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The values of the fifth viral coefficients, which were reported in our
previous work on hard sphere mixtures with additive diameters at the di-
ameter ratio cy/c; = 0.6. were used in order to construct a Padé approxi-
mant to the equation of state. The methodology was developed for construct-
ing Padé approximants for binary mixtures when only low order viral co-
efficients are available. The resulting approximants exhibit satisfactory ac-
curacy when compared with a linear combination of the results of Percus
Yevick and the mean spherical approximation, or with the results of com-
puter simulation.

INTRODUCTION

The equation of state (EOS) of the one-component hard sphere fluid is known
fairly accurately.! The most reliable are the results of computer simulation. Other
standard approaches are virial expansion, Padé approximants and various ap-
proaches based on integral equations for the pair correlation function. These meth-
ods reproduce the exact results within a pro mill of relative error. The situation is
less favourable in the case of mixtures of hard spheres. Some results of computer
simulations? as well as results of integral equation theories®* and virial expansion*%®
are available.

As far as the results of virial expansion are concerned, the sets of second, third
and fourth coefficients were evaluated by various authors for a limited number of
ratios of hard sphere diameters.? In our previous work,” we calculated the set of the
fifth viral coefficient for cy/c, = 0.6.

In this work, we present the methodology for constructing the Padé approxim-
ants for the equation of state of binary mixtures. We also present the numerical re-
sults showing that Padé approximants, which are constructed on the basis of the
first five sets of viral coefficients, can compete with other theoretical approaches.

CONSTRUCTION OF PADE APPROXIMANTS

Padé numerical schemes® were successfully applied to the one-component hard
sphere fluid. The best known example is the Carnahan-Starling equation®'
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where B = 1/kT, p is the number density and n = np/6 is the packing fraction.
The above mentioned approximation results if the virial coefficients in the series
Bo/p = 1+ Byn + Bgn? + Bm?® + ... are expressed as B; = 3-(i — 1) + ({ — 1)? and the
summation is carried out. In the literature one can also find other, more accurate
Padé approximants of the EOS of one component fluid.®!!

In our previous work, we presented the results of the virial expansion of EOS
for a two-component mixture of hard spheres with additive diameters for c,/c; = 0.6.
It turned out that, at higher densities, the absence of terms beyond the fifth power
of density introduces a substantial error. Due to the fact that the essence of the use-
fulness of the Padé approximants lies in the possibility of partial reconstruction of
the sum with high order terms missing, we decided to design Padé approximants
for the EOS of binary mixtures of hard spheres.

In general, the Padé approximants are constructed in the form of the quotient
of two polynomials Bp/p = Py(p)/Py(p). The coefficients of the polynomials are deter-
mined by the requirement that the quotient of the polynomials should fit the virial
expansion. This procedure does not have a unique solution since one can freely
choose the order of the polynomials P; and P,. The number of the coefficients defin-
ing P; and P, may not exceed the number of known coefficients in the virial series.
Further, the density can be scaled arbitrarily and we introduce parameter y by means
of the relation n = yp. The virial coefficients depend upon y in the following way

Bi(Y) = Bi/,Yi~1 (1)

where B; are the virial coefficients that appear in virial expansion in terms of the
number of particles per o®. If one chooses y = n/6, then yp represents the packing
fraction. We considered y as a variational parameter that becomes fixed in the proc-
ess of construction of Padé approximants. As far as determination of the polynomials
P{® and P’ is concerned, we did not follow the standard approach. Due to the suc-
cessful role of the Carnahan — Starling approximative equation of state of the pure
hard sphere fluid, we decided to follow the procedure in which the coefficients of
polynomials P{” and P§” are determined in such a way that four known virial coef-
ficients are fitted to a cubic parabola that contains four unknown parameters o"
through of”.

B, O =0+ al(v) i +o,M 24 as(v) 3 (2)

The unknowns o, can be determined by solving the system of four linear equa-
tions (2). The solution has the following form:

o,V = (48B," - 72B,9 + 48B,% — 12B,M)/12
o,? = (-52B,% + 114B," - 84B,9 + 22B)/12
o, = (18B," - 48B,% + 42B," — 12B,")/12
0L:‘(wr) =(=2 Bz(v) +6 B3(7) -6 34(1) =) Bs(v)) /12

3
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Provided that o,® are known, on the basis of Eq. (2), one can also express all
higher virial coefficients. If they are inserted into the virial series, the summation
can be carried out and the following equation results

Bp/p=[1+(af +a+af +a - 4) (yp) + (-30,{’ - 202 + 40 + 6) (yp)? +
+Bag” + of? - af? + af’ — 4) (1)’ + (1 - a® (p)*1/[(A - vp)*] 4)

This equation reproduces, for example, the Carnahan Starling equation if one
chooses y = /6, 0y = 0, a; = 3, &y = 1 and o, = 0.
The methodology described above can be easily implemented when constructing

the Padé approximants for the pure one-component fluid. We also applied it in the
case of mixtures where the virial equation of state looks as follows

Bp/p=1+[x}BY +2x.x, B, +x3 BYlyp +
+ [x3 B, + 3x%x, BR, + 8x,x2 BY, + %3 BL] (v0)? + ... (5)

where x; and x, are the mole fractions x; = pi/(p; + py); x5 = 1 —x;. If the virial ex-
pansion defined in this equation is written for a fixed value of mole fractions, then
each square bracket attains a fixed value B(x), which can be evaluated by means
of known sets of virial coefficients. Since these sets are known for i = 2 to i = 5, one
can determine all four parameters a,(x) and, subsequently, the coefficients of the
polynomials entering in (4).

RESULTS AND DISCUSSION

In Table I, the four sets of virial coefficients from various sources are given for
0y/c; = 0.6. When the virial series in the form given by Eq. (5) are evaluated at a
specific value of the mixing ratio, one obtains the values of B®(x) for i = 2 to 5, which
can be inserted into (3) to get o, values that define the pressure through (4). Cal-
culations were performed for all meaningful y values. The resulting pressure was

TABLE I

Virial coefficients for the binary mixture of hard spheres at the diameters ratio 6,/cy = 0.6. The
coefficients are expressed in terms of o‘? for the expansion when the density is expresssed in terms
of particles per o‘? The sets of second and third coefficients can be obtained in a straightforward
way, the fourth coefficients are taken from Ref. 5 and the fifith ones from Ref. 7.

By By, By

2.094 1.072 0.4523

Bin By By B

2.7415 1.0718 0.3825 0.1279

Bim Big Biigs Bigoy Baggy

2.6356 0.9121 0.2805 0.0891 0.02656

By B B Biigee Bz Bysoss
2.121 0.654 0.20 0.0584 0.0172 0.00462
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compared with the results of computer simulation and with the results of the linear
combination of Percus — Yevick and the mean spherical approximation of Zhou and
Stell.* It appears that the latter method quite satisfactorily reproduces the computer
simulation results and is convenient because it provides the compressibility data on
the entire interval of densities and mixing ratios. The calculations were performed
for the points of p; and p, lying on the isochores of the effective density

nx) = Y(Plc':il G 0263) =v(py + Pp) (x10'? £tz xzog) (6)

The results are depicted in the figures. As far as the y dependence is concerned,
we found that the best agreement with the above mentioned reference results is ob-
tained with y = 0.515 and all the results refer to this value. The value is very close
to y = n/6 = 0.5236, where the effective density n represents the packing fraction. Fig-
ure 1 presents the effective values of the virial coefficients as functions of the mixing
ratio. In Figure 2, the o, and o are plotted. a¥ are the coefficients of polynomial
P,(m). In Figure 3, the compressibility factor Bp/p is plotted for four isotherms of the
effective density. For comparison, we also plot Zhou and Stell approximation and
virial expansion with the virial coefficients up to the fifth one. We can see that, at
low density values, all the results are nearly indistinguishable. However, at high
density values, the result of the Padé approximation is much better than the virial
expansion. Comparison of Figures 1 and 3 indicates that the x, dependence of the
compressibility factor is directly related to the x; dependence of virial coefficients
B®(x). On the other hand, variation of a® and a® values is rather unpredictable.

There are reasonable chances that, in the near future, the set of sixth virial co-
efficients will be evaluated for binary mixtures of hard sphere. In that case, it would
be possible to produce even more accurate Padé approximants.
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Figure 1. The x; dependence of the effective virial coefficients for y = 0.515 and oy/c; = 0.6.
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Figure 2. The x; dependence of the parameters o (see Eq. (2)) and the cofficients a™ of the
Padé polynomial P4(n) as given Eq. (4). The value of y is 0.515.
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Figure 3. Compressibility factor (Bp/p) as a function of the mixing ratio for hard sphere binary
mixtures with the diameters ratio oy/c; = 0.6. The curves are drawn at a fixed value of the
effective density (Eq.(6)) as marked in the Figure. y = 0.515. Solid line: our Padé approximants;
dashed lines: virial expansion up to the fifth term; dotted line: the results of Zhou and Stell, which
are the best numerical approximation to the exact results provided by computer simulation.
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SAZETAK
Primjena Padéove aproksimacije na jednadZbu stanja smjese neproniénih kugli
Branko Borstnik

Vrijednosti petih virijalnih koeficijenata, objavljene u nagem prethodnom radu o smjesi ne-
proni¢nih kugli s aditivnim promjerima omjera oy/c; = 0.6, iskori§tene su u konstrukeiji Pa-
deove aproksimacije za jednadZbu stanja. Razvijena je metodologija za konstrukciju Padéove
aproksimacije binarnih smjesa kada su dostupni samo ni%i virijalni koeficijenti. Dobivena
aproksimacija ima zadovoljavajuéu to&nost u usporedbi s linearnom kombinacijom rezultata
Percus Yevica i prosjeéne sferne aproksimacije ili s rezultatima ratunalske simulacije.
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