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The Coulombs, ¥, ionic cloud, ¥;., and the average ¥py, potentials
of the Debye-Hiickel theory, in the space adjacent to spherlcal particles,
charged with a given number of elementary point charges, can be calcu-

lated using the equations

n  +p
Yep=(1/2rmaxm) 2, 2 1/ (A1)

=l

N +p
¥DHp = — (1/2 rmax 1) Z Z e’ /r (A2)

o

@M +p

Yip=(127rmaxm) 2. 2. (L -eM) /7 (A3)

=i
The Gouy-Chapman potential, ¥, at planar surfaces is defined by
¥YGeh=e " (A4)
Here: r = {x% + b 2[(n + )% + (p + 2)2305, Tinaistlic Mo V2 = Aic Pmax V2,
the latter being predetermmed n, p integers. The intercharge distance is
Lg%, L, (0 + ), I,, (D + 2) are the coordinates of any point in the layer,
while 0 < y, z < 1. The distance of points on the axes from the surface is
x. All symbols are multiples of «, i.e.,, x = x'x, ¥y = y'x, z = 2'k, lio Lk, and
Yep = Voo Yo =2 e, k/4 1 . The intersections of the ¥opX = var, n, p,
y,z2=0) p ots w1th the ll’l(.p(x—)()) =1 horizontal line define x = 1/ Kps whlch
is valid for given particles and ionic strength. The calculations prove that
¥icp 15 higher than ¥qc. Consequently, the introduction of the slipping
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plane and of the Stern layer necessarily results in too low ¢ potentials. The
author (1963) proposed and supported the proposal with experiments, that
the reciprocal electrokinetic quotients, g are proportional to log I, or to the
logarithm coagulating counterion concentration (g = »transported vol-
ume/current strength«, »streaming current/streaming rate«, »streaming po-
tential/pressure«, »mobility/field strength«). Then, one obtains the function

q=qm~—|slog(I/Im) | (A5)

This is represented by two straight lines, one increasing, the other de-
creasing, with the intersection at I = I, and at g = g,,,. Parameters ¢, and
the slope, s, are adjustable and they depend on the technique applied. Sev-
eral published experimental plots by Hidalgo-Alvarez and colls. (1986) and
Midmore and Hunter (1988) can be approximated as two straight lines in-
tersecting at log I,. The cited experiments are certainly a strong support
for the correctness and usefulness of the DHT, as applied for the point
charge double layer modelorts to calculate ¢ potentials were generally un-
successful because /;, and 1/ are not included in the homogeneous charge,
electrical double layer modefs, which, for these reasons, should be aban-
doned.

INTRODUCTION
Motto:

».. though in reality it is a charge consisting of point charges, it is customary
to consider it, as first approximation, as a homogeneous surface charge
spread over the surface of the particles.«

» ... and in default of preciser data, we shall, in the following considerations,
generally assume the surface charge to be homogeneous«, Overbeek.!

» ... the disparity between the total potentiol (Nernst potential) as determined
by the potential determining ions and the ¢ potential calculated from elec-
trokinetics led to the introduction of the slipping plane...«, Overbeek.?

Practically all current double layer theories in electrokinetics are concerned with
the calculation of the ¢ potential from experimental results. As a rule, the basic and
starting are either von Smoluchowski's or Henry's equations. Strictly, the former
equation is applicable to macroscopic capillaries or large rodlike particles only, and
the latter to spherical particles of various sizes charged with a homogeneous charge.

Some workers calculate ¢ potentials by multiplying the measured electrokinetic
quotient with the constant factor of von Smoluchowski's equation. Some corrections
or extensions of Smoluchowski's equation have been proposed. All of them, in high
ionic strength, give the same ¢ potentials as Smoluchowski's equation. It can be
stated that as many ¢ potential equations exist as many theories have been pro-
posed, while only a single one can be correct: The latter is a fact which should be
beyond any discussion. E.q., there exists only one Nernst-potential equation. Also,
the smallest Agl stable particles are charged with one single ion only of charge num-
ber one, while in the membranes of coagulated Agl 150 primary particles are
charged with a single ion charge.

The electrokinetic quotients are g = »transported volume / current strength,
»streaming current / streaming rate«, »streaming potiential / pressure«, »mobility /
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field strength«. Very seldom is the measured electrokinetic quotient multiplied by con-
ductance, even in experiments with variable conductance. Since the colloidal particles are
never large rodlike cyclinders, neither are there large cylindrical channels in mem-
branes, the values of { potential obtained in this way are simply numbers proportional
to experimental electrokinetic quotients of no quantitative physical significance. Namely,
the Smoluchowski's equation is based on the supposition that big rodlike particles con-
stitute the movable particles, or, that the electrolyte is transported through big cylin-
drical channels in membranes. In reality, neither such particles nor membranes exist.

An evident disparity between the total electric potential measured between two
metallic electrodes of the first or second order (Nernst potential) and determined by
potential-determining ions (PDIs) and the ¢ potential, calculated from electrokinet-
ics, was observed very early.l? For this reason, the idea of the not measurable but
speculatively adjustable distance of the slipping plane was introduced and the po-
tential in the slipping plane was taken to represent the { potential. The same idea
was retained also for polymeric colloids (latices), despite the fact that on polymeric
colloids, which are insulators, no electric potential analogous to the Nernst potential,
is possible in principle. Also, the Nernst potential is measurable only in galvanic
cells having two metallic electrodes, possibly covered with an ionic solid.

The idea of Nernst potential was dropped by many scientists after experimental
and theoretical arguments had showed that electrokinetic measurements of ionic sol-
ids do not depend on the concentration of PDIs, as it was expected in many exam-
ples, the electrokinetic quotients are in a broad region practically independent of
[PDI] or ionic strength. In latex sols, the counter ions do not physically determine
an electrical potential analogous to the potential determined by PDIs.

However, despite the fact that: (a) it is impossible to prove the existence of the
Nernst potential on colloidal particles, (b) the Nernst potential on the same electrode
can be positive or negative, depending on the reference electrode, and (c) its exist-
ence is impossible on insulator (polymeric latex, organic, biochemical) particles, the
idea of the slipping plane and its ¢ potential has been retained in practically all cur-
rent double layer and electrokinetic theories.

A colloidal system of two adjoining defined phases is completely defined with a
minimum of four experimental basic parameters (a) particle size and form, (b) charge
density, or elementary charge per particle number or inter charge distance, (c) par-
ticle number concentration and (d) ionic strength of, if present, the (1-1) electrolytes.
If coagulating counter ions or surfactants are present, the additional unavoidable pa-
rameters are: (e) the concentration of the coagulating counter ion of charge number
z > 1 and (f) surfactant concentration. Consequently, theories in which all the cited pa-
rameters are not included, cannot be applied to the theoretical explanation of experi-
mental or real systems for the definition of which the same parameters are unavoidable.

THEORETICAL CONSIDERATIONS AND DISCUSSION

The Point Charge Double Layer Model

According to the elementary version of the DHT, the following potentials are ef-
fective in the vicinity of ions: the Coulombs, ¥¢, the ion cloud, ¥, and the average
DHT, ¥pu. The same potentials, in the vicinity of stable or coagulating particles
charged with many adsorbed ions or chemically bound ionogenic radicals, can be cal-
culated as the sums of the same potentials originating from the adsorbed ions on
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the surface, considered as point charges, and the counter ions statistically distri-
buted in the adjacent electrolyte layer forming the ion cloud.

Potentials on small stable particles charged with one elementary ion charge and
primary particles twice the radius of the stable particles and possibly initially
charged with eight point charges, as well as potentials in aggregates of many pri-
mary particles, are described in reference®.

There is no reason whatsoever why the adsorbed ions or chemically bound iono-
genic radicals on colloidal particles should not be theoretically treated as they are
treated by the generally accepted DHT of ionic interactions in electrolytes. Also,
there is no reason whatsoever why the law of superposition of potentials should not
hold for the three cited potentials exhibited by adsorbed or chemically bound ions.
An argument supporting the same claim is the fact that the homogeneous charge
potential, i.e., the Gouy-Chapman potential, for x — 0, can be calculated as the sum
of an infinitely big number of ion cloudpotentials of infinitesimally small point
charges on a plane surface of unit area. In reality, the Gouy-Chapman potential
arises only on polarized electrodes charged from an outside battery. Its charge is
either a surplus or lack of electrons. Consequently, only the point charge model can
be valid for interfaces charged with ions or ionogenic radicals.

The Debye-Hiickel Potentials at Planar Surfaces

The DHT potentials, in the vicinity of stable or coagulating plane surfaces,
charged with a given number of adsorbed ions or chemically bound ionogenic radi-
cals, can be calculated as the sums of the same potentials originating from point
charges in a quadratic pattern by the following equations.?

The electrostatic or Coulombs potential, ¥¢,, by

. 4p

G I I R R e))
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Analogously, the average Debye-Hiickel potential, ¥py,, is defined by the formula
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The sum of the two potentials is the ion cloud potential, ¥icp- Its equation reads

n 4p

Y= 02r o3 Y 1) (3)
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Here: r = {x® + L2 [(n + )% + (0 + 2)?1}°5; Lie (024 P2 < rpay = lic NnaxV2 = Lic Prmax V2.
The latter circular surface should be equivalent to the particle surface of any form.
The intercharge distance is li; x, lic (n + ), lic (p + 2z) are coordinates of the points
in the interface, while 0 < y < 1, 0 < z < 1; li. n, l;. p, are coordinates of the points
on the surface. The perpendicular distance of the points from the interface is x. All
symbols are multiples of 1/k°, i.e., x = x' k%, y = y' k°, z = 2' k°, l;, = li,' k°, ¥ = ¥'/°.
The symbols marked with ' are absolute values and
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The latter is a standard electrostatic potential determined by a defined standard
ionic strength, I = I°, which determines x°. All plots are valid for any selected con-
stant I.

Upon the surface charge, the ion cloud exhibits the ion cloud potential - ¥, (r,
x — 0). It is equal to the Gouy-Chapman potential at x — 0 if, in both cases, the
charge density is constant.

The intersections of the decreasing ¥cp (x, 0 = n, p, y, 2) plots (1) with the
¥Yep = 1 horizontal line determine 1/ky, which, in turn, is determined by I and /.
A standard I = I° can be selected, which determines the standard 1/k°;, which is
valid for given particles characterized by (a «°) >> rp.x and a given [i.. In variable
I, the three potentials are variable, because ¥° depends on I°. The smaller is /i, the
bigger is 1/k°,. The Coulombs potential, for 1/k°, or for ¥°, in equation (1) is
equal, for x — 0 and for ry.x — © in equation (4), to the ion cloudpotential of
opposite sign, i.e. ¥cp (& = lkp) = =¥iep (x = 0) = 1. It suffices, therefore, to esti-
mate 1/k, for Yep = 1 to obtain the average distance, 1/ky, of the ion cloudpotential
in a given interface.

The explanation of the distance 1/k,, 1/kp on the particles, also with planar sur-
faces, is analogous to the explanation of 1/« for the central, or reference ion of the
DHT: two surfaces or particles (two ions) of the same sign, at distances bigger than
2/xp, 2/kp (2/k), attract each other, at smaller distances, they repel each other
and at 2/k, = 2, 2/ky = 2, (2/k = 2) they are in equilibrium with respect to electro-
static forces and to statistical distances determined by concentration.

However, the calculation for plane surfaces is not applicable to small particles
if their size and form are not defined.

Besides this argument, the author has proved that the charge density function
is, if the size and form of particles are unknown, undetermined.? 1
The Debye-Hiickel Potentials on Spheres of Various Size

Figure 1 represents schematically a quadrant of a particle of unit radius rp. =
r'max K = 1. The axis x along which the potentials are calculated passes from the cen-
tre, C, across a selected point charge (0,0). The coordinates of any point on the sur-

face are (0, 0) < (n, p) < (Nyax, Pmax) Where Nyax = Pmax- The arcsinus values of the angles
A, and A, between two lines C — (0, p) —

x—>,C—-(,p)>and C - (n,0) >, C - (n,p) > are

arcsin A, = nn/2n,, (5)

arcsin A, = p 1/2 p,,, (6)

The calculation of distances r, and ry of points (+ n, p) from points (x) follows from
Figures 1 and 2, the latter representing the plane (-n, 0) & (-n,p) © (n,p) & (%)

s {[x *+ Tmax (1 — COSs Ap)]2 + h2}1/2 (7)

ry = {[x + rp. (1 + cos Ap)]2 + h2)12 ®)
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Here, ryax = a/2 is the particle radius and

h = sin A4, 9

rmax

(Nmax, Prax?

arc sin An

Figure 1. Quadrant of a sphere of radius 7,,,, = 1, charged with Nmax = Pmax = 6 point charges.
Angles, An, between lines »C — (0,0) and C — (r,0)« and Ap, between »C — (n,0) and C — (0,p)«.
Distance, x, between a point (x) on the axis and point »(0,0)«.

2 2 0S
r,=([x*rm.x(l—cosAp)] +h}

S

&
6m-x cos Ap (0,0) (x)
a = 2 Mmax

PLANE : (-n,0) & (-n,p) & (n,p) & (x)

Figure 2. Crossection across the points (—n,0) <> (-n,p) & (n,p) <> (x) of a spherical particle
of diameter a = 2 ry,,,. Distances r; and r, follow from the figure and the text.

The Coulombs potential, ¥cp, exhibited by all charges upon the points (x,0,0) on
the axis, equals

R =loone o1 I O

¥\, = @/ F) [ BT s 1/r2]+1/pr (10)

p=n-1 n=1 p=n+l1 n=-1
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The average Debye-Hiickel potential, ¥puy, can be calculated by

nifslinase 1 PEESl G bl
¥pup = (—4/Fp) [ VS 2. erl/r1+ D > e’2/ry +e""/pr (11)
p=n-1 n=1 p=n+l1 n=-1

The ion cloud potential function, ¥, for particles is then defined by

W= B o 12)

1C

The factor, F, is constant for systems of constant I and it replaces 2 ryax © in (3).
The corresponding Gouy-Chapman, Ygcn potential function reads

Yoon = €7 (13)

Figure 3 shows the plots of the four discussed potential functions calculated for
Fmax = Mmax = 6 and F,, = 57.703 along the axis C —(0,0) — x —. The sums (10) and (11)
were divided by F,. Then, the values ¥, (x — 0) = ¥¢, (x = 1/ = Pocalx —> 0) = 1
were obtained. In this way, the charge densities of the spheres and the Gouy-Chap-
man plane are assumed equal if I = constant.

2 f
AXIS:C~(0,0)-x—>
Nmax = Mmax = 6
F, = 57.703
~ llk‘p
= COULOMBN
s 1 e
|
z -IONCLOUD
-
o
-8 =
DEBYE-HUCKEL
GOUY-CHAPMAN \
e e
&_\—%
0
0 1 2 3

DISTANCE, x

Figure 3. The Coulombic ¥, ion cloud ¥j,, average Debye-Hiickel ¥pyy,, and Gouy-Chapman
¥aonp (ordinate) potentials at spheric particles as functions of the distance, x, (abscissa), along
the axis »C — (0,0) — x =« Nyay = Prmay = 'max = 6, F, = 57.703, Debye-Hiickel distance 1/x,

defined by ¥¢y(x = 1/kp)/¥ip(x — 0) = 1.

The remaining two characteristic axes are C — (0.5, 0) —x — and C = (0.5, 0.5) —x —.
Similar plots can be calculated along the two axes. The corresponding ones are
1/k, = 0.375, 1.75 and 0.5. Obviously, if two particles are approaching by Brownian
motion, an average charge density and potential distribution in the interface will be
effective for repulsion.
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The quotient /i. = r'max / max Tepresents the intercharge distance. Theoretically, it can
be calculated by any ratio rpax / Zmay. Experimentally, it can be calculated from any I,
charge density and size a/2 = ry,y of particles. The calculated variation of ;. is equivalent
to a variation of I, namely to a variation od 1/k,. For feasible 30 ~> (1/x)/nm >~ 3, in
0.0001 < Iapie / mol dm= < 0.01 in (1-1) electroytes, one can expect that 1k, > 11is
the average and effective for stability, while in the range 0.01 < I/ mol dm™ 1 > 1/k,
is effective for coagulation.

The main conclusion that follows from the present elementary geometrical
analysis of spherical particles is the following: The ion cloudpotential function,
¥icp(x), of the point charge double layer model corresponds to the Gouy-Chapman po-
tential function, ¥Ygcn(x), of the homogeneous or electrical, i.e. electron charge double
layer model. The latter potential is physically impossible on colloids. The ¥, func-
tions of the point charge model are higher than the ¥y, functions. This means that
the calculated repulsion force of the point charge model is, for 0 < x — o, bigger
than that of the homogenoeus charge model for any charge density and size of the
particles. Any correction of the potentials, ¥gcn, by the introduction of the slipping
plane and/or the Stern layer, or of the »triple« layer potentials, can only produce too
low and irreal calculated ¢ potentials. In addition, if the slipping plane were effective
in reality, the majority of the counter charge ions would be inside of slipping plane
and would cause a decrease of the effective inner charge and, consequently, of g. Ac-
cording to the point charge model, the majority of counter charge ions are outside
the slipping plane at the average distance 1/x,. Practically all counter charge ions
increase q.

The Double Layer Potential of the Ion-Exchange Theory

After experiments proving that the Agl system is a theoretical ideal ion ex-
changer,>S though with a very small practical ion exchange capacity, became known
to the author, he developed the ion exchange theory of coagulation.” According to this
theory, two counter ions, M and M" of charge numbers z and z", competing for the
positions in the outer layer, i.e. in the ion cloud, exhibit ¥, upon the ions in the
inner layer defined by the equations:

=¥, = ¥° — zKgy + (RT/F) log(ay z/a v) (14)

and

“Wiep = Piep — 2" Koy + (RT/F) loglay- 2"'/(1 - a) ¥] (15)

Here y is the molar fraction, or the adsorption capacity, or the number of elementary
charges per particle, or the concentration of charges divided by the concentration of
the solid, ¢ and (1 — a) are the equivalent fractions of counter ions M and M", ay
and ay- are their molar concentrations, z and 2" their charge numbers. The products
am 2 and ay- 2" are »normal« concentrations.

In pure 1-1 electrolytes, 2" = 1, ay+ 2" = I and a = 0. This means that the con-
centration is equal to the ionic strength, I. The linear Schulze-Hardy rule constant
of coagulation, counter ion exchange or adsorption, and electrokinetics is Kgy.
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These equations were first deduced® applying electrochemical potentials to the
adsorbed and dissociated electrolytes (e.g., Nal on Agl, or of the counter ions, M, M",
in the layer and liquid phase). The electrochemical potential is the sum of the ion
cloud electrostatic potential free energy and of the chemical potential (free energy)
of the interface and bulk electrolyte. To point out the fact that the potential deduced
is a thermodynamic difference and that it is not the Nernst potential, with the then
conventional symbol, ¥°, the symbol Ap was used instead. In the present paper, the
symbol used for the same entity is ¥p. The same potential is named »discrete (also
fixed) charge double layer tension«. An extended version and description of the the-
ory is published.’

The role of the two equations in ion exchange and colloids is analogous to the
role of two single electrode Nernst potential equations in galvanic cells: in both sys-
tems the equilibrium potentials and concentrations can be calculated.

Using the two equations and assuming the equilibrium condition ¥;¢, = ¥"ic, and
by elimination of Kgj, it is possible to deduce Ky, the thermodynamic ion exchange
equilibrium constant

K = exp [(F/RT) (z-2") ¥°,)] = (ayz/a y)z"/[aM-. 2"/(1 - a)yf? (16)

and by elimination of ¥"i,, = Wi, only, one obtains the separation factor of ion ex-
change, S. Its definition reads

S = exp[(F/R T)(z" — 2) Kgyy] = ay 2" al(l —a)(ay 2) 17

Potentials and Distances of the Debye-Hiickel Theory on Spherical
Particles in the Presence of Coagulator Ions

Various experiments in electrokinetics,® counter ion exchange and adsorption,’
coagulation,>1? and PDI adsorption!! have been published with coagulating counter
ions of z = 1, 2, 3, 4, in a sufficiently low and constant concentration, ay- = Istaple <
0.001 — 0.01 mol dm™3 of the counter ion of 2" = 1. In such a low Iy, the adsorbed
1-1 electrolyte is certainly highly hydrated. An increase of ay z causes replacement
of the highly hydrated z” = 1 counterion at a large average 1/k, with M of z > 1 at
a small 1/, in sufficiently high concentrations.

The cause of coagulation can be explained by the destruction of the hydrated
double layer ions in low I With the coagulator ions in high ay z. The same ex-
periments can be interpreted in the following way:

From (14), one obtains for z = const.

log @ > (F/RT) (¥° - ¥,,,) + log ay 2 (18)

and from (15)

Yieo = PipUstarse) — (RT/F) log (1) (19)
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The shift of the plots, for Az = +1 and ¥jc,s = const, follows from (15). It defines the
linear Schultze rule constant Kgsy by

(RT/F) log ay 2 — Kgy = (RT/ F) log(z + 1) ayy (20)

Figure 4 represents equations (17), (18), (19), (20) with four plots for z = 1, 2,
3, 4, with parameters adjusted in such a way that it, in principle, correctly explains
the corresponding experimental plots in Ref. 18. The ordinate represents either v,
Kkp, or 1/g. Log (am z / mol dm=) is on the abscissa. Theoretical 1/g-plots can be always
fitted to any corresponding experimental plots. The intersections of the tangents on the
plots with the horizontal tangent, ¥i,(Istable), define the condition 1 — a = ¢ = 1/2. Equa-
tions (14) and (15) represent, for ay z << ay z (@ = 1/2) and ay z >> ay 2 (o = 1/2),
the tangents on the horizontal and inclined parts of the plots.

0.6 |
é"Ksﬂlél

B
2 O e e o

o Ji e
’~‘ B

, /g

j 0.2 e 4 ol
G A A i 8
l wicp “slahle) a=1-a=1/2
0.0 y y |
~8 L . -5 -4 =3 Lo 53 0

LOG (ay z )/ ( mol dm ™)

Figure 4. Variation of »¥,,, k,, 1/g (ordinate) with log (ayz/mol dm™) (abscissa)« for z = 1, 2,
3, 4. Schulze-Hardy rule constant Kgy.

Analogously to (19), for the DHT reciprocal distance at particles, one can write
K = Kiep Ustanto) = Ksp 10g8(1 — ) (21)

and for the electrokinetic quotient
1/q = 1/g;ep Ugpape) — 8 log(1l—a) (22)

The slopes of the plots are RT/F, ks, and s. For ay z << ay z (@ = 1/2), the cor-
responding values are ¥iep(Lstabie); Kicp(Zstable), 1/gqicpstante). The two values 1/g;cp(Zstable)
and s depend on the applied technique and, most probably, they cannot be predicted
theoretically. They can be obtained from experiments.
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The three equations containing Ksy represent the »linear« Schulze-Hardy rule,
as applied to the double layer, i.e., the ionic cloud potential, the reciprocal Debye-
Hiickel distance and the electrokinetic quotient.

It is reasonable to anticipate that concentrations ay z ~< 0.1 ay z (@ = 1/2) cause
coagulation. The three equations can be used also for z = 1 if I >> Iape. Also, suf-
ficiently high concentrations of (1-1) electrolytes cause coagulation.

The transition of the low I, to the coagulating concentration, ay z (@ = 1/2)/10 =<
am 2, or I(a = 1/2)/10 ~< I, can be explained as an exchange of the hydrated (1-1)
double layer electrolyte in I, With the weekly or essentially unhydrated counter
ions in high ay z or I.

Electrokinetics and the Quasi Crystal Model in Debye-Hiickel Electrolytes

In Ref. 12, experiments are published on electrophoretic mobilities and stream-
ing currents with positively charged polystyrene latices and, in Ref. 13, high fre-
quency dielectric response and microelectrophoretic measurements on anionic and
cationic styrene latices. The results are presented as »mobility« or »{ potential«
against »log I plots«, where the concentration of several (1-1) electrolytes is equal
to the ionic strength, I. The { potentials were calculated by using different theories,
all based on homogeneous charge double layer models. The plots can be approxi-
mated as a straight line increasing up to log (I,/mol dm3) — -3 to —2.5 and a de-
creasing line with an intersection at log I, = —3. The increasing line can be explained
qualitatively by the conventional ¢ potential theories, while the decreasing line is
not explained. The theoretical explanation based on the point charge double model
and the DHT follows below.

From definition (4), valid for electrolytes, it follows that, analogously, it must be
valid for colloidal particles too

v = —eOKP/4n € (23)

icp

and

log(x,, / k,) = (-1/2) log(I / I,) (24)

The dependence of the edge length, /, of the cube which statistically contains 1
single ion of the (1-1) electrolyte on I, reads

log(l/1,) = —(1/3) log(I /I,) (25)

where for I = 1 mol dm™ one obtains the standard edge length [ = [° = 9.399 x 10-° mol?
of the cube and the standard reciprocal DHT radius, «°, = 8.286x10~% mol-2. The
Avogadro-Loschmidt constant is L in I = I, are 1/kpm = Im = lpairm-

Equations (24) and (25) are linear (log — log) plots with the intersection at I =
I, = (x° [°).5 They are represented in Figure 5.

In low I < I, = 1x10-3 mol dm™3, 1/k, > I. At first sight, it is hard to explain how
the average distance, 1/k, or 1/k, between the cations and anions can be bigger than

the distance, I, which follows directly from concentration. An explanation can be
given on the basis of the DHT of quasi crystals.
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Figure 5. Variation of »1/kp, square root, Z, cube root, /;,,, sixth power root, and g, (ordinates,
relative units), with logarithm ionic strength, log (I/mol dm™), (abscissa)«.

It has been demonstrated' that, in order to obtain the DHT square root depend-
ence on I, the electrolytes can be described as having a quasi crystal lattice, i.e., the
ideal disorder of the DHT electrolyte is replaced by the ideal order of an imaginary
quasi crystal. Single ions of opposite sign at great distances, I, are present in low
concentrations and follow equation (25) and a great majority of ions are at small dis-
tances, li;n ~ 1 nm, which is approximately equal to the size of one HyO molecule.

They can be considered to form ion pairs. The distance between the ion pairs is [yair.

The following equation can be obtained for a sufficiently high value of the pa-
rameter I and constant, sufficiently small, x;,,

108(U,ir / Logirm) = —(1/6) log(I /I,) (26)

By summation of (25) and (26), one obtains the average electrostatic potential 1/x
or 1/k, and its square root dependence on I of equation (24).Then, as requested by
the DHT, the requirement is fulfilled that in I < I,,,is 1/k >l and in I,, < I is 1/k < L.
In I = Iy, Vkpm = I = lpairm- Equation (26) is valid for the assumed, perfect order,
quasi crystal lattice as well as for the total disorder of the DHT electrolytes.

An analogous explanation can be suggested for particles. The majority of inner
charges on the surface, in low I, are highly hydrated and they are separated from
counter ions by the small distance, /;,, of one HyO molecule. In high I or ay; z, they
are at the average distance 1/k,. The latter is the average between Lpairs lion and L.

Furthermore, one can suppose: if I < I,,, the ion pairs, equation (26), cause a
retardation, i.e., a decrease of g, while, if I > I,,,, the cube root ions of equation (25)
cause the retardation. In I = I, ¢ = q,,. The retardations caused by the two kinds
of ions are equal. Consequently, one can write the following equation which repre-
sents the experimental increasing and decreasing lines

q =qy —Islog I/1) 27
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The g-plots depend on the applied technique and it is probably impossible to de-
duce theoretically the values of g, and s. In I = I,, is ¢ = g,. However, g, and s can
be obtained by fitting (27) to experimental values. Function (27) is also represented
in Figure 5. All plots are adjusted for 1/kpm = I = lpairm = 1 and I, = 0.001 mol dm3.

The counter ions in the outer layer form the ion cloud. In this way, the theoreti-
cal intersection of the increasing and decreasing q lines is at log I, ~ 0.001 mol dm~2,
as suggested by experiments.* Some higher I, values obtained by some counter ions
were explained by the authors as specific exceptions.

The Point-Charge and the Homogeneous Charge Double Layer Models

It should be stressed here that practically the only electrochemical methods by
which the double layers have been investigated are the electrokinetic methods. The
dielectric response method! is a recent exception. Experiments with polarizable Hg-
electrodes (Gouy-Chapman double layer) or Nernst-electrodes cannot be used for a
theoretical analysis. The Nernst electrodes serve solely for potentiometric determi-
nations of log[PDIs] or log I (pH).

According to the point charge double layer model, the average counter ion vol-
ume charge density is at x = 1/k, and, according to the homogeneous or Gouy-Chap-
man model, the biggest volume charge density is at x — 0. According to the latter
theory, at distances x < »distance of the slipping plane« the majority of counter ions
decrease the net charge of the moving particle and, consequently, g, while according
to the former model, they all practically increase the net outer charge of the ionic
cloud, and in this way, they all increase g. Possibly, even if the slipping plane, or
the Stern layer, were of any real influence, the greatest part of counter charges
would be in the outer layer and it would increase q. According to the point charge
model, the average number of counter ions are in the moving parts of the electrolyte
outside the possible slipping plane, at an average distance, 1/k,, where they all in-
crease the relative mobility of the liquid phase, i.e., they all increase the actual q.
The charges in question are proportional to the surface areas under the plots to the
left and right from the slipping plane.

All efforts to calculate ¢ potentials on the basis of the homogeneous charge dou-
ble layer model have failed to date. One can conclude that as many ¢ potentials have
been obtained as theories proposed, introduction of the »triple«, to replace the double
layer, did not solve the problem.

The homogeneous charge model was unsuccessfully used in the calculations of
& potentials because this model does not include parameters /. and 1/k,. The two
latter parameters, as it is demonstrated above, are crucial for the deductions and
postulates of all theoretical equations obtained by the point charge double layer
model. The same theoretical equations explain, in principle correctly, all the experi-
ments quoted in the present paper.

In addition, practically all, homogeneous charge, { potential theories are based
on the charge density function, which has been proved by the present author to be
underdetermined,®!® if the size and form or the particles, or the specific surface, are
not known.

Also, in a broad region, when q << 0 << q, i.e., outside the isoelectric region, +q
values are practically constant with log I (= pH) or log ay or they asymptotically
approach a saturation value.l71921
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Electrokinetics of Small Agl Particles

Electrophoretic mobilities of freshly prepared Agl sols in the region 14 > pl < 9.5
or 2 < pl < 9.5 are essentially constant and negative in low concentrations (I =
[NaNOs] <= 0.01 mol dm™3) of (1-1) electrolytes.!® In the presence of counter ions in
coagulating concentrations and in the same region of pl values, the electrosomotic
mobilities are approximately constant with pl and they decrease with the [La3*],
[Ba2+], [Na*] concentration.!” The latter results were partly used in Ref. 18, which
is theoretically analyzed by the present Figure 4. The constancy with counterion con-
centration of mobilities has also been demonstrated.?’

The influence of z is elucidated also in Ref. 19. In the negative region, [Ba2*],
[Mg?*] decreases g, as compared with the g of [Na*], while in the positive region,
[SO4%7] causes the same effect. The change of negative to positive g values, the re-
charging, was achieved by an increase of 10° — [dodecylamine] / mol dm= — 10
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LIST OF SYMBOLS

a diameter of a spherical particle

ay, Gy molar activity or concentration of ions M, M" of charge numbers
252

e, elementary charge

il factor for transforming sums of distance functions into potentials

L I,1I°I,,. ionic strength, of the maximal q,,, standard, in stable systems

K thermodynamic equilibrium constant of ion exchange

Kgy Schulze-Hardy linear rule constant

L Avogadro-Loschmidt constant

L intercharge distance

il it side length of the cube containing 1 ion of the (1-1) electrolyte,
the length of the lattice unit, in I, standard

Lo liem distance between ion pairs, in I

M, M" counter ion of charge number z, z"”

T Ludolf's number

pAg, pl negative logarithm of Ag*, I~ concentration

95 Qicps I electrokinetic quotient of particles, in I, in I

Bl i radius on a circular charged plate to calculate the sum of
reciprocal distances, radius of a plate or sphere

Iy Ty distance between a charge on a sphere and a point on an axis

S selectivity coefficient of ion exchange

s slope of the g plot

X distance from the surface

Vs Vi distance between two points n and n+1, at a charged particle,
absolute

z, 2 distance between two points p and p + 1, absolute
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"

"

25 2 charge number (valence) of counter ions M, M"

a,l-a equivalent fraction of two counter ions M, M" in the double layer

Ap point or discrete charge double layer potential of the ion
exchange theory of coagulation

g€ relative, permittivity of free space

y equivalent ion exchange capacity of ion exchangers

K, Ky, K° reciprocal Debye-Hiickel radius of electrolytes, in I, standard

K Kiogs Ko reciprocal Debye-Hiickel radius on particles, in I, reciprocal
slope of the plot (21)

1oy 162 reciprocal Debye-Hiickel radius at planar surfaces, standard

T Ludolf's number

Yer ¥ieo ¥ou double layer potentials of the Debye-Hiickel theory: Coulombs,

ion cloud, their sum, i.e., the Debye-Hiickel average

¥eps Piepr Ppup  double layer potentials of the Debye-Hiickel theory at particles:

Coulombs, ion cloud, their sum, i.e. the Debye-Hiickel average

¥opir Piepr Pompr double layer potentials od the Debye-Hiickel theory at planar

l{IO

surfaces: Coulombs, ion cloud, their sum, i.e., the Debye-Hiickel
average

standard electrostatic potential
hypothetical electrokinetic double layer potential
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SAZETAK

Eksperimentalni elektrokineti¢ki sistemi i model dvosloja to&kastih naboja
Mirko Mirnik

Potencijali: coulombski, ¥(,, ionskog oblaka, ¥, i prosjeéni, ¥py,, Debey-Hiickel-ove teo-
rije, u prostoru u blizini okrugle koloidne &estice, koja je nabijena odredenim brojem ionskih
naboja, mogu se izra¢unati s pomocu jednadzbi:

+n  +p
Wep= @ 2rmax®) 2 20 1 L (A1)
i
0 +p
¥pHp = — (1/2 rmax T) Z Z e’ /r (A2)
o i
9N +p

¥icp = (1/2 rmax ) Z Z a-e"/r (A3)

-n -p

Gouy-Chapman-ov potencijal, ¥gcp, Uz ravnu povrsinu definiran je jednadZbom

Yoeh=e™ (A4)

Znagenje simbola: r = {x? + [2[(n + ¥)? + @ + 21}°%, Fax = bic max V2 = lic Proax 2, 7, D
cijeli su brojevi. Udaljenost medu nabojima je I, x, L, (n + y), I, (p + 2z) su koordinate todaka
u sloju, dok 0 <y, z < 1. Udaljenost to¢aka na osima od povr$ine je x. Svi simboli su visekratnici
parametra k, tj. x = x'k, y = y'x, 2 = 2'K, ;e = Uik, @ g, = Vo /¥, P, =2 ek / 4 7 €. Presjecista
krivulja ¥, (x = var,, n, p, y, z = 0) sa horizontalom ¥;,(x = 0) = 1 definiraju x = l/k,, a taj
je odreden vrstom Cestica i ionskom jako$¢u. Raduni pokazuju, da je ¥, > Yccn. 1z toga slijedi,
da uvodenje klizne plohe i Stern-ovog sloja nuZno prouzrokuje preniske ¢ potencijale. Autor
je 1963. predloZio i prijedlog opravdao eksperimentima, da su elektrokineti¢ki kvocijenti, g,
proporcionalni log I, tj. logaritmu koncentracije koagulirajuéih protuiona ili ionskoj jakosti
(g = »prenesen volumen / jakost struje«, »elektriéna struja strujanja / brzina strujanja
tekuéine«, »potencijal strujanja / tlak«, »gibljivost / jakost elektri¢nog polja«). Time se dobije
funkcija

g=qm—|slog(/Im)| (A5)

Ta je predstavljena prelomljenim pravcem, prvi dio raste, drugi pada sa log I, a presjeciste
Je kod log I = log I, i ¢ = qy,. Parametri q,, i nagib, s, mogu se uskladiti s eksperimentima i
ovise o primijenjenoj tehnici. Nekoliko grafova koje su objavili Hidalgo-Alvarez i suradnici
(1986) i Midmore i Hunter (1988), mogu se aproksimirati sa dva pravca koji se sijeku kod log
I, ~ -3. Prviraste, a drugi pada s log I. Navedeni eksperimenti predstavljaju presudnu potvrdu
za ispravnost i korisnost primjene Debye-Hiickel-ove teorije u modelu ionskog dvosloja todka-
stih naboja. Opéenito, svi su pokuaji ratunanja ¢ potencijala na bazi modela homogenih na-
boja elektri¢nog dvosloja bili neuspje$ni, jer u njih nisu ukljuéeni meduionska udaljenost, / i
lonski radius Debye-Hiickel-ove toerije, 1/x,. To je dovoljan razlog zbog kojeg valja odbaciti
Gouy-Chapman-ov model elektriénog dvosloja u koloidnoj kemiji.
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