was
simulated by averaging the currents sampled in five subsequent time incre-
5

ments; $(,l)=z ¢;.; /5. These average currents were calculated for five average
i=1

sampling_time_s (r;/t=0.56, 0.66. 0.76 and 0.86 and 7o/7=0.96) and substracted:

AP /ey =b@)— ). The maximum value of each differential response Ap, /ey, 18 Te-

ported as a dimensionless peak current density A¢, for the chosen ratio 74/15, and
the reported peak potential E, is equal to the corresponding potential of the working
electrode. For this reason the minimum change in E, equals AE.

RESULTS AND DISCUSSION

Direct staircase voltammograms resemble the well-known current—potential
curves of linear scan voltammetry.4” If the redox reaction (I) is strictly reversible
for all frequencies and electrode radiuses, the maximum dimensionless current
sampled at 7; = 7 is a function of the inverse value of dimensionless electrode
size Y = (D/f)V%/r. The relationship is not linear but can be satisfactorily approxi-
mated by two straight lines:

Prnaxy = 0.170 + 0.900 Y (for Y < 0.6) and Ormaxy = 0.135 + 0.985 Y (for 0.6 < Y < 2).
The result applies to n AE = 5 mV. If the current is sampled at 7,/r = 0.52, the dif-
ference appears only in the planar component of the dimensionless maximum cur-
rent: ¢ 052 = 0.185 + 0.900 Y (for Y < 0.6) and D max.52) = 0.135 + 0.985 Y (for
0.6 <Y < 2). The currents are independent of Y if Y < 10-3. This condition can be
satisfied at macro-sized electrodes, such as the hanging and the static mercury drop
electrodes, if the frequency is high enough. However, the possible influence of the sphe-
ricity must be taken into consideration under most other conditions, and generally at
microelectrodes. If a semispherical electrode (S = 2nr2) is extremely small (Y > 0.6), the
real maximum current can be expressed as: i_, =0.85 nFc,r DV2 (r fV2 4+ 7.3 DV2),
Theoreticaly, if r/Y? << 7.3 DV2, a steady-state, frequency-independent maximum cur-
rent appears: (i,,,)ss = 6.2 nFc,r D. This condition can be satisfied with more than
5% accuracy if, for instance, D = 105 cm?¥s, f= 1 Hz and r < 10 um. It seems that the
staircase voltammetric measurements are not generally performed under rigorously
established steady-state conditions. Potentials of the maxima also depend on pa-
rameter Y. Their non-linear relationship is characterized by the asymptotes: E,,, =
—0.035 Vvs E°, for Y < 102, and E,,, = —0.100 — 0.084 log(Y), for 0.5 < Y < 2.

A differential dimensionless response Ape ey =)= b > is a bell-shaped current-
potential curve with the maximum at — 0.010 V vs 55'° if nAE = 5 mV. Both the peak
current A¢, and the peak potential E, of the differential response are inde-
pendent of the parameter Y, regardless of the ratio 74/75. The direct dimensionless
currents measured at the peak potential — 0.010 V are linear functions of ¥ and the
slopes of these proportionalities are independent of the sampling times 7, and 7, (e.g.:
¢Ep (052 = 0.169 + 0.596 Y and ¢E,, @ = 0.150 + 0.596 Y, where E, =-0.010 V vs E°).

Consequently, their differences do not depend on the electrode sphericity. It has
been shown previously! that the real differential peak currents Ai, depend linearly
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on the difference (7,)"2 — (z,)"'2, as well as on the potential step increment. Dimen-
s1on1ess peak current is a functlon of a complex variable p = (1/1,)V2 — (z/t)"2, or

= (t/t)V? - 1, if 7, = 7. Calculations show that A, = 5.125 - 102 p, if p < 0.2 in
agreement with experimental data.! However, in a w1der range of variable p, the
non-linear relationship is more accurate: Ag, = 4.645 - 10~ p*9%°. The dependence of
A$, on AE is similar: A, = k AE®878_The factor of proportlonahty also depends on
variable p:k=1.135- 10‘2 0.955 Thus, these two relationships can be integrated into:
Ap, =1.135-102p 0.955 AE° 876, or Ai, = 1.135 - 102 nFSci(Df)!/? AEO876 p0-9%5 (where
AE is expressed in mV) The formula applies to all stationary electrodes, 1rrespect1ve
of their sphericity and size. However, this means that microelectrodes cannot be
used for differential staircase voltammetry of reversible redox reactions since the
peak current decreases proportionally to the reduction of the electrode surface area.
The peak potentials change slightly with the increasing of the potential step incre-
ment: from E, = — 0.006 V for AE = 2 mV, to E, = - 0.010 V for AE' = 10 mV. A half-
peak width depends slightly on both AE and p, and changes inside the narrow range
AE 5 = (99.5 £ 1.0)/n mV.

Differential staircase responses of totally irreversible redox reactions are some-
what different. Under the conditions of small sphericity (Y < 0.1), the dimensionless
peak currents are linearly proportional to parameter Y, but as Y increases, its in-
fluence on A¢, gradually diminishes and if Y > 1 (for 7,/r, = 0.52/1) and even if Y > 0.4
(for 14/7, = 0. 92/1) it totally vanishes. Hence, if & = 0.5 and nAE = 5 mV, Ag, = 1.22 - 102
p°895 +1.245 - 102 p19 Y for Y < 0.1, and A, = 1.6 - 102 p®9% for Y > 1. The in-
fluence of the charge transfer coefficient was 1nvest1gated forY=0and Y = 1.
IfY = 0, Ap, = 2.95 - 1072 p%%5 41263 and if Y > 1, Ag, = 3.255 - 102 g10M p0%,
Thus, if Y < 0.1, Ap, = 2.95 - flo2 giom 0895 1 1.245 . 10-2 p19%5 Y. Again, the method
is not applicable to microelectrodes but at macroelectrodes the sphericity effects
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Figure 1. Dependences of (A) dimensionless differential staircase peak currents Ag, = Al

(nFSc,, YXDPH~V2 and (B) peak potentials of quasireversible redox reaction on the kmetlc para-
meter X = k(Df)"V2. Stationary planar (1) and spherical diffusion models: X/Y = 2.5 (2) and
0.1 (3). Sampling times 74/7 = 0.56 and 79/r = 0.96; n = 1, @ = 0.5 and AE = —~5 mV.



DIFFERENTIAL STAIRCASE VOLTAMMETRY 339

-0.3
102 )

A ach, 10 B Ey/V

15
-0.2

1
-04

log(x/y) 105 log (X/Y)
2 1 0 1 2 3 2 1 0 1 2

Figure 2. Dependence of (A) A, and (B) E;, on the kinetic ratio X/Y for Y = 1. All parameters
as in Figure 1.

have to be considered. Under the same experimental conditions, the response of ir-
reversible reactions are from three to five times lower than the responses of revers-
ible redox reactions.

The responses of quasi-reversible redox reactions are functions of two interdepend-
ent parameters: Y = (D/f)V?/r, which is related to electrode size, and X = k(DPHV2, which
is related to electrode kinetics. Increasing of the frequency causes a simultaneous
decrease of both parameters, X and Y, but their ratio X/Y = r k/D remains constant.
If sphericity is negligible (Y < 10-3), the apparent reversibility of redox reaction de-
pends solely on the kinetic parameter X. The dimensionless peak current increases
with an increase of log(X) in the well-known sigmoidal way, as it can be seen in Fig-
ure 1, curve 1. The reaction appears reversible if X > 10, and totally irreversible if
X < 0.01. At spherical electrodes, the ratio X/Y is the additional kinetic parameter,12
as demonstrated by curves 2 and 3 in Figure 1. The relationship between A¢, and
log (X/Y), calculated for Y = 1, is shown in Figure 2. The limits of reversible and
totally irreversible reaction are X/Y > 300 and X/Y < 0.1, respectively. If the vari-
ation of frequency causes a decrease of X and Y values below 0.1 and 0.01, respec-
tively., the influence of sphericity on the peak potential vanishes and E, depends
only on the kinetic parameter: E, - E° = 0.010 + 2.3(RT/anF)log (X). If the value of
X is higher than 2, the peak potential is independent of X, but depends on the ratio
X/Y. If X/Y > 10, the reaction is reversible and E,-E°=-0010 V.IfX/Y < 1,
the reaction is ireversible and E, - E° = -0.059 + 2.3 (RT/anF) log(X/Y). The last
equation also defines the constant value towards which the peak potentials of to-
tally irreversible reaction tend if the sphericity is very high (Y > 1). For this rea-
son, the slope OE /0log(f) measured in the restricted frequency range may suggest
an inaccurate value of the product an. The dimensionless peak currents become
independent of the frequency when X > 10 but still remain dependent on the ra-
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tio X/Y, obeying the criteria of reversibility shown in Figure 2. The differential
staircase response is strictly reversible and its dimensionless peak current is inde-
pendent of the electrode size if X > 10 and Y < 0.03.

A standard reaction rate constant of quasireversible redox reactions can be de-
termined from the dependence of peak potentials on the scan rate, like in the clas-
sical linear scan voltammetry.l® For this purpose, the potential step increment has
to remain constant so that f = v/AE. As shown in Figure 1 B, the intersection of
straight lines E, — E° = 0.010 + 2.3 (RT/anF) log (B .DV2) — (2.3/2)(RT/anF) log(f)
(apparently irreversible reactions) and E, — E° = —0.010 V (apparently reversible
reactions) is characterized by a certain critical frequency f,;,. At the planar elec-
trode, this frequency is related to &, by the formula: k, = 0.7 (D f,;,)V2. If the elec-
trode is spherical (X/Y = 2.5), this relationship is: k, = 0.6 (D f,;)"2. Thus, for the
macroelectrode of unknown sphericity, an approximative formula applies: 2, = (0.65
+ 0.05)D f,;)Y2 The microelectrodes are not recommendable for this type of meas-
urements for the reasons given above.
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LIST OF SYMBOLS

o charge transfer coefficient

co bulk concentration of the oxidized species

D diffusion coefficient

d time increment for numerical integration

E potential of the working electrode

AE potential step increment of the staircase potential-time
waveform

E° standard potential of reaction (I)

E, peak potential

AEp/ half-peak width

f= ot frequency of the staircase excitement signal

F Faraday constant

o=1 (nFScy)™! (D]‘)_I/2 dimensionless current

M@ /1) = 911 — ¢ differential dimensionless current

Adp maximum differential dimensionless current

real current

real differential current

real differential peak current

standard heterogeneous charge transfer rate constant
number of electrons

gas constant

electrode radius

electrode surface area

time

duration of the potential step of the staircase excitement signal
absolute temperature
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SAZETAK
Teorija diferencijalne stepenidaste voltammetrije
Milivoj Lovrié

Razvijena je teorija diferencijalne stepeni¢aste voltammetrije na sfernim elektrodama ra-

zli¢itih veli¢ina. IstraZena je ovisnost vrdnih struja odziva o karakteristikama pobude (korak
potencijala, trenutci uzorkovanja), svojstvima redoks-reakcije (koeficijent i standardna kon-
stanta prijenosa naboja) te o promjeru elektrode. Postavljeni su kriteriji za procjenu reverzi-
bilnosti redoks-reakcije. Diferencijalni odzivi reverzibilnih redoks-reakcija ne ovise o bezdimen-
zijskom radiusu elektrode Y = (D/f)"?/r. Zbog toga nema sfernog efekta, pa se metoda ne moze
primijeniti na mikroelektrodama, ali je njezina primjena na velikim sfernim elektrodama
olaksana i preporuéljiva.
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