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We consider the special case of treelike polyhexes for which the con-
secutive removal of endhexagons results in a path, or complete disappear-
ance. We derive a generating function for counting the isomorphism classes
of these »polycats« up to reflection and rotation.

INTRODUCTION

The study of the various ways in which six-membered rings of carbon atoms can
be combined to form more complicated chemical structures (as for example in Fig-
ures 1 and 2) is one of considerable importance for organic chemists. It corresponds
to the geometrical problem of combining, in the plane, regular hexagons of equal
size, by the process of bringing hexagons together at common edges. It is natural to
ask whether a formula can be found that gives the number of different ways of com-
bining a given number n of hexagons. This problem has all appearances of being
completely intractable, for two main reasons.

First, such a configuration could be »peri-condensed«, meaning that there is at
least one point which is common to three hexagons (as in Figure 1 with the hexagons
marked A, B and C). If peri-condensation is allowed, our problem becomes a variant
of the cell-growth problem®® for which no counting formula has yet been found.

Secondly, even if we restrict our attention to »cata-condensed« structures, that
is, those that are not peri-condensed, following the now standard terminology intro-

* Dedicated to Paul Mezey on his 50t birthday
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duced,! there is still the possibility of the hexagons forming a closed ring, as in Fig-
ure 2. If this is allowed, the enumeration problem is still intractable. Since peri-con-
densed compounds and compounds containing rings of hexagons are of importance
in chemistry, it is unfortunate that their enumeration appears to be out of reach.

w &

Figure 1. Figure 2. Figure 3.

In order to arrive at a more restricted, but tractable problem, Balaban and
Harary introduced the structures called »polyhexes«. A »treelike polyhex«” can be de-
fined in various ways; perhaps the simplest is to define it as any structure in the
plane which can be built up, starting with a single hexagon, by adding new hexa-
gons, one at a time, subject to the rule that a new hexagon is joined only at a single
edge on the boundary of the existing structure. Since, to achieve a peri-condensed
structure, or one containing a ring of hexagons, it would be necessary, at some stage,
to join a new hexagon at two or more edges, these two sources of difficulty are ex-
cluded. The enumeration of treelike polyhexes proved to be tractable, and was car-
ried out by us in Ref. 7.

One further rule is required for the proper definition of a treelike polyhex,
namely that we must not attach two hexagons to a third at adjacent edges, as shown
in Figure 3. Fortunately, this restriction is a reasonable one from a chemical point
of view. It follows that a hexagon can have 1, 2 or 3 neighbours (as shown by A, B
and C respectively in Figure 4) but no more. For the number of neighbours we shall
use the graph-theoretical term 'degree’. There are essentially two different kinds of
hexagon of degree 2, according as its neighbours abut on opposite edges or not (D
and E in Figure 4). A hexagon of degree three will be called a 'branch hexagon'; there
is only one kind.

One further comment is necessary. In the course of assembling a treelike polyhex
it may happen that the hexagons will assume positions where, if the construction
were literally in the plane, a ring would have to be formed (Figure 5). In that case
we may think of the hexagons as »overlapping« (Figure 5 again). It is immaterial
which part of the structure is regarded as being on top and which beneath.

Our purpose is to enumerate a special subset of treelike polyhexes. The nature
of this subset is best explained by reference to the »dual« of a polyhex. This is not
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strictly a dual operation, since performing it twice does not give back the original
structure. This concept was introduced in Ref. 2 where it was called the »weak dual«
or »inner dual«. This is the graph obtained by placing a node at the centre of each
hexagon and joining two nodes if and only if their hexagons abut (Figure 6). It fol-
lows from the definition of a treelike polyhex that the resulting graph is a tree (for
graph theoretical terminology see Ref. 5). We now define an operation called path
reduction. Every node of degree 1 (endnode) defines a unique path, starting at that
node and continuing through nodes of degree 2 (if any) until a node of degree not 2
is reached. To »path-reduce« a tree we note all endnodes and the paths that they
define, and then simultaneously delete all the nodes of degree 1 and 2 on these
paths. The treelike polyhex that remains (if it does not vanish altogether) is the
path-reduction of the original.

Figure 6.

The treelike polyhexes that we shall enumerate are those whose path-reduction
is a path, including (for completeness) those whose path-reductions are empty. This
is a generalization of an existing graph-theoretical concept. A tree which reduces to
a path when just the endnodes are deleted has been called a »caterpillar«.®® Our new
polyhexes could be described as being »super-caterpillars« or »long-legged caterpil-
lars«; but we need a more concise term. We shall call them polycats, where the 'cat'
part of the name serves the dual purpose of reminding us that we are dealing with
catacondensed structures, and that these are, in a sense, caterpillar-like. It will be
convenient to refer to the path to which a polycat reduces as the »spine« of the polycat.

The methods that we shall use are quite standard, being variations on those
used in Ref. 7. We shall say that two polyhexes are equivalent if one can be obtained
from the other by a rotation or reflection of the plane. An important tool for problems
of this type is Burnside's lemma. This is described in Ref. 6 but a rough précis of it
is the following. In order to determine the number of inequivalent configurations un-
der the action of a group (such as the rotations and reflections just mentioned) it
suffices to compute, for each group element, the number of configurations that are
invariant under that group element, and then take the average of the numbers so
obtained.

It will be convenient to treat separately three types of polycats, as follows:
Type I:  those having no branch cells (these are therefore paths to start with).

Type II: those having exactly one branch cell (from which, therefore, three paths
will arise).

Type III: those having two or more branch cells.
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POLYCATS OF TYPE I — NO BRANCH HEXAGONS

These polycats consist of a sequence of hexagons. There are two »end hexagons,
and every other hexagon is adjacent only to its predecessor and its successor in the
sequence (Figure 7). We first consider polycats of this type that are fixed in the
plane. The two end hexagons are therefore distinguished from each other, and it will
assist our exposition to call these hexagons the »head« and »tail«, and to refer to the
fixed polycat as a »snake«.

The enumeration of snakes is very easy. If we traverse the length of the snake,
say from tail to head, then at every »inner« hexagon, i.e. other then the head and
tail, there can be a change of direction, to the left (call it »type 0«) or to the right
(>type 24), or a continuation of the previous direction (»type 1«). Note that each hexa-
gon is drawn with two vertical edges, as in the figures. If the snake contains m hexa-
gons in all, it can be specified by a string of m — 2 symbols from the set {0,1,2} and
hence the number of snakes is 3”2 The corresponding generating function is therefore

2
1-3x"

S(x) = z 3771—2 XM=

m=2

(1

Consider now those snakes that are invariant under a reflection about the line
joining the centres of the head and tail, i.e., such that the head and tail remain in
position. It is easily seen that there can be only one such snake on m hexagons,
namely the »straight« snake shown in Figure 8.

Figure 7. Figure 8.

Consider those snakes that are invariant about a line perpendicular to the pre-
vious line of reflection. If such a snake has an even number, m = 2k, of hexagons
(Figure 9), then it is fully determined by its first £ + 1 hexagons, and consists of a
snake on %2 + 1 hexagons, minus its head, joined to its mirror image, its reflection
in the dotted line of Figure 9. (The reason for including the (% + 1)'st hexagon is to
determine how these two portions are joined together). Hence the number of such
snakes is 3*1. If the snake has an odd number, m = 2k + 1, of hexagons (Figure 10),
it can be constructed by joining each of the two »headless« snakes to a central hexa-
gon, an operation which is possible in three ways according to whether the edges of
attachement are opposite each other or not. Figure 10 shows one of the two cases
when they are not, and uses the same »half-snake« as for Figure 9. Hence in this
case the number is 3.

Finally we consider those snakes having the remaining kind of symmetry, that
of a rotation through 180° which interchanges the head and tail. For snakes on 2%
hexagons the situation is the same as before, except that the »half-snake« is joined,
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Figure 9. Figure 10.

not to its mirror image, but to a 180° rotation of itself (Figure 11). The number of
such snakes is therefore again 3* 1. However, if the number of hexagons is 2k + 1
(Figure 12), the situation is different, since the symmetry requires that the central
three hexagons be in a straight line.

o

Figure 11. Figure 12.

Thus, whereas for the case of reflection we had three ways of attaching the two
half-snakes to the central hexagon, we now have only one. Hence the number is
3k-1,

These numbers are summarized in Table I. Note that the heading »All snakes«
is consistent with the others since it can be paraphrased as »Invariant under the
identity operation of the group«.

TABLE I
m = 2k m=2k +1
All snakes S 3m-2
Invariant under reflection (1) il 1
Invariant under reflection (2) 3kt 31
Invariant under 180° rotation 3¢ 3l

Burnside's lemma now gives us the numbers of inequivalent snakes, that is, the
number of polycats of type I. We have

1
==(3"24+23"14+1) if m=2k
s 4( ) if m @)

and a, = % @ 2+814+824+1) if m=2k+1
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The generating function X, _, a,x™ is readily verified to be

1 x2 2x2+4x3 £ x2
= " d
4183y - 1328 T

Ax) = (3

This can also be written as a single rational function, namely

x%(1 - 2x — 4x% + 6x°)
1-x)(1-2x)(1-3x%)"

(4)

The first few values for a,, are given in Table II.

The results just obtained are not new. Foster® considered a different (but
equivalnet) problem concerning the number of ways of bending a piece of wire in
the plane. He obtained the numbers which we have called a,, for the solution to his

problem. The same results, in the context of the present problem, were also obtained
in Ref. 1.

POLYCATS OF TYPE II — EXACTLY ONE BRANCH HEXAGON

Since there is exactly one branch hexagon, a type II polycat must consist of three
headless snakes attached at alternate edges of the branch hexagon (Figure 4). If this
hexagon, and the edges at which the snakes are attached, is fixed then the three
choices for the snakes are independent. Hence the generating function for fixed poly-
cats of type II is

x [t ST,

where the x~! allows for the removal of the head of each snake. This generating func-
tion is therefore

x4

(| S50 (5)

We now consider the possible symmetries of these polycats. First, there are two
symmetries of rotation, namely by 120° and 240° about the centre of the branch
hexagon. For invariance under such a rotation, the three attached snakes must be
identical (Figure 13). Since each choice of a hexagon in one snake determines two others
(so that the hexagons occur in triads) the generating function for these polycats is

£
1-3%3

x [x73 S@%)] = (6)

for each of the two rotations.

There are also the reflectional symmetries about an axis of symmetry of the cen-
tral hexagon (Figure 14). Clearly the snake that is attached along the axis of sym-
metry must be the straight snake. The other two are mirror inages of each other.
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Hence the required generating function is

2 < x4
dot e o)

x
1-x

(7

This holds for each of the three symmetries of this type.

Figure 13. Figure 14.

We now apply Burnside's lemma and take the average of the six generating func-
tions just obtained. The result is the generating function
i i 3xt % 2x*

6|(1-3x)° (1-x1-3x») 1-3°

(8)

which can also be written as

xt (1 - 8x + 24x% — 23x — 13x* + 15x° + 12x°)
(1-2)(1-3x)°@1-3x») 1 -3x%

(9)

POLYCATS OF TYPE III

For these polycats it is clear that the path to which each reduces must have a
branching hexagon at each end, and that any other branching hexagon must belong
to the spine. We therefore start by enumerating snakes on m hexagons in which ex-
actly b inner hexagons are marked as future branch hexagons.

Given a snake on m hexagons we first choose the b marked hexagons. These
hexagons must be of type 0 or 2. The remaining m — 2 — b inner hexagons can be
of any type. Hence for given b, the required number of snakes is

m— b qm-2-b
[ b j2 s

For each such snake as spine, we attach headless snakes at each of the marked
hexagons and two headless snakes at each end. Since the generating function for
headless snakes is x(1 — 3x)~!, we obtain the generating function

M [nl_zj zb 31}1—27b ( L Jbﬂl
b 1-3x

for fixed polycats of type III with given m and b.
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Summing over b we obtain

an«.i ( 2% jm_z
Toagtdrs: o)

Summing over m we obtain

m-2
x4 m 3-Tx
(1 - 3% 2 x {1 3 3x]

m>2
which reduces to

x8 5 1
280" 1-6x+ 7"

(10)

We now consider the number of type III polycats with the various allowable sym-
metries.

Figure 15.

If m = 2k and the polycat is symmetrical about the common edge of the two cen-
tre hexagons of the spine (Figure 15), then the whole polycat is determined by the
first & hexagons of the spine plus the attached paths. This collection of hexagons forms
a configuration, H, which is similar to a type III polycat except that it is missing the
hexagon and the two attached paths at one end. By the methods just used for the fixed
type III polycats we find the generating function for configurations like H to be

e 1
1-3x 1-6x+7x%"

(11)

Since every hexagon of H is duplicated to form the full polycat, the generating
function for these polycats is seen to be

x8 : 1
1-3x2 1-6x2+ 7%’

(12)

To enumerate polycats with this same type of symmetry and an odd number of
hexagons we construct them from those with an even number of hexagons by insert-
ing an extra cell in the middle. For each polycat with an even number of cells this
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can be done in exactly three ways, as illustrated in Figure 16 which shows the three
polycats obtainable from the one in Figure 15.

Figure 16.

If the three central cells are in a line (Figure 16b) we obtain at once the gener-
ating function
x7 : 3
1-3x% 1-6x%2+7x*

(13)

However, in the other two cases (Figure 16a and c) it is possible to attach an extra
headless snake at the central hexagon. Because of the symmetry this snake must
be a straight one, for which the generating function is (1 — x)"!. Hence for these two
cases together we have the generating function

2x" : 1
1-3xH(1-x) 1-622+T7x*"

(14)

Hence for all the polycats with this kind of symmetry (which interchanges the
two end of the spine) the generating function is

i [x6+x7+ 2x7]= x5 (1+2x- %%
(1 -3x?%) (1 - 6x% + Tx%) 1-2" Q-0 -3xYHA-6x2+TxY"

(15)

We now consider those polycats that are equivalent under a rotation through
180° which interchanges the centres of the two end hexagons of the spine. For those
with 2k hexagons (Figure 17) the situation is almost as before, except that in con-
structing the polycat we attach the second half the other way around, that is, with-
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out reflecting it (compare Figures 15 and 17). The number of polycats obtained is
the same as before, and so is the generating function, which is (12).

For those with 2k + 1 hexagons the situation is again similar, but, as in Section
2, the restrictions of this symmetry require that the two »half-polycats« be attached
at opposite edges of the central hexagons, and the three central hexagons are in a
straight line. Hence the required generating function is (13); the case to which (14)
refers cannot arise.

Figure 17.

Finally, we look at the remaining type of symmetry that a type III polycat can
have, namely, symmetry about a line joining the centres of the end hexagons of the
spine. It is easily seen that the spine itself must be straight and that headless
snakes may be attached only to the end hexagons of the spine. Moreover, the two
headless snakes at one end of the spine must be mirror images, and similarly for
the other end. For each such pair the generating function is x%(1 — 3x2)~!, while that
for the spine is x%(1 — x)"1. Hence the required generating function is

2 2 V¥ 6
X x i x i (16)
1-x{1-3x 1-x)(1-3x%
The results will be combined, using Burnside's lemma, in the next section.

THE MAIN RESULT

In the preceding section we showed that the generating function for all fixed
polycats of type III was given by Eq. (10); that those with one kind of reflectional
symmetry were enumerated by the generating function (15); that those with rota-
tional symmetry were enumerated by the sum of (12) and (13), namely

x5 1 J x2 1 - 28 (1 +x)
1-3¢2 1-6x22+Tx* 1-3x% 1-6x2+T7x* (1-3xH (1 -6+ 7xH

17)

and that those with the other kind of reflectional symmetry are enumerated by (16).

Some numerical values for the coefficients in these four generating functions are
given in Table II below, in columns (a), (b), (¢) and (d).
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Adding these results and dividing by 4 we obtain the generating function for the
numbers of equivalence classes of type III polycats. Expressed as a single rational

function it is

28 (1 - 11x + 52x% — 91x% — 132x* + 722¢° — 683x5 — 660x” + 144048 — 630x7)

1-x)(1-3x)°1-3x%% (1 - 6x + Tx?) (1 — 6% + Tx?)

(18)

Table II also gives some numerical values for the results in sections 2 and 3,
and the total numbers of polycats of all types for n from 1 to 21.

TABLE II
Type III Total
n el e 11 All
= — (@) (b) © @ pe T

i 1 1
2, ik 1l
3 2 2
4 4 1 5
5 10 2 12
6 25 11 1 1 1 il 3 37
7 70 48 15 3 1 1 5 123
8 196 209 137 1 9 7 41 446
9 574 857 087 29 9 7 258 1689
10 1681 3425 6178 76 56 34 1586 6692
11 5002 13142 35262 188 561 34 8885 27029
12 14884 49268 188738 432 300 142 47403 111555
13 44530 180497 964326 1032 300 142 241450 466477
14 133225 649721 4760035 2221 1489 547 1191073 1974019
15 399310 2303093 22892493 5199 1489 547 5724932 8427335
16 1196836 8060762 107931947 10787 7077 2005 26987954 36245552
17 358944 27901199 501161697 24941 7077 2005 125298930 156789543
18 10764961 95661020 2299807684 50632 32768 7108 514974568 681400529
19 32291602 325243613 10458118140 116168 32768 7108 2614568546 2972103761
20 96864964 1097696306 47224011332 232656 149256 24604 11806104462 13000665732
21 29058505 3680499566 212088692364 531168 149256 24604 53022349348 56993433964
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SAZETAK
Prebrojavanje poliheksa gusjeniénog oblika
Frank Harary i Ronald C. Read

Razmatrani su poliheksi nalik na stabla kod kojih se uzastopnim uklanjanjem krajnih
Sesterokuta dobiva staza ili oni potpuno izéezavaju. Izvedena je generirajuéa funkcija za pre-
brojavanje izomorfnih klasa ovih naroéitih poliheksa do refleksije i rotacije.
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