CROATICA CHEMICA ACTA CCACAA 67 (1) 1-35 (1994)

ISSN 0011-1643
CCA-2162 . Conference Paper

Notes on Some Less Known Early Contributions to
Chemical Graph Theory*

Milan Randié

Department of Mathematics and Computer Science, Drake University,
Des Moines, Iowa 50311, USA

and
Nenad Trinajstié

The Rugjer Boskovié¢ Institute, P.O.Box 1016, HR-41001 Zagreb, Croatia

Received October 27, 1993

»Research is to see what everybody has
seen and think what nobody has thought«
Albert Szent-Gjérgyi

A dozen less known, but important, contributions to the development and appli-
cation of graph theory to chemistry are reviewed. The relevance of these works is
pointed out. They include papers which appear to have been known to only a few
involved in the recent revival of graph-theoretical methods in chemistry. Among such
papers that have escaped wider attention are Flavitzky's enumeration of isomers
(1874), Muirhead's work on the comparability of functions (1901) and the review ar-
ticle on graph theory in chemistry by Balandin (1940). A similar class includes works
by Bloch, who first introduced the nearest neighbour approximation, well-known
from the Hiickel molecular orbital calculations; Wheland, who used the polynomial
expansion for enumeration of valence structures prior to the well-known Polya's
theorem and Sachs, who outlined a scheme for enumerating various cycles in a mole-
cule years before more recent schemes have been developed. In addition, we review
a work by Heilbronner who reveals an intriguing relationship between valence struc-
tures and molecular connectivity and a work by Marcus, concerned with bond-addi-

* Reported in part at the Eighth Dubrovnik International Course and Conference on the Interfaces between
Mathematics, Chemistry and Computer Science MATH/CHEM/COMP 1993 (Rovinj: June 21-25, 1993).
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tive properties of molecules, which anticipated much of the recent work on bond in-
dices in benzenoid hydrocarbons and the role of circuits in such systems.

INTRODUCTION

The last two decades have witnessed an intensive development and application
of graph theory in chemistry.* We like to call the development and application of
graph theory in chemistry the chemical graph theory. Besides the purely structural
aspects, such as characterization of molecular branching and cyclicity, or a search
for structural elements to be associated with aromaticity, reactivity or properties of
a system, there are some features of the subject that are of interest for a certain
number of practical problems concerning the processing of chemical information by
computer. Such work requires enumeration of possible structures and their construc-
tion as well as development of adequate coding, which can be meaningfully altered
when a related, but different, structure is considered. All this indicates that graph
theory, as well as some other branches of non-numerical mathematics,'® are becom-
ing important parts of our tools for solving chemical problems. Optimistically, we an-
ticipate even greater expansion of these new methods in all branches of chemistry
in times to come. It seems, therefore, that this is the proper time to draw attention
to some earlier work in the chemical graph theory which has not been sufficiently
well-recognized or almost completely escaped attention of current researchers.

In this review, we will mention a dozen papers which, in our own view, deserve
more prominent attention. In some cases, a proper acknowledgement of such papers
will revise the usually assumed priority of a particular concept, but we will not in-
dulge in pursuing the historical issues nor do we wish to diminish the role and sig-
nificance of subsequent works (which may have been quite independently developed).
Our aim is to bring to the attention of interested readers some earlier publications

which also provide a source for further elaboration or anticipate many of the more
recent ideas.

STRUCTURAL MATRICES

Let us start this paper with a review article of Balandin* entitled: »Structural
Algebra in Chemistry« (translated from Russian), published in 1940. This is probably
the first review article on the application of graph theory in chemistry. Here, struc-
tural matrices are explicitly mentioned and discussed. However, the earliest refer-
ence to structural matrices is given by Brunel (1895).1°

Balandin considered a special asymmetric form of structural matrices, in which

only the elements below the main diagonal are taken into consideration. An example
is given below.

2 a; 0 0 O
a3 Gy 0 0
0 ay ay 0

0 ay, 0 ay



EARLY CONTRIBUTIONS TO CHEMICAL GRAPH THEORY 3

After a brief outline of mathematical operations with such structural matrices,
a considerable part of the review is concerned with structural matrices in which the
elements are substituted by suitable quantities. The topological elements a; (which
we today call, more correctly, connectivity elements)'® can be substituted by objects,
and these objects can be substituted by their characteristic values. A sample of quan-
tities the elements of which can be substituted in proper places of the structural ma-
trix is given in Table I.

TABLE I

A sample of quantities the elements of which can be substituted in the structural matrix

Quantity Diagonal elements a;; Off-diagonal elements a;;
1. Atoms nuclei, electrons their interactions
2. Molecules atoms chemical bonds
3. Liquids and gases molecules their separation
4. Equilibria components reversed reactions
5. Consecutive reactions  components reactions
6. Chain reactions reactions, activations, chains
branching

7. Crystallization and

related phase diagrams points lines
8. Spectra equations transitions

A sample list of substitution of objects by their characteristic values is given in
Table II.

TABLE II

A sample list of substitution of objects from Table I by characteristic values.
The ordinal number correspond to the order of quantities in Table I.

1. Wave functions

2. Electron states, dipole moments, dissociation energies, potential
curves -

3. van der Waals forces, expressions for dispersion (interaction), the

free-path lengths, collision frequencies

Equilibrium constants

Reaction rates, interaction constants, activation energies

Chain length

Analytical expressions for lines

Frequencies, intensities, polarisation

00/=3 10 Ok

Balandin continues with a discussion of numerous examples, which include the
constitution and structure of molecules, quantitative properties of chemical bonds,
configuration and orientation of molecules, considers the trace and the determinant
of the structural matrix. He also used structural matrices to follow certain chemical
reactions. As examples, several substituted structural matrices for methyl alcohol
are given below.
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H H
x G 1.08 C
x H 1.08 H
X H 1.08 H
y O 1.45 (0]
z H 1.01 H
H H
93 C 20TE
93 H 217 H
93 H 2.17 H
T4 0 219 0
120 H 217 H

These matrices correspond, respectively, to interatomic distances (in A), bond
dissociation energies (in kcal) and vibrational force constants (in em™ x 10%). We
have used numerical values as given by Balandin — these should be revised, however,
in accordance with advancement of experimental techniques.

Balandin clearly recognized the importance of algebraic schemes — in contrast
to arithmetic manipulations with numerical quantities — and was particularly im-
mersed in the study of isomorphic substitutions of the topological entries (i.e., con-
nectivities) by quantities that express certain properties of the considered objects
(systems). Algebraic manipulations of structural matrices, such as the construction
of their traces or determinants, appear to yield some physical content. We recognize
the properties considered by Balandin as the so-called bond-additive properties,
which received renewed attention by the advance of the chemical graph theory and
its use in devising QSPR (quantitative structure-property relationships) and QSAR
(qu;li”nzteitative structure-activity relationships) schemes with topological indices,
e.g.

We note that the concept of the atom-connectivity matrix, introduced by Spialter
in 1964, may be viewed as a special case of Balandin's substitution matrices as
well as the concept of the bond and electron matrix (the so-called be-matrix) intro-
duced by Ugi and Gillespie in 1971.% In this way, Balandin anticipated by many
years a more recent work with modified structural matrices.

ENUMERATION OF ISOMERS

Enumerations of isomers are generally considered as the first applications of
what we now refer to as the chemical graph theory. Papers dealing with the topic
started to appear in the 1870's. The first authors were Flavitzky from Kazan, Cayley
from Cambridge, Schiff from Florence, Herrmann working in Germany and Lozanié
who reported his work at meetings of the Croatian Academy of Sciences and Arts
in Zagreb. We see in this early interest in enumeration of isomers quite a remark-
able international competition, though it was common to all these early contribu-
tions that they were published in the same journal and same language, that is, in
Berichte der Deutschen Chemischen Gesellschaft, then the leading chemical journal,
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and in German. It is somewhat surprising then to find repeated references to
Cayley's count of alkane isomers® as the first contribution to the chemical graph
theory — the work supposed to mark the beginning of the new field. Examining
Berichte for 1875, we find for the first time in the same volume a paper by Cayley
entitled: »On Analytical Figures, Known in Mathematics as Trees, and Their Appli-
cation to the Theory of Chemical Compounds« (translated from German) on page
1056 (received on November 24, 1874)%° and a paper by Schiff entitled: »On Statistics
of Chemical Compounds« (translated from German) on page 1542 (received on No-
vember 24, 1874).%° Hence, it appears that these two papers are quite independent,
although Schiff is aware of Cayley being involved in this kind of problems, stating
in the conclusion of his paper that an encouraging sign is that one of the leading
mathematicians, like Cayley, is interested in these questions. However, Flavitzky®!
published a page long note in 1876 on the number of isomers for saturated aliphatic
(primary, secondary and tertiary) alcohols with up to 12 carbon atoms, results that
are also directly applicable to saturated aldehydes and ketones. The 1876 paper rep-
resents a summary of Flavitzy's work, published in 1871 in the Journal of Russian
Chemical Society,” but also a comment on the above-mentioned paper by Schiff.
Nevertheless, Flavitzky's work should have been known to all concerned since in the
same year (1871) in the correspondence part of Berichte, there is a report of von
Richter® describing the results presented at the Russian Chemical Society Meeting
in St. Petersburg in May 1870, in which he devotes a dozen lines to the work re-
ported by Flavitzky (like the other German authors he writes his name as
Flawitzky), giving even the numbers for alkane isomers — from 6 to 10 carbon atoms.
Thus, all the relevant information, either in the form of a summary or full length
reports, appeared in Berichte in 1871 and 1876, and this should settle the question
of chronology — until and unless we hear of yet another earlier result. Now, there
may be sufficient arguments and evidence that earlier work of Cayley, published as
early as 1857,% is to be considered as a contribution to chemical combinatorics and
enumeration — which would justify retaining Cayley as the first contributor. This,
however, would require adopting of those earlier dates as the »beginning« of the
chemical graph theory. The matter deserves attention of a science historian and ne-
cessitates a more thorough search of the earlier literature. A very nice and scholarly
article on the origins of the chemical graph theory was recently published by Rou-
vray.?® The reader is directed to Rouvray's article for a fine presentation of the first
use of chemical graphs. Rouvray® has also produced two excellent articles on the
life and work of Cayley. These articles are recommended to those interested in the
early history of the chemical graph theory.

Cayley's work is formulated in proper mathematical terminology (as it could have
been expected) and illustrated accordingly. Schiff used a more chemical language
and, for example, spoke of chains. He considered the problem of isomer enumeration
to belong to chemical statistics, as a new chapter of stechiochemistry (more correct
term, of course, would be not statistics but combinatories, but it appears that, in
those days, the term statistics implied also combinatorics, as Schiff explicitly used
the words combinatorics and permutation).

It is interesting that even in those first days of the application of graph the-
ory to chemistry there have been differing opinions on the subject. To Schiff, who
for years had been »collecting« relevant material belonging to his chemical sta-
tistics, on his walks as well as during sleepless nights: »I make these personal
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remarks intentionally, to confess bluntly that I have not considered these occupa-
tion as serious, but rather as a scientific game, and that is also the reason why,
until now, I could not decide to publish something. When I have now overcome
this objection, let me indicate how problems in chemical statistics can be adjusted
and prudently resolved in a postulate, then I may mention as an excuse that a
leading mathematician Cayley is not disdained to devote his attention to these ques-
tions...« (translated from German). Part of this frank opinion appears to be objective
to Flavitzky,®! who replies with the following words: »The full determination of the
number of possible isomers can hardly be considered as 'scientific game'...« (trans-
lated from German).

Let us conclude this section by mentioning the work of Lozanié®” who was first
to recognize the new field as a new branch of chemistry. Already Schiff mentioned
that there we have a special aspect of chemistry — which he called statistics — but
he did not anticipate the growth of the field and the diversity of problems associated
only with enumeration. There have been no new works since the initial efforts of
Flavitzky, Cayley, Schiff and Herrmann — but perhaps the time distance of 20 years
and more made it clearer that these works represent a seed for a new branch of
chemistry. Lozani¢ makes the following description of his vision of a new chemical
branch: »I also considered this question (that is, enumeration of isomers) years ago,
but my work at school and in the laboratory prevented me from completing it. I con-
sidered it after I was separated from school and the laboratory; this issue has as I
can see it, certain importance for both chemistry and mathematics. Thus, when we
find all kinds of structural isomerisms of paraffins and their derivatives, and when
the regularities in such sequencies are recognized, a division will be created, of
chemical permutations, combinations and variations, which operations differ from
similar mathematical operations, since in chemical permutations and variations
chemical repetitions are omitted and separations of lateral members are taken into
account in combinations. It would be too early to take also stereoisomerism into ac-
count; that theory is still associated with chemical structure and deals only with spe-
cific isolated questions....« (translated from Croatian). The same contemplation on
the new branch of chemistry, opened by the work on enumeration of isomers, is re-
peated by Lozanié¢®® (who modified the spelling of his name to Lozanitsch to suit the
German language) in his lengthy exposition in Berichte in a somewhat shorter form,
emphasizing the difference between mathematical and chemical aspects of permu-
tations and combinations.

It is to be noted, that despite the early recognition of its specific character, at a
time when stereochemistry — which is usually given the same »age« — was still un-
developed and concerned with »isolated problems«, while some generality of the com-
binatorial calculus was implicit, it happened that stereochemistry outgrew into a
sizeable branch of chemistry, while the combinatorial graph theory (though enriched
with numerous other contents) remained little known outside individual efforts until
it was revived a few years ago, e.g...»'" A possible reason for this is not lack of its
importance, but the fact that chemistry, until very recently, has not been overwhelm-
ingly concerned with the problems that have a difficult combinatorial basis. Just as
one can deal with simple symmetry problems without the group theory and its ap-
paratus, so in problems with a /imited combinatorial content one can resolve most
of the problems intuitively, not realizing that the schemes represent various aspects
of combinatorial graph theory.
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THE BLOCH APPROXIMATION

Amongst the few important historical contributions to the development of the
current theoretical chemistry concerned with the nature of the chemical bond® is
certainly the work by Hiickel'™ in which he first applied quantum mechanical
methods to the double bond and then to unsaturated organic molecules, such as ben-
zene and benzenoid hydrocarbons. Thus, he has started the era of quantum chem-
istry of large molecules. It seems important to recognize that the significance of his
work lies primarily in his bold determination to use a new theoretical tool to study
molecular structure of systems that were of great chemical interest at his time. The
scheme, as developed, was neither fully original nor computationally complex (of
course, any computationally complex scheme in the early thirties would not have
had a chance to be useful because of the lack of computing facilities) — but this does
not undermine the significance of the work. Here, a comparison can be made with
a more recent effort, in the early fifties, to upgrade the theoretical calculations from
the semi-empirical to the ab initio level. Although a number of calculations on se-
lected simpler systems were available at the time, it was Mulliken?® who took the
bold step to initiate a project involving rigorous evaluation of various molecular in-
tegrals.® It took courage to embark on such an ambitious task — the full outcome
of which was hardly predictable.

The Hiickel molecular orbital (MO) method for calculating wave-functions of con-
jugated systems led to a set of homogeneous equations, the matrix of which de-
pended only on the connectivity of atoms in the system. This was not immediately
and explicitly recognized as the representation of a simpler model, in which the in-
put is the information on the vertex-adjacencies in the molecular graph,'? i.e., that
the Hiickel matrix (in the normalized form) is identical to the structural matrix (ad-
jacency matrix) of the spectral graph theory.!” The first reference to the close rela-
tionship between the Hiickel method and graph theory was made almost a quarter
of a century after the work of Hiickel, when Ruedenberg*® brought the connection
to attention. Two years after the work of Ruedenberg, the relationship between the
Hiickel MO method and graph theory was discussed in detail by Giinthard and Pri-
mas.*® However, already in 1953,%" Heilbronner used graph-theoretical arguments,
albeit not identified as such, in proposing a method for computing characteristic
(Hiickel) polynomials of n-electron systems. Schmidtke®! also studied the relation-
ship between the simple MO theory and the theory of graphs and pointed out that
the LCAO MO descriptions of molecules have topological and energetic aspects.

In their undertaking, Giinthard and Primas were influenced by a report on the
Collatz and Sinogowitz work on the spectra of graphs® which appeared in the »Fiat
Reviews of German Science 1939-1946« (as Giinthard told NT during the Interna-
tional Symposium on the Electronic Structure and Properties of Molecules and Crys-
tals held in Cavtat, Croatia, from August 29 to September 3rd, 1988) which was later
developed into a full paper by Collatz®® because Dr Ulrich Sinogowitz was killed on
September 12, 1944 during the bombing of Darmstadt. The Collatz and Sinogowitz
paper contains a number of interesting results including the definition of the graph
index based on the graph spectrum. The concept of the graph index was developed
by Collatz in 1941 when he was in Karlsruhe. His paper was published in the
»Mathematische Zeitschrift<*! in the bitter years (1942/1943) of the second World
War. It is interesting to note, with amazement, that, during the whole of the Second
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World War, the scientific consultants (Wissenschaftlicher Beirat) whose names ap-
peared on the front page of »Mathematische Zeitschrift« were, among others, perhaps

the leading English mathematician in this century G. H. Hardy from Cambridge and
H. Weyl from Princeton.

The initial success of the Hiickel method was surprising because it was not clear
why such relatively crude approximations, which include assumptions (i) on the lin-
ear combination of atomic orbitals; (ii) neglect of c-electrons; (iii) neglect of electron
repulsions; (iv) acknowledging only the nearest-neighbour interaction, should lead
to any useful predictions. However, as we know today, the fact that the Hiickel
method takes into account the connectivity of n-centers, is the essential ingredient
of success.

What appears to be less known today and is rarely acknowledged adequately is
the fact that the approximation of the nearest-neighbour interaction is not due to
Hiickel. It was Bloch® who, a few years prior to Hiickel, considered the electronic
structure of crystals and introduced the approximation on molecular integrals that
later Hiickel found useful. Giving a lecture on the pioneers in quantum chemistry
at the Sanibel Symposium 1977, dedicated to Walter Heitler, Friedrich Hund and
Erich Hiickel, Parr®® mentioned explicitly that the known integrals of the Hiickel
MO model, a and B, have an antecedent in Bloch's works on crystals.

The Bloch approximation may be presented in the following way. Adopting
Bloch's notation, we consider a point on the crystal grid:

Teep =E10+8:b+gse (1)
where a, b and ¢ are unit vectors along the grid axis. The potential is given by:
Uglg xgs(xyz) =Ulx-ga,y—-gb,z-gs0) (2)

which originates from a charge at point r, 24, By summing up all the contributions
arising from other grid points, the total potential V is obtained. In the expression
for molecular integrals, however, appears the potential:

Uy, v2) = V(x, 5, 2) = U o o (xy2) (3)

Then, the eigenfunctions ¢, 2.z, (atomic orbitals) are different from zero only in the
neighbourhood of the point (g, g5, g3), and when they are further assumed normal-
ized (to 1), then the following holds:

I 1when g;=h, gy=h, g5=h;
Qe gz Onpp dT= &
#y T 0 in all other cases

The above is recognized as the assumption concerning overlap integrals, which
are neglected in the Hiickel method. Next, Bloch is concerned with approximating
the interaction integrals:
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& I s, Y, Onpp, A7 )

One is reminded that U, ., quickly diminishes in the neighbourhood of point
(81, 82, 83), i-e. equals the sum’ of contributions from other grid points potentials.
Therefore, in the construction of J, the cases when the triplet (hy, ko, hy) corresponds
to one of nearby points of (g,, g,, g5) on the grid, have also to be considered. The fur-
ther removed points need not be considered, since there the magnitude of [ soon
becomes small. In the following, we will take that we are dealing with the simplest
cubic grid that functions U(x, y, 2) and ¢(x, y, 2) are of spherical symmetry. Then, we
are allowed to state:

o when (hy, hy, h3)= (81,82,83)
[ Uep begu d1ps dr=1 B when (hy, hyhy) is a neighbour of (g,, 2,2, (6)
0 in all other cases

We recognize the above as the approximation on the Coulomb integrals and reso-
nance integrals of the Hiickel method. Here, the assumptions of the spherical forms
for atomic orbitals and cubic grid are not fundamental, the former only result in a
non-zero contribution from all nearest neighbours, whilst if a charge had axial sym-
metry, only the contributions along the axis and perpendicular to the axis would
have to be considered (as we do in the Hiickel scheme).

The recent increasing interest in graph theory and its applications to chemistry,
in particular to the chemistry of organic conjugated systems, 4671L125759 1 ovidesg
an opportunity to draw attention of the chemists back to the work of Bloch. It ap-
pears that an early single call for attention by Hartmann,” in a readily available
journal, was not sufficient. It should also be mentioned that Hiickel himself gave
Bloch the credit for the approximations involved. In a book on chemical graph theory
by one of us (Vol. 1, p. 64),% the term Bloch-Hiickel approximations is used.

THE RUMER SCHEME FOR DERIVATION OF VB STRUCTURES

We continue with some lesser known results from the valence bond (VB) theory,
which played an important role in the early development of the quantum chemistry
and have been prematurely abandoned. In a way, it is a shame that the interest in
the VB method suddenly declined as the well-known difficulties appeared associated
with the problem of handling an enormous number of structural components — in-
stead of taking up the challenge!® In part, its neglect was due to the sudden popu-
larity of the MO method, which proved to be free from such mathematical and com-
putational complexities, and could be used with limited mathematical experience
(usually not beyond high-school education) — frequently solving problems »on the
back of an envelope«. All this is a compliment to the MO method, but should the
interest in the VB method have continued, today the field of chemical graph theory
could probably be expanded by several orders of magnitude! It is not infrequent in
science that interest of a large fraction of researchers is shifted for such and similar
reasons — until a breakthrough in another field indicates that the difficulties have
not been unsurmountable and a revival of the field is in sight. An example can be
quoted from the ab intio-type calculations concerned with the use of Slater-type or-
bitals (STOs) as a basis. The problems of solving multicentre integrals are well
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known and much effort has been devoted to resolving the difficulties. However, be-
fore the »end« of these efforts was in sight availability of Gaussian-type functions
almost completely cut the interest in STOs.® Again, difficulties have been exchanged
for the comfort and convenience of an alternative which is not equivalent, but can
be used for the »production« of results currently advertised as »acceptable«. The
problem of efficiency of schemes using different bases has been mainly laid aside
awaiting its resurrection. The situation would be different if we had resolved all the
difficulties in evaluating molecular integrals over STOs and if we had fully under-
stood their limitations. But this is not the case, and this kind of mathematical prob-
lems may take some time to convince those interested that all the reasonable ave-
nues have been thoroughly exploited. As an illustration, let us mention the problem
of solving the three-centre nuclear attraction molecular integrals — some of the first
integrals to be considered difficult (in comparison with two-centre Coulomb and hy-
brid integrals). It took 30 years from the initial work of Coulson®? to approach these
integrals in a more systematic fashion, until a pleasingly simple and analytical
scheme has been developed,® in which only the familiar auxiliary functions appear.
Another promising line, that of expressing one kind of (complex) molecular integrals
" via others (simpler), initiated a few years back by Harris,* has hardly been properly
examined, yet it may offer interesting (at least so far unexplored) possibilities.

Among less known earlier results of the VB method is limitation of the well-
known scheme of Rumer® for derivation of all valence structures of interest. In his
scheme, all orbitals (atoms) are first arranged formally in a circle, and then coupled
in a way that no crossing of lines, representing the pairing, occurs. The obtained set
of valence structures is linearly independent. However, instead of these, one could
use structures with a crossing of the coupling lines (these could be simply derived
from the first set by appropriate linear combinations) — there is no a priori reason
why the former set should be preferred. The arbitrary nature of sets derived from
the Rumer diagrams has been emphasized by Wheland,® but it is generally not suf-
ficiently well-appreciated (except by those involved in actual VB calculations). The
Rumer scheme has a more serious limitation since it does not apply to a general con-
jugated system. It was Klement® who first realized its restrictive nature when he
considered the valence structure of acenaphthylene. It appears that the scheme is
not applicable to those systems where there are three fused conjugated rings — so,
in fact, the scheme only works for systems in which all atoms are on the molecular
periphery. Since the distribution of single bonds within the atoms of the periphery
does not enter the considerations (thus, the total of all structures among isomers
such as anthracene and phenanthrene is the same, the difference emerges when
structures of different degree of excitation are considered, since the underlying
sigma bonds may, for the same Rumer diagram, point to a different kind of valence
structure) — one sees that the scheme applies to situations when atoms already make
a circle — irrelevant bonds being ignored. Gordon and Davison® point to the work
of Klement, and it appears that additional reference to this earlier work is in place
— particularly in view of the revival of interest in VB calculations.®

THE HUCKEL METHOD AND THE RESONANCE THEORY

Another interesting and intriguing paper, concerning both the MO method and
VB calculations, which it appears has not received sufficient attention is due to Heil-
bronner.”™ It is entitled: »On a graph-theoretical connections between the Hiickel MO



EARLY CONTRIBUTIONS TO CHEMICAL GRAPH THEORY 11

method and the formalism of the resonance theory« (translated from German). Here,
the author was concerned with the inverse of Hiickel matrix, and was able to show,
on the example of naphthalene, that the inverse of the Hiickel matrix and its ele-
ments are related to certain valence structures of particular skeletal fragments, A
rule can be formulated that gives the elements of the inverse as:

= [(‘1)?' 3 ki']
4401 o __I.(.'_L (7)

where p;; is the number of double bonds on the shortest path between vertices i and
J» kj; is the number of unexcited valence structures for the molecular residual ob-
tained by excising atom i and j and bonds incident to them, while K is the number
of (unexcited) Kekulé valence structures of the molecule. Let us adopt a common
numbering for naphthalene (the same as used by Heilbronner) and illustrate the
derivation of element A7} (incidentally, by oversight, this particular element has
been omitted in Heilbronner's exposition):

1 kig=1 p1g=0 A;.]G =1/3

OO K=3 for naphthalene

6

(In his exposition, Heilbronner used a slightly different notation). It is evident that
the corresponding residuals of the structure, when centres i and J are excited, may
be viewed as the so-called ionic valence structures, in which charges + or — are as-
sociated with the i, j pairs. How general is the outlined scheme has not been inves-
tigated, except for the obvious condition on the existence of Al i, that the deter-
minant of the adjacency matrix be different from zero. The latter is also a condition
for the appearance of NBMO's (non-bonding molecular orbitals), the subject which
has received due attention in the literature.”!

In this connection it is somewhat disappointing to find that, whilst the Hiickel
matrix, and in the recent years its identical image, the adjacency matrix have played
an important role in discussions of the properties of conjugated systems,’® there has
hardly been any mention of A" One can expect a correction in the near future,
in particular since evaluation of the elements of A~! can be obtained also in a some-
what less lengthy procedure using the well-known property of the adjacency matrix,
namely that it satisfies the characteristic polynomial.”* We will illustrate this on a
simple graph, shown below, whose characteristic polynomial is:?

1

4 Plr) =x* —4x2 — 2x + 1

2 3

The corresponding adjacency matrix (for the assumed numbering of vertices™) and
its powers are:
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The various powers of A can also be directly constructed as their corresponding
elements have a simple physical interpretation:”” They represent the number of paths
between atoms i and j of the length [/, where [ is the power of the matrix. One can
now simply verify that, substituting the corresponding matrices in the characteristic
polynomial, and performing the necessary arithmetic, we obtain P(A) = 0. Hence, by
multiplying the expression by A™!, we derive the identity: A™' (A* — 442 24 + I) =
0 (where 1 has to be replaced with the unity matrix), or A = -A® + 44 + 21 giving,

2-1-1+1
-1 0+1 O
-1+41 0 0O
+1 0 0 0

Al=

Now, one can again use the structural interpretation of these elements, as suggested
by Heilbronner, and verify that the matrix has the correct form.

WHELAND'S ENUMERATION SCHEME

Isomer enumerations are generally considered as the beginning of graph-theo-
retical applications in chemistry. The subject has a long history: we have already re-
viewed its very beginning in an earlier section. A nice review of the subject, with ex-
tensive coverage of the literature, has been given by Rouvray.? Recent reviews of the
subject, with special emphasis on computational advances in isomer enumeration,
are books on the computational chemical graph theory by Knop and co-workers.!1"8

The enumeration theorem by Pélya™ is generally taken to be the most notable
advance in the field. However, it appears that the work of Wheland®® is not com-
monly mentioned when enumerations are considered, although he independently
considered counting polynomials (named since as the Wheland polynomials®) for the
purpose of enumerations of valence structures and may, thus, have been the first to
do that. Wheland's paper appeared in the same year that Pélya published his first
paper® and preceded several other papers of Pélya published in chemical journals.??
Let us quote from Wheland: »The general procedure will be to associate with each
molecule, or grouping of atoms, a polynomial of the form:

ko + kiz + ky2® + ky2® + ... + k2" (8)

where K; is the number of structures of the i-th degree of excitation and z is simply
a parameter. Obviously, finding the polynomial which corresponds to a given molecule
is completely equivalent to solving the problem as originally formulated (i.e., by writing
down all the structures, and by determining the number of each type by actual count),
since the coefficients k; are themselves the desired quantities.« Wheland fully appre-
ciated the importance of polynomial forms, by pointing to unpracticality of the pedes-
trian structure count, which already for n = 14 atoms leads to 429 forms to be enlisted!
Wheland also considered special cases of chain and ring structures and derived the
corresponding recursive formulae. For the case of a chain of length 2n, we have:
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GGyt 2. Gy G (9)

i=2
and the first few Wheland polynomials for chains with 2r carbon atoms are of the form:

Cy=1

=1+z
Cy+1+3z+2%
Ci=1+62z+62%+2
C; =1+ 10z + 202% + 102° + 24

3

It is interesting to note the form of the recursion expression, the difference of
two successive terms having a biquadratic form and, as a result, the coefficients ap-
pear symmetrically. The recursion for the Wheland polynomial of a ring with 2n
carbon atoms can be conveniently written using the expression for chains:

R, =C,+(1=)C,, (10)
and the first few Wheland polynomials for rings are of the form:

R,=2

R,=2+ 2z

R, =2+ 82 + 422

Ry =2 + 152z + 2022 + 52°

The above results have been derived from a direct analysis of these relatively
simple structures. So, in a way, they are straightforward, once the concept of poly-
nomial representation has been conceived. Another remarkable idea that followed is
the consideration of associating the corresponding figure with such polynomials.
This allows a comparison of two structurally related figures, in particular if they dif-
fer in the presence or absence of a single bond. For such cases, Wheland finds a gen-
eral rule: (we use slightly different terminology and symbols): If a graph G differs
from a second graph G' by having a single additional edge, and if this edge, together
with its end vertices, divides G into two parts, G, and G,, then:

G=0 +(1-2) G, G, (11)

Applying the above process to naphthalene, one obtains:

CO-CD- ()

=R, + (1-2)(C,)? = 3 + 162 + 192 + 428
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In continuation of his analysis, Wheland gives the results, polynomials, for sev-
eral more complex structures, including a number of condensed polynuclear aromatic
hydrocarbons. Thus, for anthracene and phenanthrene, we have the following
Wheland polynomials:

Wi(anthracene) = 4 + 48z + 15022 + 1632° + 58z + 62°
W(phenanthrene) = 5 + 47z + 1482% + 1652% + 59z* + 5z°

One can immediately verify our previous statement that the total number of va-
lence structures, given by the sum of all the coefficients in the enumeration polyno-
mial, is the same for systems with the same number of carbon atoms.

Decomposition of a graph into smaller fragments, as illustrated in the case of
naphthalene, very much reminds one of the expansion of a secular determinant of
a Hiickel system. Heilbronner revived a useful partitioning,’® which can be formu-
lated in a rule (he called it the composition principle) of remarkable similarity to
Wheland's rule previously given as: If there is an edge that divides G (a molecule)
into two parts, G, and G,, then the characteristic polynomial of G can be written in
terms of the characteristic polynomials of parts as:

P(G) = P(G,) P(G,) - P(G,) P(G',) (12)

where G' indicates graphs in which edges adjacent to the initial edge (a,b), which
separate the graph into two parts (and corresponding vertices) are removed. Appli-
cation of this procedure to biphenyl yields:

0-0-0 O~ {30}

Gq Gp
P(G) = x1? — 13x2° + 6248 — 138x5 + 153x* — 81x% + 16

It seems that there are some not yet fully illuminated interesting aspects of these
(and related) expressions which require further elaboration. For instance, is it es-
sential that in Wheland's scheme, as stated, the graph is divided into two parts when
the edge together with its end vertices is erased? On a simple example of a benzene
ring, we see that the scheme works well, although the above conditions are not met:

O Cig)

Ga

=1+32+2°+(1-2(1+2)=2+32=R,

giving the correct answer for Ry. On the other hand, as it has been illustrated in a
discussion of the so-called isospectral graphs,5®# Heilbronner's partitioning scheme
(used to prove the isospectrality of various pairs of graphs with arbitrary residuals)
has a wider validity, and applies to cases when a bond of choice (a,b) does not nec-
essarily fragment the graph into two parts. The validity of such extensions has been
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verified®® in proving that systems like these will necessarily have all eigenvalues
(within the Hiickel method) identical.

Before concluding this section, let us mention that Wheland's enumeration
scheme reveals another side of the intriguing relationship between the VB method,
i.e,, calculations with valence structures, and the MO method. Here, manipulating
the valence structures, we arrive at polynomial expressions that have some similarity
— in their construction from fragments — that is also typical of characteristic polyno-
mials. In the previous section, we have seen the opposite in Heilbronner's construc-
tion of A, i.e., manipulating the eigenvalue MO problem, we arrived at some in-
formation on valence structures. However, we have not found a direct connection
with Wheland's scheme, more a kind of similarity in formalism. This reminds one
of a comparison of bond orders, as defined by Pauling®® and as defined by Coulson.®
The former are derived from valence structures, the latter from coefficients of mo-
lecular orbitals — and although of fundamentally different starting points, they are
more or less of comparable use (or limited use) when bond lengths are closely ex-
amined.*” Some interrelation could be expected and, in 1958, relatively late in view
of the then great popularity of Hiickel's method and the long history of both VB and
MO calculations. Ham, Ruedenberg and Platt® established a close and simple con-
nection between the interdependence of VB and MO bond orders. This particular re-
sult deserves some attention but, since it is sufficiently well-known and occasionally
referred to,"” we will not elaborate it here.

MARCUS' CONTRIBUTION TO THE CHEMICAL GRAPH THEORY

Another paper of considerable interest to those developing various graph-theo-
retical schemes, and which, it appears, has not received sufficient attention is due
to Marcus (who got a Nobel prize for chemistry in 1992 for his work on the theory of
electron transfer),®® and is concerned with additivities of heats of combustion, reso-
nance energies and bond orders of conjugated systems.” Considering that the graph
theory of conjugated organic molecules has received much attention!1157-59.9192 59
also that additivity properties have also been examined in a number of publica-
tions,” it appears that the work of Marcus was simply overlooked, rather than
knowingly not taken into account. Such a conclusion follows from the content of the
paper, which turns out to have a number of useful concepts, some of which could be
further developed and elaborated. This, then, is an additional reason for singling out
Marcus' notion of »conformal sets« for a review. Although graph theory is not explic-
itly mentioned in this work, it is evident that concepts and their implementation are
very much part of the standard graph-theoretical lore. Thus, Marcus considers self-
returning walks, emphasizes the nearest-neighbour relationship (adjacency), uses
the characteristic polynomials, and of course, the important part of his analysis is
to count numbers of self-returning random walks.

The basic task that Marcus considers is the problem of additivity of certain mo-
lecular properties but, in contrast to the usual approach to such questions, when one
tries to recognize the kind of different contributions involved (c.f, schemes for ad-
ditivity of heats of atomizations™), one is more interested in a scheme that would
resemble an expansion, and that could be terminated at some appropriate stage.
Thus, in this scheme, two molecules which are not identical may appear having the
same contributing terms, i.e., would be equivalent up to the point of termination of
the expansion. Due to the structure of the scheme, if conclusions from the derived
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additivity do not sufficiently approach the experimental results, one can continue
the process by considering higher terms of the expansion, which will have a better
resolution among closely related structures.

Let us follow Marcus and define conformal sets (in somewhat more general terms).
A conformal set consists of one or more conjugated systems satisfying the following con-
ditions (1) Compounds have an even number of electrons; (2) Elements of the set have
the same number of n-step self-returning walks of the same quality; and (3) Systems
with zero eigenvalue are excluded. An n-step self-returning random walk in a molecule
is a walk from one neighbouring atom to another neighbouring atom, which begins and
ends on the same atom, and during which one may pass a particular atom several
times. The quality of a walk requires atoms to be chemically similar (i.e, atoms are
of the same element and are in fairly similar nearest-neighbour environment).

The essence of the scheme is condition (2), the remaining conditions are intro-
duced to exclude compounds, like radicals or fused ring systems, which are not aro-
matic in character. Examples of benzenoid systems on which Marcus illustrates the
additivity of Hiickel n-electron energies (energy units in terms of B) are given below:

Set I Set II

O00 O GO OO =

Q00 Qs QOO0
COO00 »+ 000 GO0

Yoo 0 VO »
Lo g 0o B

YO0 O o

B O €0 B

The comparison includes also some nonbenzenoid systems, such as the pair
azulene — naphthalene:

When one realizes how different the corresponding sets of eigenvalues could be,
the agreement found between two corresponding sets is very good. Because of the
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diversity of eigenvalues, as Marcus remarks, conformal sets cannot be expected to
provide a basis for discussions of spectral transitions.

There are a few remarks worth making at this point regarding the above com-
parisons. Firstly, in a few instances the same set appears twice, indicating more
than two conformal sets. The sets are constructed in the simplest way by using a
classification of n bond types into (m,n) types:

(2,2) (2,3) and (3,3)

where m,n represent the valency of carbon atoms in molecular graphs when hydro-
gens are suppressed. A classification of CC aromatic bonds in various (m,n) types
was already considered some thirty years ago by Hartmann® and, more recently, by
Randié®™ in an attempt to characterize molecular branching. A summary of bond
types for a few smaller benzenoid hydrocarbons is given below™:

2,2) (2.3) _(3,3) sum  ring number:

Benzene 6 0 0 6 1
Naphthalene 6 4 i 11 2
Anthracene 6 8 2 16 3
Phenanthrene 7 6 3 16 3
Tetracene 6 12 3 21 4
Benz(a)anthracene 7 10 4 21 4
Chrysene 8 8 5 21 4
Triphenylene 9 6 6 21 4

We can expand the table with a few additional compounds that better illustrate
some limitations of using only (m,n) bond types and the necessity of stipulations (1)
and (3). We have, for example:

(22) 23 @33

SR e

B DO

Thus, considerably different structures may have the same distribution of bond
types, as it is well-illustrated above in the last case of biphenyl, sesquifulvalene and
heptalene. However, some other factors may be operative in these structures and de-
crease the expected similarity of the considered properties. For instance, sesquiful-
valene will show marked asymmetry of charges with an appreciable dipole moment,
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which is absent in the other two structures. Further, biphenyl is alternant whereas
heptalene and sesquifulvalene are non-alternant systems and so, in the former, the
n-charge is uniformly distributed on all atoms, which is not the case of the latter.
Heptalene, however, is excluded from the comparison by condition (3), since one of
its eigenvalues is zero and cannot be aromatic. But chemical experience also sug-
gests that biphenyl and sesquifulvalene are not so remarkably similar, which may
call for consideration of another constraint — that alternants and non-alternants
should not be combined. However, there is some danger that, by enlarging such ad-
ditional conditions, we may exclude comparisons that are desirable. For instance, py-
rene and azupyrene have the same bond distribution (6,8,5), one being alternant, the
other non-alternant — but in this case a comparison is useful, and the compounds
indeed show a remarkable (taking into account their structural differences) similar-
ity. On the other hand, we have two non-alternants: acenaphthylene and as-indacene
having the same bond types (5,6,3), but expected to be remarkably different (in fact,
as-indacene has not yet been synthesized, showing some unusual properties). It may
turn out that a useful discriminator for such compounds are the conjugated circuits®”
— a concept found useful for characterization of all kinds of conjugated systems”®
and, especially, carbon cages named fullerenes.”® Conjugated circuits are those cir-
cuits in a Kekulé valence structure of a molecule in which there is a regular alter-
nation of CC single and double bonds. Such circuits are necessarily even, but may
be of (4n + 2) or 4n size. The two different types of conjugated circuits can be asso-
ciated with the opposing and competing molecular features, the former typifying the
stable aromatic character of a system, the latter being responsible for antiaromatic
characteristics. Depending on the number of conjugated circuits present in the set
of Kekulé valence structures of each type, the molecule can show predominantly aro-
matic or non-aromatic properties. On these grounds, one may expect similarities be-
tween pyrene and azupyrene, despite the latter being non-alternant, while ace-
naphthylene and as-indacene belong to different classes.

As, the (m,n) bond types take into account only the presence of the next nearest
neighbours, they correspond to an analysis in which only four self-returning walks
have been considered. In some instances, this is not sufficient and one has to count
six self-returning walks. The self-returning walks can be related to the coefficients
of the characteristic polynomials'® and so the use of these polynomials is a conven-
ient search for conformity.

In one section of the paper, Marcus discusses the connection between secular de-
terminants and random walks, but alternative graph-theoretical schemes for the
construction of a characteristic polynomial are here of equal interest. In chemical
literature, Coulson'” considered such constructions and also Heilbronner®1%? de-
rived polynomials and gave some steps for their derivation. In mathematical litera-
ture, the problem was considered by Harary'® and Sachs,'™ who derived a general
expression only with contributions from various molecular fragments — consisting of
isolated edges or isolated rings (circuits). Spialter?”!®® has an alternative presenta-
tion, which is sufficiently simple and may suit these who do not wish to follow more
technical mathematical expositions. Similarly, Graovac et al.™ developed a simple
procedure, based on the Sachs theorem, for constructing characteristic polynomials
of chemical graphs. Since then, a number of procedures have been published on the
computation of a characteristic polynomial of a (chemical) graph, e.g.'%'%7 It follows
from the Sachs theorem that only isolated bonds and rings play an important role
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in the construction of the characteristic polynomial. We can see now that such com-
ponents are also of interest in the count of self-returning walks, since a walk can
use a closed ring to return to the starting point, or has to retract its path — but there
is no need for two or more fused or connected rings.

It appears that the concept of conformity may yield additional results and may
offer more, if elaborated and modified or expanded. Some preliminary results in this
direction appear encouraging.'® More recent interest in the graph theory of conju-
gated systems may contribute to better clarifications of the conditions imposed on
comparisons of conformal sets. On the other hand, the concept of self-returning
walks may be of considerable interest also in other comparisons of structures. The
problem of comparability of structures and their ordering is an important subject in
the graph theory as well as in its applications, such as chemistry. It is closely con-
nected with the problem of graph isomorphism (i.e, recognition of different
graphs'®). Comparability as such has been considered for functions (and graphs as
special cases) already at the beginning of this century by Muirhead,'® though his
work has not received sufficient prominence (it is discussed in this paper later on).
Muirhead proposed a rigorous definition for the comparison of different functions
and in this way defined the term technically. There are other concepts in use in sci-
ence, such as similarity, which still lacks a proper technical definition.!'"!2 [t ap-
pears that self-returning walks may provide a tool for characterizing similar envi-
ronments in a graph (or molecular skeletons), and, starting from here, one may
succeed in developing a rigorous concept of similarity. Marcus, himself, uses the con-
cept of similarity in his outline of conformal sets, but not in a strict and well-defined
sense — simply as such, the concept not being available at that time, as it neither
is today. But, reading his paper we may at least realize a need for the concept of
similarity of structures and, if some development in that direction brings results —
it may have a beneficial effect on the conformity concept — which might be viewed
as its precursor.

THE PROBLEM OF RING RECOGNITION

One of the most difficult problems currently unresolved in graph theory — diffi-
cult in the sense of classification of computational problems — is concerned with the
search for a common fragment (in particular the maximal common fragment) among
selected graphs. A special case and aspect of this problem is the search for all rings
(or better to say circuits'®) in a given polycyclic structure. If one lists all the circuits
in a structure, then such a list provides a convenient basis for comparing different
structures. But the problem of recognition of rings (and circuits) within a given
chemical structure is also an important first step in the perception of the nature of
the chemical structure,'* important for the prediction of its chemical behaviour, and
for inference of possible synthesis for the structure.!® In some applications, a less
ambitious task of finding only some rings or some circuits is of special interest,
where the problem may be to find the smallest set of the smallest rings,!'® interest-
ing for chemical documentation, and used in »the ring index«'” and a conventional
line notation system such as the one originated by Wiswesser.!® In the development
of programs for computer-assisted synthesis, on the other hand, one is interested in
the so-called chemically significant rings,''? or rings and circuits anticipated to be
of relevance to such analysis. Finally, the concept of conjugated circuits clearly il-
lustrates the importance, such applications as characterization of aromaticity'® and
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classification of conjugated hydrocarbons,'?! of selected circuits within a particular
valence structure.

The problem of ring perception has received considerable attention and we are
not going to review the subject. Some times ago, Wipke and Dyott!?? reviewed the
subject and made a comparative study of the efficiency of several algorithms for ring
perception, where one can find references to earlier work. Looking through their list
of references, we see that a dozen papers have been concerned with the problem of
finding a set of rings or circuits. Conceptually the most simple, and literally a pe-
destrian algorithm, is due to Corey and Wipke'? (also considered by Tiernan in the
computer science literature!?) in which the rings are found by a »walking« algo-
rithm. The algorithm starts from any vertex in the graph and »walks« (at random,
but not repeating the steps) on the structure, keeping a record of its path and noting
any branching point along the way. When the path crosses itself, a circuit (ring) has
been found. The process is completed when all choices have been exhausted at all
of the branching points. The above algorithm can be improved upon, i.e., its effi-
ciency can be increased, if one simultaneously considers both ends of a path at a
site of ring closure, until all rings involving that ring closure have been found.'?®
Another kind of algorithms make use of the concept of spanning trees, i.e., acyclic
subgraphs which use all the vertices of the graph, but not all the edges (in order to
exclude ring closures). As an example, several spanning trees of naphthalene are

SIS R

A complete list of the spanning trees of naphthalene has been given by Mal-
lion.'*® Before briefly outlining the algorithm for the search of circuits based on the
spanning trees, let us point to an essential advantage of such schemes: There is a
theorem that allows deriving the number of the spanning trees in a simple manner
thus, a possible error of omission can be checked. The theorem appears to be attrib-
uted to Kirchhoff who, 146 years ago, was concerned with solving equations appear-
ing in investigations of the distribution of currents in electrical network.'?” However,
it may be that the theorem as such is less ancient.'® Be it as it may, the work of
Kirchhoff preceded the earliest enumerations in chemistry by some thirty years, and
may well represent the first graph-theoretical application in natural sciences — per-
haps to be considered as the date of birth of the graph theory in physics (?)! The
work is still of considerable interest, in particular in graph-theoretical studies of ring
currents — a topic of some importance in discussions of the N.M.R. spectra of aro-
matic molecules.’™ It is interesting, except for the scale of the problems, that the
same type of analysis that Kirchhoff used for electric circuitry (macro-world) applies
to molecular ring currents (micro-world).

The theorem attributed to Kirchhoff ensures that the number of spanning trees
follows from a somewhat modified adjacency matrix of the graph. The adjacency ma-
trix of the graph is supplemented by introducing quantities d; on its diagonal, rep-
resenting the valencies of the vertices, whilst nonvanishing off-diagonal elements
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are given with a negative sign. Such an augmented matrix (also called the Kirchhoff
matrix or Laplacian matrix)™®*3! has an interesting property: The absolute value of
any of its minors (a subdeterminant derived by omitting one row and one column)
has the same magnitude, equal to the number of the spanning trees. We illustrate

this intriguing theorem on a simple graph shown below, which the reader can easily
verify:

Graph Adjacency  Kirchhoff A minor
matrix matrix
' om0 1 [ 00 1] | Bt
‘ 001 108 1 b o]
0T 01 0-1 2 -1 -1 2-1
2 3 11,10 -1-1-1 3

The corresponding spanning trees are:

AAA

Bonds not contained in the spanning trees are termed ring closure bonds.
One first select a set of independent circuits (not necessary the set of the smallest
rings), referred to as the fundamental set of circuits (rings) or basis set of circuits
(rings). Rings and bonds are then labeled, which permits their representation as

a single binary code. We will illustrate this on the example discussed by Wipke
and Dyott:!2?

Basis set of rings

Molecular skeleton

Ring | Ring 11 Ring 11 Ring 1V

Labelling of edges is arbitrary (and not essential). The four rings making up the
basis of rings, shown above, can then be represented by the following codes:
Ring 1 11111111110000000000
Ring II 00001111101000000000
Ring III 00000001000111110000
Ring IV 00000000000000101111

The above codes have an important property — they permit their manipulation
in the algebraic sense. Simple operations are addition and subtraction (general su-
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perpositions in physical terminology, corresponding to union and intersection in the
set-theoretic terminology, respectively). Of more interest here is an operation termed
exclusive or'®® which gives all the elements in either set, but not those present
in both sets. We can formally represent this operation as a special Boolean arith-

metic, as shown below together with more familiar addition and multiplication ta-
bles:

Addition Multiplication Exclusive or
0+0=0 0-0=0 0:0=0
0+1=1 0-1=0 0:1=1
1+0=1 1-0=0 1:0=1
1} ol e T =1 13 15=:0

Here, we have introduced the symbol (:) for exclusive or, instead of the usually
adopted symbol XOR. The above are only three out of the eight possible such
arithmetic tables with symmetry requirements, i.e., (A,B) giving the same results
as (B,A), where A, B stand for zero or one. We can write them in a tabular form
as follows:

aife- abe. el # e Ealy Wenla Skl
ofo 0o 01 01 10 10 1)1 11

The addition, multiplication and exclusive or correspond to the seventh, third
and the fifth cases, respectively. The above are not matrices, but tables of operations
(binary operations) and may have various interpretations. For example, in the
mathematical logic'® concerned with the algebra of statements (judgments), we can
replace one with »true« and zero with »not true« and the above binary operations cor-
respond to: identically false (not true); conjunction (simultaneous truth of both state-
ments); Lukasiewicz operation (neither of the two statements); equivalence (one
statement is true only if the other is true); exclusive disjunction (one or the other
statement, but not both being true); and so on. The exclusive or operation in mathe-
matical logic is known as Sheffer's operation, meaning »not simultaneously the first
and the second statement« — and indeed, if the »statements« refer to the bonds in
the first or the second ring, the above operation of mathematical logic becomes our
exclusive or, the former example providing an illustration. Consider rings I and II
and the operation exclusive or performed on these two rings codes:

Ring I 11111111110000000000
Ring II 00001111101000000000
(I:1I) 11110000011000000000

Pictorially, the above operation can be illustrated as follows:
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The above discussion of the simple »walking« algorithm and the algebraic algo-
rithm, using the concept of spanning trees and the binary operation exclusive or, il-
lustrates conceptually very different approaches to finding all the circuits in a sys-
tem. There is, however, yet another, one may say almost »classical« approach, which
seems not to have attracted attention of those concerned with the problem. The out-
line of these schemes, known amongst people concerned with computer processing
of structural data, was necessary in order to appreciate the distinctive flavour of
more mathematical schemes associated with calculus (the attribute »classical« has
been used in that sense). In our exposition, we will closely follow a work of Sachs,
but several alternative and closely related schemes have been reported in the lit-
erature.’® The basis for these methods is a connection between circuits (rings) con-
tained in a graph and the characteristic polynomial of a graph. Sachs'® has under-
taken to illuminate the connection, and as it will be shown later on, he outlined a
scheme which allows the number of circuits of different size to be derived from the
information given by the characteristic polynomial. He starts by emphasizing that
the characteristic polynomial represents an important invariant of a graph (which
is not dependent on the adopted scheme for the numbering of vertices). Then, for
the case of regular graphs (these are graphs in which all vertices have the same va-
lency), the following statement applies:'® Let the characteristic polynomial of a
graph be P(x) = x* + a; - #*' + ... + a; then the number of different circuits of size
h is determined by the degree k, the maximal eigenvalue x and the first & coefficients
ay, Qy,..., ay. In continuation, Sachs first derives a theorem which gives the form of
the coefficients of the characteristic polynomials as:

a;=Y (-1y'®. 23 (13)

Sef,

where the summation goes over all elements S (called elementary and basic fig-
ures or Sachs graphs’)'® of the set S; with i vertices. In addition, a,=1. Sachs
graphs are those composed of either isolated edges (elementary figures) or/and iso-
lated cycles (basic figures). The values n and ¢ indicate, respectively, the number
of components in S and the number of cycles in S. In fact, the above represent a
very simple expression, and let us get familiar with it on an example. We quote a
simple example from a paper by Graovac et al.”® which is concerned with an ap-
plication of Sachs' theorem:

Sp=0

Q

S

1
—
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Hence, the coefficients become:

al = 0

ay = (1)1 20 + (<1 20 + (-1)* 2% 4+ (~1) 2° = 4
a;=(-1)12'=-2

04 = (—1)2 20 = 1

and the characteristic polynomial is:
Plx) = x* — 4x® - 2x + 1

(Observe that the characteristic polynomial is defined, as it is customary in mathe-
matics, by determinant: det |x I — A| = 0; not as customary in physics and chemistry:
det |A — x I| = 0, which would change signs of all odd powers of x).

Search for an expression on the number of circuits of different size contained in
the structure represents, in a way, a reversed approach. It is clear from the Sachs
theorem for the coefficients that each circuit enters with a weight 2 and is combined
with contribution arising from subgraphs composed of isolated bonds. Hence, if we
subtract the number of such subgraphs from the corresponding coefficients, and di-
vide the result by 2, we will obtain the number of circuits of the particular size. This
is the essence of the Sachs theorem concerned with the number of circuits of a par-

ticular size in a graph, as stated below:
Theorem (Sachs!™): Let G be a graph with the characteristic polynomial: P(x) =
= x* + a* + .. + a;; and let b, be the number of different linear subgraphs of G

which consist precisely of g edges. Also let have:

a; for odd ¢
i (14)
a;-(-1)?b, fori=2q

Q|
1]

Then, the following holds: The size of a circuit (¢) is equal to the index of the first
non-zero coefficient of @y, ay,..., ..., and the number of circuits is equal to <(1/2)a,.

As an illustration, let us consider Petersen's graph,3® which is of considerable
interest in chemistry.’®” The coefficients of the characteristic polynomial are as fol-
lows:!%

a; =0 a, =-15
az =0 ay =75
ag = —24 ag = -165
a; =120 ag =120
ay =-160 a,, =48

For the first four, a values, one obtains a, =E2=53 :E4= 0 since there are no
rings of size smaller than five in the graph. The first non-zero coefficient a is an
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odd index; hence, simply 55 = —24, and the above theorem then tells us that there
are 12 distinctive five membered rings (these are not difficult to identify; every ver-
tex participates in six 5-membered rings, which makes a total of 60, but each such
ring has obviously been counted five times). To continue finding larger sized circuits,
it is useful to introduce additional auxiliary parameters E (E; ) (in Sachs' notation)
and one uses the results for smaller rings (D,). The reader is directed to Sachs' paper
for more details — we quote the results only (for the Petersen graph):

‘|
D;

1 5 6 i 8 9 = 10
0 0 0 0o 212 00 .0 158, 267 —

It is interesting that the method cannot be applied to the search for the largest
circuits, known also as Hamiltonian circuits, the search for which is still an impor-
tant problem in graph theory and its applications.!®

The characteristic polynomial gives the number of circuits, but does not indicate
the circuits themselves. These, however, could be obtained if the Sachs procedure
for the derivation of the coefficients is followed, although for sizable polycyclic sys-
tems, the construction of all subgraphs required for evaluation of the coefficients
may be lengthy and cumbersome. Hence, the above scheme will not be of great help
in actual ring perceptions, except perhaps for verifying if all the circuits of interest
have been found. For an alternative derivation, with high pictorial — geometric clar-
ity, of the coefficients of the characteristic polynomial, we mention the paper by
Spialter.

THE CONCEPT OF COMPARABILITY OF GRAPHS

Finally, we would like to discuss another mathematical topic of considerable in-
terest to those using graphs and related structures in their work. This is the topic
of comparability of functions or graphs, a notion that we may have intuitively used
in one way or another and which was considered 92 years ago by Muirhead ™ who
was concerned with its rigorous formulation. The work of Muirhead is not well
known, though it is properly mentioned in one of the important textbooks on mathe-
matics, concerned with inequalities.’® The problem arises when one needs to com-
pare functions or two or more variables. Let us take, for the sake of illustration, two
distinct qualities, such as height and weight of two persons, and let us assume that
these are recruited for a job in which both of these two qualities are required, giving
priority to those who are heavier and taller. So, the pair (h;, w;), the height and the
weight, respectively, characterizes each candidate. There is no difficulty in compar-
ing individuals for which one establishes %, > kjand w; 2 w;, but a problem arises
if h; > h; but w; < w; (or the other way around), as we have no information on
the relative importance of the two parameters, A and w, which are treated as equally
essential. Muirhead considered such situations, generally on the functions of many
variables, and defined conditions on the parameters which, if satisfied, will tell
us if two functions (graphs) are comparable (in which case, one can order them and
speak of the more important, or which one precedes the other), and will also point
to situations when such comparisons cannot be made. Conceptually, Muirhead's con-
ditions are quite simple, as it will be shown shortly, and the significance of his work
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is that he made a rigorous algebraic formulation of the notion of comparability, which,
prior to him, was undefined and left to intuitive characterizations.

According to Muirhead, two functions, F, = F; (vy,0s,..., vy) and Fy, = F, (v,
Ug,---,Uy), are said to be comparable if there is an inequality between them (either F,
> F, or F, £ F,) valid for all the values of variables v, in a selected interval. Thus,
the function F, must be always larger (or smaller) than the function F, in the whole
space interval selected for their coordinates. If one function is in some region smaller
and in other larger, the functions are said not to be comparable, i.e., they cannot be
ordered so that one precedes the other. It should be noted that, here, the term com-
parable is a technical term, and when applicable, leads to a clear result: One func-
tion excels the other in all respects, whilst in everyday usage, the term may imply
the opposite (corresponding to non-comparable function here), like two students in
a class that show different abilities in two subjects, A being better in mathematics,
but less proficient in a foreign language, and B showing the opposite qualities, may
be comparable from the standpoint of the school, interested in their overall perform-
ance. According to Muirhead's rigorous comparison, the above case cannot be com-
pared.

A special class of functions of more interest here are of the form:
vh UG ... Uk (15)

where a; are non-negative integers. For such functions, Muirhead defines a relative
order by the conditions:

@+ ay .. a2 a+ay+ ..t (16)

a;+ayt . ta,=a +ay+ ... +q (17)

where % is the number of variables and 1 <i < k.

One can view the above multivariable functions as configurations defined on the
set v;, where the parameters a; define a particular population. The above conditions
then concern partial sums, and require these partial sums, corresponding to two
functions, to satisfy the same inequalities (i.e., one is always greater than or equal
to the other). For the above inequalities, one should first order the parameters g; in
decreasing sequence, L.e., a; > Q;,;.

Let us illustrate the application of the above conditions and, for that purpose,
we consider the following three graphs (taken from a discussion of molecular branch-
ing and its algebraic characterization):

A B C
44111111 42221111 33311111
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Here, we will use valencies of their vertices as parameters a;, and wish to find
out whether the graphs can be compared. For this, we need to get partial sums for

each of the graphs, which then form the basis for conclusions. The corresponding
partial sums are:

A B C

4 =4 4 =4 3=3

4+4=8 4+2=6 3+3=6
4+4+1=9 4+2+2=8 3+3+3=9
4+4+1+1=10 14+2+2+2=10 3+43+43+1=10
4+4+1+1+1=11 4+2+2+2+1=11 3+43+3+1+1=11
elc etc. ete.

Comparing now the partial sums, we immediately see that, in the case of graphs
A, B, as well as A, C, the conditions set by Muirhead are fulfilled, since in each step
the partial sum of A is larger or equal to the corresponding sum for B or C. Hence,
we can order the graphs in a sequence so that A precedes both B and C. However,
this does not resolve the question of comparability of B and C, and, as we immedi-
ately see, the pair of structures is not comparable in the rigorous sense of Muirhead.
Namely, in the first partial sum B precedes C, but in the third partial sum the order
is reversed, and it is this reversal of the order established for smaller partial sums
which contradicts the conditions. So, it is possible to have a partial ordering and
cases for which the criteria of comparability cannot decide the issue. To come back
to the example of recruitment of people of different height and weight, if we have
three persons with the following measurements: A = 2.00 m and 100 kg; B = 1.80
m and 90 kg; and C = 1.75 m and 95 kg; we have a similar case, where A can be
compared (in the technical sense adopted here) to B and C, while B and C cannot
be compared, i.e., their ordering is not legitimate.

Discussion of molecular branching is an example of an application of Muirhead's
scheme. In discussions of chirality functions, Ruch and Schénhofer' used the Young
diagrams, and found it necessary to order such diagrams. Young diagrams,#! which
were introduced into mathematics the very same year that Muirhead defined com-
parability of functions, received a better publicity, primarily as they can be of use
in discussions of permutational symmetries, being a graphical (pictorial) repre-
sentation of the partition of an integer. For instance, partitions of 6 = 3 + 1 + 1 +
1 and 6 = 2 + 2 + 2 are represented by the Young diagrams as:

s

Can these partitions (diagrams) be compared in Muirhead's rigorous sense? It
is easy to see that the two partitions shown cannot be compared (like the partitions
corresponding to an exchange of the roles of rows and columns in the Young dia-
grams, i.e., 6 =4 + 1 + 1; and 6 = 3 + 3). All other partitions of 6, however, allow
a comparison between themselves and with the above non-comparable cases.
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Muirhead's work deserves more attention by chemists. It is not so much that it
will resolve many burning questions, since the scheme has also some limitations. It
seems to us that this work will be more remembered in the future for its initiative
step in developing a scheme that rigorously defines an intuitive concept, such as com-
parability. Chemistry has been plagued with ill-defined concepts or concepts vaguely
defined, so that in the work of Muirhead we see how a rigorous definition, even if
very logical and straightforward (obvious), can help to clarify the discussion in some
applications. The strength of Muirhead's procedure is that it solely uses structural
information (such as supplied by the data on the parameters involved). A major
weakness, it appears to us, of the scheme is its rather great restrictiveness. In prac-
tical situations, we would not hesitate much in making the choice between a fellow
who is 1.90 m and weights 85 kg when contrasted to another, rather short and over-
weight (say 1.65 m, but weighing 90 kg). In this particular case, the two variables
may play a different role. In other situations, experience may suggest a relative or-
der beyond the stage derived from Muirhead's conditions, so the scheme as such may
undergo various modifications in special applications. Let us illustrate the above on
a case of comparison of Kekulé valence structures of conjugated hydrocarbons. Take,
for example, benzanthracene. Its seven Kekulé valence structures are:

oS3 cal

We would like to order these structures according to their expected importance to
molecular stability, as measured by their partial contributions to the resonance energy.
These contributions can be estimated from information on the number of conjugated cir-
cuits present in each of the structures. These can be simply counted for the above, rela-
tively simple, Kekulé structures and are summarized below in the tabular form:

Benzanthracene Decomposition Code (R, Ry R3 Ry)
A and A' 3R+ Ry 3100
B 3 R1 + R3 3010
¢ 2R, +2R, 2200
D 2R1+R2+R3 2110
E 2R1+R2+R4 2101
F R+ 2Ry + Ry 1210

("In structure F, one also finds another R; conjugated circuit and R, circuit, but as
these can be obtained by linear combination of already used circuits, they are ex-
cluded from the consideration, i.e., in the last Kekulé structure of benzanthracene,
not all of the six conjugated circuits are linearly independent. It should be noted
that only linearly independent conjugated circuits are considered in the above).
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Here, the discussion of ordering requires some modifications: First, we order the
variables R, in a sequence, i.e., Ry > Ry > Ry > R,. The coefficients then play the
role of the parameters for which we will construct partial sums:

Aand A' B C D E F
3 3 2 2 2 1
4 3 4 3 3 3
4 4 4 4 3 4

4 4 4 4 4 4

It is clear that we cannot discriminate between A and A', which have an identical
composition of conjugated circuits. Other Kekulé structures can be compared, and
the order parallels the alphabetical labels given, except that the pairs (B, C) and E, F)
do not permit ordering, since the second partial sum and the third partial sum, respec-
tively reverse the relative order established for smaller sums. Now, so far, we have not
used information on the numerical values of R, — but if we had, there would be no
problem in resolving the above ambiguities. So, we see that Muirhead's rigorous test lim-
its us in reaching the complete ordering, but, with additional information (not necessi-
tated in Muirhead's scheme), we could continue the process. It appears, however, that
some conclusions could be reached also from less detailed information on the type of the
dependence of R, on n (asymptotic behaviour and curvature). With such additional
data, a more complete ordering can be expected, if the information can be suitably
algebraically processed, and some results indicate this to be possible by considering
an iterative scheme, where the partial sums derived from the Muirhead analysis are
used as an input in another cycle of construction of secondary partial sums.

CONCLUDING REMARKS

Development and application of the graph theory in chemistry are neither new
nor erupted in rare spurs at few periods of its, over a hundred years old history. A
number of important papers have appeared during the period, although until a more
recent awareness of the subject, as an important and growing mathematical branch,
the direct reference to graphs has not been made. In addition, people concerned with
the developments of other aspects of chemistry have unknowingly contributed to
graph-theoretical development in chemistry. This, in particular, is the case of the
early development of the valence bond method, and subsequent expansion of the mo-
lecular orbital method, in particular when confined to the Hiickel scheme. In the
course of the development, some of the earlier works have not found proper recog-
nition in the more recent literature, and this is not so much surprising and does not
reflect upon those involved. Papers with graph-theoretical content are frequently not
labelled as such and are scattered in abundant chemical literature, usually under
subjects that do not indicate their relevance to graphs. The situation is not much
better today, even after the Journal of Mathematical Chemistry was born and is go-
ing strong. Papers with aspects of the chemical graph theory are still being scattered
in many journals. But the use of the chemical graph-theoretical methods and ap-
proaches and their direct impact on solving chemical problems is nowadays very vis-
ible. Thus, the chemical graph theory is on the right path to establishing as firm
place in the realm of theoretical chemistry. However, we still have to wait for a (theo-
retical) chemistry textbook with a chapter on chemical graph theory.
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SAZETAK

Zabiljeske o nekim manje poznatim ranim doprinosima
kemijskoj teoriji grafova

Milan Randié i Nenad Trinajstié

Razmatrano je dvanaestak manje poznatih, ali vaZnih, radova za razvoj 1 primjenu teorije
grafova u kemiji: rad Flavitzkoga (1874) o prebrojavanju izomera, Muirheadov rad (1901) o
usporedivosti funkeija i Balandinov pregledni ¢lanak (1940) o primjenama teorije grafova u ke-
miji. Ovamo pripada i Blochov rad, u kojemu je po prvi puta uporabljen polinomni razvoj za
prebrojavanje valentnih struktura poznat iz kasnijega, mnogo citiranijeg Pélyina rada i Sa-
chsov rad u kojemu je, mnogo godina prije nego su razvijene suvremene metode prebrojavanja
prstenova, prikazan naéin prebrojavanja prstenova u molekuli. Uz spomenute radove razmotrene
su slabosti Rumerove metode prebrojavanja valentnih struktura, Heilbronnerovi radovi o Hiic~
kelovu (karakteristiénom) polinomu konjugiranih sustava i o inverznoj matrici susjedstva, te
rad Nobelovca Marcusa o aditivnim svojstvima molekula koji se moZe smatrati prethodnikom
novijih radova o indekcima veza u benzenoidnim ugljikovodicima i o ulozi konjugiranih kru-
gova u njima.
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