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In this article we report the results on over 750 linear regressions based
on a single descriptor, using some twenty molecular properties of alkanes
and some forty distinct molecular descriptors. It is shown that, among the
numerous descriptors, less than a dozen descriptors outperform all the others.
Hence, while the search for graph invariants has been fruitful, few of the
constructed descriptors show sufficiently novel characteristics and have dis-
played sufficiently different behavior in correlations with physico-chemical
properties. At the same time, we find that some properties are more suscep-
tible to a successful single-descriptor regression analysis, while few proper-
ties remain difficult to characterize by a single descriptor. At the end of this
report, we have listed a few challenges to be considered by those involved in
structure-property-activity studies. We have drawn attention to some proper-
ties of alkanes (octanes in particular) for which better regression results are
warranted. We also recommend that the performance of novel indices be
compared with the known results, like those reported here. If a novel index
shows a better behavior with respect to any of the properties already report-
ed in the literature, they certainly deserve publicity. If an index shows a per-
formance comparable to some existing descriptors, they ought to have other
advantages in order to replace the existing descriptors. The burden of »proofe
ought to be on the »inventor« of a novel topological index. Vague statements
that an index may show promise in structure-property studies ought to be
replaced by a comparative study, such as shown here for octanes. While the
present paper answers the questions which are the best single simple des-
criptors for correlations of octane physico-chemical properties, our restric-
tion to the use of a single descriptor in structure-property correlations neither
signifies that we expect all properties to be well represented by simple regres-
sions, nor that the best single descriptors will necessarily remain the dominant
descriptor in multiple regression analysis.

* This paper is dedicated to Professor L. B. Kier for his untiring explorations of the use of the connectivity
indices in structure-property-activity studies.
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INTRODUCTION

Recently, we initiated a systematic comparative study of structure-property regres-
sion analysis.! We reported use of the connectivity indices as a basis in structure-
property analysis, rather than an ad hoc combination of indices. The distinction is im-
portant. In the first case, same indices are always used in all regression while in the
second case, optimal indices (descriptors) are selected. In the first case, the descriptors
play a role analogous to those of basis functions (vectors) and comparison between dif-
ferent regressions is simpler, particularly when the descriptors, prior to their direct
use, have been made first orthogonal.? In an effort to continue developing a useful al-
ternative basis for the connectivity index and higher connectivities for structure-pro-
perty studies, using multiple regression analysis, we will here examine regressions based
on a single descriptor. Clearly, if the first descriptor to be used can account for the
major part of a correlation, such an index may be of interest in construction of alter-
native bases.

By restricting attention to simple single-variable regressions, we have neither as-
sumed that models based on a single topological index are necessarily able to describe
a different (if any) molecular property to a desired precision (comparable to the ac-
curacy determined by the experimental errors), nor that such »the best« single-variable
descriptor will necessarily remain the dominant descriptor in multiple regression analysis.
Our position is pragmatical: Search for the best single descriptor is a mathematically
well defined process which will facilitate a comparative study of structure-property
relationships. In a way, such regressions will often point to the first steps in finding
more comprehensive multiple-variable regressions. The pool of mathematical descrip-
tors for representing a structure is inexhaustible, but one should impose restrictions
on graph invariants and prune such pools of mathematical descriptors to chemically
useful descriptors. These can be qualified as descriptors that show a superior correla-
tion with at least one molecular property. Such descriptors may appear promising for
the study of other molecular properties or, alternatively, may contribute to refinement
of a molecular model used in structure-property studies. Hence our interest in a sys-
tematic search for such promising molecular descriptors.

In order to proceed, we have to select structures to be considered, properties to
be considered and descriptors to be considered. We decided to select the 18 octane
isomers as the structures to be considered. Octane isomers show sufficient structural
variations (the degree of variations in bond types, in the number of primary, secon-
dary, and tertiary carbon atoms, the lengths of the longest chains efc.) and, at the same
time, for these molecules a large number of properties are known (with a lesser or
greater accuracy). By restricting attention to isomers of octane, we have deliberately
eliminated the dominant role of the molecular size, which tends to obscure minor
variations of properties with shape (the pattern of branching). Equally, we have min-
imized uncertainty associated with the parametrization of heteroatoms, such as oxygen
in alcohols, or nitrogen in amines. The role of heteroatom ought to be carefully studi-
ed, but this is outside the scope to the present work. Recently, a general approach to
finding the empirical parameters characterizing heteroatom was outlined.®* We hope
that studies similar to the one reported here for octanes will be followed on families of
other structurally related compounds, including also compounds having heteroatoms.
While it is true that the results found here, valid for alkanes, need not extend to
molecules having heteroatoms, we feel also that it is unlikely that more general descrip-
tors which fail to show correlations with the properties of alkanes (when reduced for
such compounds) will be found useful in more general situations.
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SELECTION OF PROPERTIES

Next we have to select properties to be examined. In Table I, we collected available
data for some twenty properties of octanes used in this study. We indicate the source
(not necessarily the original papers describing the data, but more recent publications).
Interested reader should consult earlier work in order to assess the quality of ex-
perimental data. Our aim here is not to propose a particular regression equation as
optimal. Our aim is to compare molecular descriptors and find which among many are
of continuing interest and which show lesser promise, which of the descriptors appear
as dominant descriptors for a single property. Hence, for our purpose, detailed infor-
mation on the accuracy of the experimental data is not so essential. In one case (heats of
formation), we even adopted two sources and duplicated the work to illustrate the robust
character of the regressions, which are not so sensitive to minor variations in the data.

SELECTION OF DESCRIPTORS

In Table II, we list over 40 molecular descriptors that we examined. In the Ap-
pendix, we list the values of the descriptors for octane isomers, which have not yet
been reported in the literature. The numerical values of other descriptors can be found
in the literature (as indicated in Table II). Equally, one can find in the literature
detailed definitions for most of the known descriptors. Here, we will only briefly sum-

TABLE I

List of properties of the octanes investigated. Data has been taken as reported in the references
shown. Allernative sources could be used to assess the sensitivily of the regressions to smaller
variation in experimental values, as reported by different sources.

Symbol Property Source Alternative
BP Boiling points 4

S Entropy 5

AH Heat of vaporization 6

HF Heat of formation 6 5
HA Heat of atomization 6

AcH Heat of formation 7

AFH Heat of vaporization (liquid) 7

AvH Heat of vaporization (vapor) q HV
HV Heats of vaporization 4 AH,
T. Critical temperature 4 8
Pe Critical pressure 4

Ve Critical volume 8

o Surface tension 4

R Quadratic mean radius 9

AC Pitzer acentric factor 10

N Octane number 11

Vm Molecular Volume 4

R, Molar refraction 4 6
p Density 6

CS Carbon-13 chemical shift sum 12

C, or C, Heat capacity 5

RT Retention time 13
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marize the description of the descriptors and group them according to their origin into
one of the several types:

Descriptors derived or related to the adjacency matrix:

The connectivity index y'* is bond additive and uses the weighting scheme (m n)-'/2,
where m, n are the valencies of the vertices forming the bond. The weighting can be
considered as a special case of (m n)*, where the exponent p = -1/2. If p = 1, we have
the so called Zagreb group index,?*?5 which we will denote as y.! The cases p = -1 and
p = 1/2 have been considered by Altenburg,® while more recently cases p = —-1/3 and

TABLE II

List of descriptors used in the comparative study or single variable linear regressions

Symbol Descriptor Listed in reference:
L Connectivity index 14 19
23y Higher connectivity indices 6

w Weiner numbers 15 19
Z Hosoya index 15

ID(P) Path ID numbers 16

X(A) The first eigenvalue 17

EC Eccentricity 18

PO Ponderal index 18

J Balaban’s JJ index 19

MTI Topological index of Schulz 19

TI Topological index of Schulzes 19

WwWw Expanded Wiener number 10

P'/P Path bond order 20

Ly’ /Ly Connectivity bond order ratio 20

U Balaban’s U index 8

\4 Balaban’s V index 8

X Balaban’s X index 8

Y Balaban’s Y index 8

AZH Balaban’s AZV index 8

P Altenburg’s p=1 index 9

Z1/21 Altenburg’s p=1/2 index 9

%1 Altenburg’s p=-1 index 9

IED Information edge/distance 17

IWD Information (Wiener/distance) 17

D3 Graph disection index 21

HD Hybrid matrix determinant 22

w’ Wiener bond order Appendix
w/w Wiener bond order ratio Appendix
Z'[Z Hosoya bond order ratio Appendix
ID(1y) Connectivity ID numbers Appendix
L(D) Distance matrix connectivity Appendix
ID(D) Distance matrix ID numbers Appendix
X(D) Distance matrix first eigenvalue Appendix
Le (W) Wiener matrix connectivity Appendix
IDWV) Wiener matrix ID numbers Appendix
Xw) Wiener matrix first eigenvalue Appendix

WWwW Wiener row sums Appendix
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even p = -1/4 (and some other functional forms applied also to a few selected indices not
based on the connectivity) have received attention.?® Adjacency matrix will produce
weighted paths (when ALL PATH program is used?’-?%) and, as a sum of all weighted
paths, we obtain the molecular ID number.!® Finally, the first eigenvalue of the ad-
jacency matrix represents an index that, according to Lovasz and Pelikan,® reflects
well the degree of the skeletal branching in acyclic structures. The coefficients of the
characteristic polynomials led Bonchev and Trinajsti¢!” to compose an information
theoretic index using the associated partitioning in the Shannon equation for evaluat-
ing the information content of a partition.?!

Descriptors derived or related to the distance matrix

Balaban extended the notion of the connectivity index to distance matrix and used
the weighting (d; d;)-'/2, where d; and d; are the row sums of the entries in rows i and
J of the distance matrix, respectively. This resulted in an index designated as the
index, which has shown a considerable discrimination between isomers.'**2 The smal-
lest trees with the same J index have n = 12 vertices. In comparison, we already have
among octanes isomers having the same connectivity index. The size of the smallest
graphs for which »duplication« occurs is a measure of the deficiency of the »basis« of
the descriptors.®® However, one can use the distance matrix and apply the WEIGHTED
PATH program®* which will evaluate weighted paths that form a sequence of »distance
connectivities« indices and »distance ID numbers«. Finally, the Wiener index W can
be viewed as closely related to the distance matrix, since it can be evaluated numeri-
cally by adding all the entries in the distance matrix above the main diagonal.®®

Descriptors derived or related to the Wiener matrix

Recently, a novel matrix associated with trees has been suggested. The construc-
tion of some of its elements may be viewed as a generalization of the Wiener procedure
for construction of the Wiener number.®® Hence, it was named the Wiener matrix.%’
The (i) entry in the Wiener matrix enumerates all the paths in a tree in which the
path (i) between vertex i and j occurs, i.e. all paths of which the path between (i)
is a subgraph. Once a matrix is constructed, it generates other graphs invariants, such
as the weighted paths, the ID numbers, the first eigenvalue, etc., all of which can be
used as novel topological indices.

Combinations of indices and matrices

In addition to the indices directly related to a graph matrix, one can combine
various indices in simple arithmetical and algebraic combinations, like reciprocals,
ratios, or differences. In this way, for example, we obtained the descriptors: 1/, 1/2,
1/%, ID/%, %%, %—%. There are additional simple combinations that one might
consider. Already Kier and Hall reported some correlations using the reciprocal con-
nectivity index 1/%,% and the difference in the connectivity indices y—Yyv.*8 The dif-
ferences 'y -2y and %¢—% remind one of the differences in path numbers p;—ps, po—ps,
which have been found useful in ordering isomers and recognizing regularities in their
properties.??

Another way of arriving at novel invariants is to modify or combine graph
matrices. Thus, Schultz'® combined A and D matrix to arrive at the topological index
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MTI, which we labeled A + D, Mihalié and coworkers!® combined A + 2D and Tratch
and coworkers!'® combined A and E, an extended distance matrix that they introduced.

Finally, once can consider nonalgebraic operations on graphs and generate novel
graphical invariants. In particular, we consider indices constructed by considering for
each edge the residual graph G-e, for which selected invariants are sought. In our col-
lection of the descriptors analyzed, such indices are indicated as d’/d, where descriptor
d can represent the connectivity index 'y, Wiener number W, ID numbers, Hosoya Z
index, Balaban J index, the first eigenvalues, and even the reciprocal 1/'y. Here, d’
represents the sum of the values of the invariant considered for graph G-e, which is
obtained from graph G by erasing one edge e at a time.

Another general approach to introducing an additional invariant is to apply the
Shannon information theoretic formula to available partitions. We considered only a
few of such information theoretic indices, in order to assess their overall behavior.

For more details on other indices used here, readers should consult the source.
Several indices included in our study do not have any structural relationship to other
indices. They are based on definitions in which a particular quality of molecular graphs
is used. For example, the Hosoya Z index®® is based on enumeration of numbers p(G,k)
which signify the number of nonadjacent edges in a graph. The Wiener number® E
enumerates all pairs of carbon atoms at different sides of each bond, summed over all
bonds. The centric index*® was introduced by counting the steps in the pruning of ter-
minal edges in a tree. Such ad hoc descriptors, because they are apparently unrelated
to other descriptors, are more likely to show a distinct behavior in different regres-
sions and, as such, are desirable. On the other hand, an index that is structurally re-
lated to the existing indices is less likely to have additional qualities. For this reason,
we have not included combinations of different indices, like the super-index.*® Since
here we have an averaging process which, while possibly resulting in a distinctive
index for different structures, is likely to reduce the signal-to-noise ratio of the com-
ponents that may be dominant in a regression. We decided not to consider indices
based on topographic and distance-sensitive matrices!! and indices derived from com-
bining topological and topographic features of a structure.®? Such descriptors represent
3-dimensional structures and will be important in extending structure-property studies
to structure-activity studies. However, for most of the available experimental informa-
tion on octanes it is not clear to which conformation, or what a mixture of conforma-
tions, the data correspond. Hence, such 3-dimensional descriptors will have to wait
their applications when most of physico-chemical properties are considered. They may
be of interest in correlations of molecular magnetic (NMR) data, and certainly will find
use in structure-activity studies where the 3-dimensional geometry of receptors will
dictate critically many properties of drugs. The preliminary results of Trinajsti¢ and
collaborators,'® who considered a generalized Wiener index associated with a 3-dimen-
sional structures, illustrate the difficulties associated with the selection of a single con-
former to represent a structure (isomer). Once the difficulties associated with flexible
molecules and mixtures of conformers are better understood, one will be in a position
to select properly combinations of 3-dimensional structural invariants, and these are
likely to be useful since they will contain more information than the graphical model
of a molecule in which only the connectivities are registered.

Finally, we decided not to include in this study, indices that show considerable
degeneracy for the 18 isomers of octane. This eliminates, for example, simple indices
based on the valences of vertices. For this same reason, we have not considered Kier’s
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kappa (shape) indices*’ since their variation among isomers is the same as described
by the connectivity indices. However, the exclusion of such indices does not mean that
they may not be useful when the pool of the structures considered is widened.

RESULTS

We collected the statistical information, that is the standard error S and the coef-
ficient of regression R, for over 750 regressions using some 20 properties of octanes
and about 40 descriptors. Before we analyze the wealth of the results we will make a
few general remarks. By restricting the analysis to octane isomers, we have eliminated
the dominant role of the molecular size in correlations. As a consequence, there is a
parallelism between the standard errors and the correlation coefficients for every
single property. In Figure 1, we illustrate the relationship between S and R for the
heats of formation AH. The dependence of S on R shown in Figure 1 is typical of all
the properties. The relationship between S and R allows one to compare correlations
of different properties, since we can use the value of R as a basis for the relative quality
of individual regressions. In order to facilitate comparison and qualify various results,
we have adopted the following, somewhat arbitrary, but conservative, scale:

Regression coefficient Quality
0.990 (and higher) Outstanding
0.975 (and higher) Excellent
0.950 (and higher) Very good
0.925 (and higher) Good
0.900 (and higher) Fair
Sk~
35
.30T 5
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200 ®
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Figure 1. Dependence of the standard error S on the regression coefficient R for the case of the
heats of formation regression using the data in Table IV — Table VIIIL. The figure illustrates how
even unacceptable results (too low R values) can, when combined with other results, offer useful
insights.
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According to the above scale, in the case of octane boiling points, the following stand-
ard errors are expected to qualify as:

limit S = 1.29 °C and smaller
outstanding S = 1.46 °C and smaller
excellent S = 171 °C and smaller
very good S = 2.10 °C and smaller
good S = 2.45 °C and smaller
fair S = 2.76 °C and smaller

The »limit« and the other values shown refer to simple single- variable regressions (of
the boiling points in octanes). This particular »quality« scale holds for regressions
when molecules of the same size are considered. When alkanes of different size are
considered, the dominant effect of the molecular size will, as a rule, considerably im-
prove R, the coefficient of regression, however, without improving S, the standard
error. Since the dependence of molecular properties on the number of atoms in a
molecule (or molecular weight) can be described by many simple descriptors, it seems
only prudent to eliminate their dominance when investigating variations in properties
due to shape, branching, cyclicity. The »limit« is the extrapolated value for R = 1.000
when the curve such as that in Figure 1 (summarizing R/S relationship for regressions
for the boiling points in octanes) was fitted with the 5-th order polynomial (which
produced the smallest standard error for a polynomial fitting: S = 0.00723) for poly-
nomials from degree two to degree twelve.!

If we now examine the first row in Tables III — VI, which lists the standard errors
and the coefficients of regression for boiling points of the 18 isomers of octane we see
that the best results (the smallest S) derived are still below desirable quality. On the
other hand, we obtained very good and even excellent correlations for several other
properties. The suggested »quality« scale not only helps communication but allows one
to focus attention on descriptors that are promising as well as on the properties that
are elusive to single parameter regression analysis. In the case of the boiling points,
the projected »limit« does not quite approach the experimental error for the reported
boiling points, which would be a desirable goal. While a regression based on several
descriptors can achieve better accuracy than a single-value »limit«, use of fewer
descriptors malkes interpretation of the results simpler. Here lies the importance of
single dominant descriptors for model building.

BEHAVIOR OF PROPERTIES

In Tables III — VI we collected the standard errors S and the coefficients of regres-
sions R for twenty molecular properties of octanes examined. Octanes offer a good set
of compounds for a comparative study, precisely as many as their physico-chemical
properties are available. We selected only those properties that are available for at least
15 or more isomers. A number of properties that would be of interest to examine, such
as soot threshold, flashing point, susceptibilities, are not yet available but for half a
dozen compounds. Hence, they were excluded. Equally, we did not consider melting
points, since these depend on the crystal packing, and that is beyond the scope of
molecular descriptors which best simulate the properties of individual molecules.

In Tables III — VI, we have indicated in bold type all the R values above 0.900.
This will help readers to identify »fair«, »goods, »very good« and »excellent« regres-
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TABLE I11

Standard errors S (top lines) and the coefficients of regressions R (bottom lines) for
regressions using connectivity index and closely related descriptors

Descriptors
% oo - R-% W 1YYy % 18 Ty ID

BP 3.60 298 603 309 311 293 378 291 574 401 5.19
.821  .882 .295 .872 .870 .886 .801 .887 .416 .772 .569

s 1.97 261 411 245 432 259 199 278 439 161 1.76
906 .829 468 850 .371 .831 .905 .803 .337 .938 .926

AH 113,133 393 1124 291 118 .136 .131 .395 .123  .206
958 941 108 .949 676 .955 .932 .943 .054 .951 .854

HA .678 528 1.26 .556 .697 .513 .786 725 471 786  1.05
-851  .912 206 .902 .841 .917 .827 .931 .306 .793 .578

AH 285 221 524 233 286 216 304 197 509 330 4.40
£ 847 911 2156 .901 .846 .916 .824 930 314 789 .571

AR 278 225 336 236 211 232 287 217 323 3.09 3.69
1 686 810 477 787 .8385 .797 .663 .825 .538 .590 .269

AH 662 824 150 777 130 .772 713 .804 1.50 .627 .911
X 898  .837 .095 .856 .505 .859 .881 .846 .074 .909 .796

HY -446 561 1.50 514 1.16 .536 .478 621 147 .445 .891
955 927 013 .939 631 .934 .948 .910 .190 .955 .803

s ‘781 609 584 643 .241 .668 .751 .650 .521 .807 .904
589 740 766 .704 .964 674 559 .696 .818 .454 .06l

N 16.0 203 232 194 253 193 16.6 201 247 13.1 -9.96
718 609 419 650 .131 .656 .759 619 257 .860 .921

AC 0162 .0221 .0271 .0208 .0307 .0203 .0170 .0213 .0296 .0120 .0058
855 .706  .493 744 174 .79 .837 729 309 .923 .983

R 119 141 168 136 180 .129 .121 .140 .179 .116 .108
770 655 436 .684 .256 .723 .761 .663 .278 .786 .814

T 870 766 1775 7.91 459 834 860 824 755 9.03 9097
S 499 647 635 616 .889 556 .516 .57l .659 .437 .115

147 148 998 1.48 131 147 148 148 112 145 129

Property

Pe 141 .036 739 .004 472 .104 .094 .082 .652 .197 .497
v 15.2 12.6° © 15/9- 41158 15.5 131 142  10.7
e .376 640  .236  .259 .332 .603  .499 .760

v 263 2556 654 259 171 261 263 259 921 261 224
m 013 246 .978 189 762 .142 .000 .183 .937 .143 .529

R 188 186 .046  .187 .132 .188 .188 .187 .077 .184 .151
1 085 .179 970 121 712 .071 071 .116 .913 218 .601

.0122 .0116 .0119 .0120 .0123 .0044 .0123 .0103
P .067  .323 167 238 .064 936 .090 550
cs 156 129 142 136 142 15.6 12.8 189 19.0

581 739 672 .706 676 .583 743 860  .921
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TABLE IV

Standard errors S (top lines) and coefficients of regressions R (bottom lines) for regressions
using invariants derived from adjacency, distance and vicinal matrices and their combinalions.

Property Descriptors
TI A+D IDA) X(A) x(W) IDW) X(W) J x(D) IDMD)
BP 4.37 5.43 4.31 3.70 4.18 5.66 5.50 4.40 5.28
722 .509 731 .809 750 442 .489 117 .547
S 171 241 1.64 2.25 2.02 2.63 2.07 3.48 1.98
931 .856 936 .875 901 .826 .896 .665 906

AH 141 240 .136 .215 127 137 .264 .239 .263 221
934 794 .939 .840 947 .938 743 ALY 146 .829

Ha 867 L14 864 106 769 118 133 8T 110
741 467 742 571 .808 893 481 733 522
843 477 363, 443 84900 38%c 495 - A3 e 384 460
AcH

.135 .457 137 .564 .803 728 .383 472 733 .514

AEH 3.30 3.79 3.31 3.69 3.02 3.32 3.83 3.79 3.05 3.717
1 .507 .148 .503 .27 .615 .498 .063 .147 .605 .186

AT .689 961 649 .675 .660 1.04 972 1.09 .852
.889 .5b6 903 .894 .899 721 .764 .689 .825
HY 624 .996 .b83 .548 .589 1.09 1.01 1.08 .933
909 .746 921 931 919 .687 737 .690 182
o .8569 .905 .866 793 8561 .900 .904 139 .905
.315 .029 .330 483 341 110 .058 578 .023
N 10.6 8.18 10.2 14.3 9.31 10.7 9.27 23.0
910 947 917 .828 931 909 .932 437

AC .0090 .0096 .0092 .0069 .0157 .0109 .0116 .0076 .0272 .0087
957 951 956 975 .864 937 928 970 .489 960

R .093 .085 .093 .095 .080 .095 .096 142 .080
.868 .890 .866 .861 904 .861 .8568 .646 902

T 9.65 10.0 9.53 9.13 9.68 10.0 10.0 8.44 9.99
g 274 .003 313 415 .298 .059 .007 541 .100
1.36 1.18 1.39 1.43 1.37 1.14 1.21 1.48 1.29

Pe .390 .607 .347 .268 .386 637 .b81 071 496
v 13.6 9.97 13.5 10.8 14.8 13.4 9.24 9.99 16.4 11.3
9 .557 794 .56b 7563 429 572 .826 793 022 122
v 2.52 2.06 2.52 2.62 2.63 1.93 2.03 2.57 2.17
o .297 621 287 113 .283 677 .639 .223 .567
R 175 135 176 .185 176 124 134 .186 144
o .370 .698 .364 .192 .387 752 .706 .169 .644

.0119 .00%0 .0119 .0101 .0123 .0119 .0082 .0091 .0119 .0100
2 267 .679 .266 672 .042 .261 743 .675 .261 .685

cs 17.9 19.2 17.8 19.1 16.7 17.9 19.2 19.2 19.1
.366 .010 .378 .130 498 .360 .069 .031 .109
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TABLE V

Standard errors S (top lines) and the coefficients of regressions R (bottom lines) for
regressions using miscellaneous simple structural invariants

Property Descriptors
Z1 (V2 4= PP 4 w/W WW w Z w w/Z

BP 546  5.01 3.25 512 591 bB552 531 611 290 531 3.09
.600  .609 .857 684  .350 .483 .540 .248 888 .539 .872

S 1567  1.40 260 2.13 461 249 266 438 486 223 3.79
942 954 .829  .888 135 .845 .821 .338 580 .878 .582

AH 231 .187 150 213 .389 .248 .238 .360 .095 .226 .243
.812 .88l 925 842 180 779 798 414 971 .820 .840

HA 108 .991 587 108 127 116 113 1.28 .574 111 .586
542 .640 .891  .550 .182 441 476 .095 .896 .506 .891

AH 453 4.15 245 451 527 484 473 534 241 465 4.43
1 535 .633 889 541 188 432 466 .083 .893 .497 564

AR 376 3.59 240 372 365 381 377 383 252 3176 2.02
1 211 .350 780  .240 .303 .117 .179 .033 .753 .189 .8K0

AH 972 822 .828  .887 1.40 .981 .940 1.25 .686 .921 1.19
164 838 836 .808 375 .759 .781 .56 .890 .791 .61l

HV .995  .808 627 904 140 102 964 1.27 .429 .949 1.04
147 842 908 797 3656 .730 .764 524 958 .773 .721

ol .906  .898 643  .903 769 .904 905 901 .677 .905 .363
0.33 .130 704 078 527 .067 .021 .093 .663 .008 .916

N 10.2  8.89 20.1 856 255 998 7.40 209 181 742 246
917 938 .617 .942 .089 921 957 .576 .704 .957 268

AC 0063 .0039 .0222 .0102 .0309 .0100 0.112 .0230 .0190 .0083 .0294
978 992 702 945 123 947 933 673 .791 .964 .328

R 109 (102 136,091 .18 .090 .080 .143 .124 .085 .171
813 .837 -684 873 058 875 .903 .642 .747 .890 .395

T 10.0  9.88 7.89 996 963 10.0 100 977 828 10.0 5.51
& 072 117 .618 .121 .281 .023 .023 .231 .565 .041 .836

129  1.33 148 128 147 116 118 110 147 121 138
Pe 493 438 019 .509 147 620 608 .668 .099 .579 .367

v 1.0 12.0 161 9.89 164 102 102 125 156 10.3 16.1
2 740  .683 178 798 018 781 .785 .646 .308 .780 .752

v 2.08 232 2.58 224 237 203 215 219 262 212 203
A 612 475 206 524 433 639 676 .553 .112 .592 .636

R .140  .156 187 150 .171 .132 .141 .145 .189 .140 .153
e 669 542 142 606 .421 .715 662 .641 .036 .669 .588

0095 .0108 .0118 .0102 .0111 .0088 .0093 .0092 .0120 .0095 .0091
p 633 479 280 .61 430 .697 .651 .6A9 .206 .641 .670

cs 19.1  18.7 136 191 163 192 192 184 144 192 19.1
106 227 709 112 634 .017  .020 .283 663 .056 .929
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TABLE VI

Standard errors S (top lines) and the coefficients of regressions R (bottom lines) for
regressions using information theoretic and matrix multiplicative invariants.

Property Descriptors
IED IWD EC PO U \%4 X ¥ AZV

BP 5.34 5.19 5.61 6.16 6.04 5.568 5.43 577 3.53
.533 .669 466 214 .286 .467 .510 403 .823

s 1.88 2.43 2.02 4.64 2.91 1.91 1.90 1.84 1.71

915 .8563 901 .092 780 912 913 919 874

AH 224 222 .253 .394 .307 244 .230 .264 .095
824 827 768 .061 .628 787 .814 745 .965

HA 1. 1.16 1.27 1.25 1.14 111 1.16 702
.607 437 178 .240 .475 .510 .440 .811

AH 4.65 4.68 4.84 5.27 5.22 4.74 4.64 4.83 2.95
r 498 .519 429 178 .230 .466 .501 432 .809
ASH 3.79 3.73 3.82 3.756 3.80 3.81 3.78 3.82 2.83
1 .153 .229 .060 .206 131 119 172 .051 .675

AH .914 .902 1.02 1.51 119 1.00 .952 Lo8 .688
795 .801 137 .014 .610 147 115 .699 .890

HV .943 .922 1.08 1.49 1.26 1.04 .983 1.13 439
776 787 704 .039 .542 .715 .754 .654 .956

& .905 .904 901 .866 .865 .902 .905 .891 770

.006 .060 .094 .291 297 .092 .032 .178 527

N 9.01 A 25.5 14.7 10.2 8.92 12.6 15.6
.936 959 .026 .819 916 937 871 192

AC .0081 .0106 .0116 .0308 .0156 0077 .0067 .0095 .0144
965 942 928 .146 .865 .969 977 952 .887

R .090 .084 .101 187 113 .105 .099 120 120
.876 .894 .841 .030 796 .826 .848 768 769

T 9.98 10.0 10.0 9.46 9.88 10.0 10.0 10.0 8.76
c

.103 .070 .049 .334 175 .020 .048 .009 .263
1.30 1.22 1.30 1.40 1.12 1.25 1.256 1.29 1.26
Pe .483 567 .484 312 .658 .540 .b41 .496 .484

v 11.0 10.5 11.3 16.4 8.67 10.0 10.3 10.2 14.8
£ 734 766 127 .069 .849 191 780 783 .436

v 2.13 2.20 2.04 2.60 1.59 1.97 2.07 1.84 2.63
n .690 546 .634 314 97 .663 .619 716 .045

R .140 147 .134 .180 .097 .130 137 121 187
m .669 .630 .703 .304 .867 726 .686 768 117

0097  .0095  .0093 .0117 .0067  .0089  .0093  .0083  .2476
£ 616 .633 .652 .304 .839 694 .653 739 .269

cs 19.1 19.2 19.2 18.1 18.8 19.2 19.2 19.2 16.4
.091 .074 .029 .337 .212 .034 .069 .007 .607
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sions among the several hundreds reported. We may also add that only one (in several
hundreds!) of the reported regressions qualifies as »outstanding«. It has to be seen if
this exceptional value for a single descriptor regression of physico-chemical properties
(among molecules of the same size) can be matched for other molecular properties, and
other molecules.

A glance at Tables III - VI immediately reveals that some of the properties con-
sidered can be classified as »difficult« and some as »easy« if one judges difficult/easy
as the ratio between successful regressions (i.e. those with R above 0.900) and not so
successful ones (regressions with R close to but less than 0.900 and greater than 0.800
may be referred to as mediocre), or uninteresting (R below 0.800) and outright non-
existent (R below 0.100).

»DIFFICULT« MOLECULAR PROPERTIES
Boiling point

We have already mentioned regressions of the boiling points in octane that are
hard to represent successfully by a single-variable regression. The following descriptors
produce R greater than 0.800 (but less than desirable R = 0.900 or better);

R S
Hosoya Z 0.888 2.90
Reciprocal 1/2 0.887 2.91
Ratio 1y /2y 0.886 2.93
Connectivity % 0.882 2.98
Difference ly-2y 0.872 3.09
Difference 23y 0.870 3.11
AZV 0.823 3.63
Connectivity 1y 0.821 3.60
Wiener matrix 1y 0.809 3.71
Reciprocal 1/l 0.801 3.78

Note that, though the connectivity index !y does not give the best regression,
various simple combinations of 'y give improved correlations, which also includes con-
nectivity-type weighted paths of length based on the Wiener matrix of a graph.

Critical temperature

The rows in Tables III — VI referring to the critical temperatures show not only
that this property is hard to represent by a single descriptor, but that most descriptors

do not point to any correlation. Here we find only two descriptors giving R above
0.800:

Difference 1y — 2y 0.889 4.59
Ratio W/Z 0.836 5.51

Ten descriptors show no correlation at all (R less than 0.100), including also the
Wiener index W (R = 0.041), yet in a combination with the Hosoya Z index (which
yields R = 0.565) we obtain appreciable improvement: R = 0.836. This illustrates well
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that simple (arithmetic, algebraic and other) combinations of indices may offer accept-
able solutions when the component indices fail. Interpretation of such combinations
may lead to novel structural concepts. Plat®® has argued that W can be viewed as a
measure of the molecular volume. On the other hand, the Hosoya Z index correlated
well with the properties expected to depend on the molecular »surface« (such as BP,
for instance). The ratio W/Z, thus, corresponds to a measure of an effective »radius«
of a molecule. Clearly, this is not the only index that can be so interpreted, the in-
dividual cases corresponding to different measures for volume and surface.

Critical pressure

This property appears even harder to correlate with a single descriptor, judging
by the descriptors investigated here. The best result

By R = 0.739 S = 0.998

does not even reach the R = .800 value. If we look at the column of Table III cor-
responding to %, we see that this descriptor is rather unique (among those considered)
in that it is the only descriptor (besides its reciprocal 1/3%) that is successful in cor-
relating MV, MR, and liquid densities in octane isomers. The correlations qualify as
excellent »almost« excellent, and are among the »best« results in Tables III — VL

Critical volume

In contrast to the regressions involving the critical pressure, almost half of the
descriptors (twenty) have the R value above 0.700, while none did so in the case of
critical pressure, except the indicated %. Among the more successful indices, we find
Balaban’s U (R = .849), the ratio ID/Y based on the distance matrix (R = 0.832) and
the first eigenvalue of the vicinal matrix (R = 0.826). Interpretation of these results,
while possibly better, awaits a more successful single-descriptor regression, which may
not only produce a simpler interpretation but may somewhat illuminate some of the
descriptors that are more convoluted.

Heat of formation (liquid)

Again, no descriptor yields a regression with R above 0.900, the following being
the best results:

Descriptor R S

w/Z 0.850 2.02
2y _ By 0.835 2.11
1/2y 0.825 2:37
2y 0.810 2.25
Ly /2 0.797 2.32
Lo — 2 0.787 2.36
xl-11 0.780 2.40
Z 0.753 2.52

Again, we see W/Z to be a useful descriptor, even though W alone has R = 0.189 !
Note also again how simple combinations of the connectivity indices emerge as useful
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descriptors. Among better descriptors, we also find Altenburg’s index, which we
denoted as x(~'1 and which is related to the connectivity index ly.

As additional difficult properties we may include those properties from Tables III
- VI in which only 1-2 descriptors offer regression with R above 0.900. This includes
the chemical shift sums (or the average carbon-13 chemical shift for a molecule) with
the best results with W/Z and the distant second choice %

0.929 S
0.739 S

7.12

w/Z
2y 12.95

R
R

as well as previously mentioned densities, molecular volumes and molar refractions.

»EASY« MOLECULAR PROPERTIES

As easy properties (i.e. easy to find a descriptor that will give a fair or better
regression) we consider those that lead to acceptable regressions with a dozen and
more descriptors (among the 42 considered). These include:

Property Correlations
R > 0.990 R > 0.975 R > 0.950 R > 0.925 R > 0.900 Total
Outstanding  Excellent Very good Good Fair
AC 1 4 9 7 1 22
AH b 9 0 14
N 3 6 7 16
HV 4 5 5 14
S 1 5 9 15

We see from the above table that almost half of the descriptors can well correlate
with the acentric character (AC). Hence, this property should not be taken as an in-
dicator for the »success« of a descriptor. The designer of a novel descriptor for this
particular property ought to get results better than the best available, or at least as
good, i.e better than:

Descriptor R )

A2 0.992 .0039
ID 0.983 .0058
L+ 0.980 .0062

CHALLENGES SEARCH FOR BETTER REGRESSIONS

In Table VII, we summarized the best results so far obtained for the 18 isomers
of hexane and the twenty properties examined. A challenge to those interested in
structure-property studies is to design or discover better ad hoc descriptors for the
properties listed. It is possible that yet another combination of the topological indices
here used may produce still better results, and that also has to be investigated. How-
ever, highly convoluted ad hoc constructions, while possibly producing a better single-
variable regression may become less transparent to interpretation. The object of the
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TABLE VIL

The best resulls: the best standard errors S and the accompanying best coefficients of
regressions R together with an indication of the descriptors used. The descriptors
marked by asterisks have been tested in this work for the first time

Symbol Property S R Descriptor

BP Boiling points 2.90 .888 Z

S Entropy 1.40 954 myjz

AH Heat of vaporization 118 942 Ly

HF Heat of formation A71 931 1/2

HA Heat of atomization 725 931 1/%¢

AcH Heat of formation 197 930 1/%

AH Heat of vap. (liquid) 2.02 .850 W/Z *
AH Heats of vap.(vapor) 627 .909 ID) %
HV Heats of vap. 429 958 zZ

T Critical temperature 4.59 .889 Ly 2y

De Critical pressure 1.10 .668 1/2

Ve Critical volume 8.67 .849 x(V) s
g Surface tension .241 964 Zy — 3y

R Quadratic mean radius .080 .904 ID(V) ¥
AC Pitzer acentric factor .0039 992 Zy

N Octane number 7.27 959 Iwp

Vi Molecular Volume .554 978 3y

R, Molar refraction .046 .970 By

p Density .0025 979 By

Cs C-13 chem. shift sum 19.1 929 W/Z i
Cp or C, Heat capacity

RT Retention time

regression analysis, besides offering a predictive tool, is also to offer some insights into
the structure-property relationship and molecular modeling. While most of the descrip-
tors employed here gave a straightforward structural interpretation, such an inter-
pretation becomes less and less apparent as the underlying constructional steps are
compounded. For example, regularities in the first eigenvalues of a matrix (adjacency,
distance or vicinal) are not so apparent, and neither is the structural relationship of
the information theoretic indices so direct. The same, to some extent, applies to
several of Balaban's indices derived by matrix-vector multiplications. But the ease of
interpretation is, to a great extent, in the eye of the beholder! So one should not be
discouraged if an interpretation appears convoluted, as long as one can recognize the
regularities associated with a particular descriptor.

A closer look at Table VII immediately shows that the connectivity indices (in
various combinations, such as reciprocals, differences, ID numbers) emerged among
the leading indices. An asterisk (*) indicates indices that have not been previously con-
sidered. They include the ID numbers based on the connectivity indices (rather than
based on weighted paths). Let us also point out the simple ratio W/Z, of the two oldest
topological descriptors which, as shown here for the first time, appears as a useful
descriptor. Hence, a new source of indices to be explored are simple combinations of
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the existing indices. The topological state matrix T' of Kier and Hall, the elements ¢;
of which are given by the product of the inverse square root of valences for all the
vertices in the unique path between i and j, is also a potential source of additional
graph invariants.

In concluding this section on challenges, it is worth observing that even the best
regression for the critical pressure (R = 0.668) is far from satisfactory. Is there some
significance in the fact that the best regressions for the critical temperatures and the
critical volumes are not very satisfactory?

BEHAVIOR OF DESCRIPTORS

If we closely examine Tables III — VII by focussing attention on individual columns
rather than rows, we again see a considerable difference in the performance of in-
dividual descriptors. The connectivity indices and their combinations appear to show
good correlation with several properties. On the other hand, several of the descriptors
examined failed to lead to a single regression exceeding R = 0.900. This is the case of
the ponderal index PI, the distance matrix based y, the ratio of ID numbers and x (both
based on the distance matrix), index %'/%» W', and Balaban's U index. Among these,
the ponderal index produced no promising correlation (the highest R for the twenty
properties being about 0.300) but, of course, there are other properties and other
molecules, and the possibility of combining this index with other that may eventually
show some use for this descriptor. However, while indices like ponderal, and possibly
a few others, have yet to prove themselves, we see that connectivity indices and com-
binations and a few others, like W and Z, have already proved themselves ! Of par-
ticular significance is the fact that, while ly and 2y are somewhat parallel to one
another, % is complementary in that it shows good correlations where the other two
fail and vice versa. This signifies that the indices have captured distinctive structural
features and this is the underlying reason why the regressions based on the connec-
tivity indices have been so successful.

THE BEST DESCRIPTORS

From the abundance of regression data it is hard to single out the best descriptor,
or even the best descriptors since, for different properties, different descriptors appear
as optimal. It is even difficult to suggest which indices are irrelevant since, by con-
sidering various combinations of apparently »uninteresting« descriptors a promising
new descriptor may emerge. We have seen this in the case of W/Z (and the same may
be true of other cases) that even when one of the components performs poorly, if con-
sidered isolated (for the property under review), when combined with another descrip-
tor, we obtain a novel variable which can outperform other descriptors. Our motiva-
tion for considering W/Z and related combinations like ID/x came from the attempts
to interpret such variables as »diameter« of a molecule, Similarly, the difference 1y —

%¢ was motivated by the well established properties of the differences in path numbers
Py—P;.

It is possible that systematic explorations of several simple combinations of a selec-
tion of indices already considered here may produce even better regressions and better
single variables. Rather than following along such a direction (which deserves atten-

tion), we would like to point to two distinct routes for the construction of novel
descriptors that may be promising.
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(1) Search for an optimal functional form,
(2) Search for optimal compacted descriptors,

(3) Search for novel graph matrices as a source of new descriptors.

Search for an optimal functional form:

To illustrate the search for optimal descriptors, consider several of the regression
results based on yl1], x1/2), ¥1=1/2] and y{-1), shown in Table VIII. We have grouped these
into five classes, depending on the way the standard error behaves under a change in
the exponential parameter p, which takes values 1, 1/2, -1/2 and -1. The case p=1
corresponds to an earlier index of the Zagreb group, the value -1/2 represents the con-
nectivity index, and the other two values were introduced by Altenburg in a discussion
of the molecular mean radius.® The first class (the most popular) shows a steady
decrease in S as p decreases, so the domain of the exponents has to be extended in
order to find the optimal value. In the second class, the trend is just opposite and the
optimal exponent p is to be sought at positive values of p. The next class of compounds
show a minimal standard error about p=1/2 (although the precise value of m has to
be determined for each). Finally, the last class in the upper part of the table includes
properties that show a minimum for p = -1/2 (or the value to be yet more precisely
determined). In the lower part of Table VIII, we have a class for itself which is char-
acterized by exhibiting a maximum (not minimum) at p=1/2. Optimal p in this case
ought to be sought at either side of the range of the m values considered.

TABLE VIII

Comparison of the statistical data for the functionally tested indices suggestive
that the optimal functional form has yet to be established. The trend of
S (standard error) allows one to classify the properties accordingly

Property %1 x11/21 Fl-1/2) =11
BP 5.46 5.01 3.60 3.25
HF 1.08 0.99 0.68 0.59
AtH 4.53 4.14 2.85 2.45
CT 10.01 9.88 8.70 7.89
ASH 3.75 3.59 2.78 2.40

g .905 .898 761 643
cs 9.11 18.72 15.65 13.55
Pe 1.29 1.33 1.47 1.48
Ve 11.03 11.97 15.19 16.13

s 157 1.40 1.97 2.60
AC .0062 .0039 0162 .0222
R2 .109 .102 119 .136
N 10.22 8.89 16.05 20.11
AH 231 187 113 .150
AH 972 822 .662 .828
HV .995 .808 .446 .627
Vin 2.08 2.32 2.63 2.58
R 1.40 .159 .188 .187
p .0095 .0108 0123 .0118
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Clearly, Table VIII is suggestive of a novel generalization of the connectivity type
indices. In another study, Randi¢, Hansen and Jurs?® investigated the role of exponent
p on the regression in smaller alkanes and observed that linearity of regressions can
be improved by relaxing exponent p somewhat from the preselected value of -1/2,
which defines the connectivity index. Even if the optimal values of p obtained in such
search are still less successful than some of the alternative descriptors of Tables III —
VI, we see how less than »perfect« descriptors can, nevertheless, be of use, as il-
lustrated here on the outlined classification of molecular properties.

Search for optimal compacted descriptors:

Another procedure for deriving better descriptors is to construct novel descriptors
by combining the existing descriptors in an orthogonalization process in which one
compacts information from two (and more) descriptors into a single descriptor. In this
respect, of potential interest are descriptors which did not perform well, including
those that show almost zero correlation coefficients. If such a descriptor (¥) correlates
with another, a promising descriptor (X), then one can extract from X the »un-
desirable« component (the part that parallels ¥) and obtain a descriptor that exceeds
the original descriptor X. We illustrate this on W and Z which are correlated and the
residuals shown in Table IX. The residual of W against Z are the parts of W that do
not correlate with Z. Even though the regression between Z and W is not particularly
high, we are able, by using the derived residuals as a new descriptor, to compact
properties of two descriptors into a single descriptor. Only that part of W is retained
which has no parallel with Z. When we apply this new descriptor, we find few accept-
able regressions (the first columns in Table X). For comparison, we show R and S
values for W/Z, W, and Z, respectively, in the remaining columns. An impressive im-
provement was achieved by the orthogonalization and by extraction of »undesirable«

TABLE IX

Regression of W against Z and the residuals of such regression
viewed as novel (»compacted«) descriptors

Isomer w zZ w/zZ Residual
n 84 34 2.4706 +0.2199
2M 79 29 27241 -2.1639
M 76 31 2.4516 +1.4058
4M 75 30 2.5000 +0.9290
3E 42 32 2.2500 +4.4988
22MM 71 23 3.0870 -3.9780
23MM 70 27 2.6926 +0.5452
24MM 71 26 2.7308 -0.9780
256MM 74 25 2.9600 -3.5477
33MM 67 25 2.6800 +0.1149
34MM 68 29 2.3448 +3.5917
23ME 67 28 2.3929 +3.1149
33ME 64 28 2.2867 +4.6847
223MMM 63 22 2.8636 -0.7921
224MMM 66 19 3.4737 -5.3618
233MMM 62 23 2.6957 +0.7311
2234MMM 656 24 2.7083 +0.1614

2233MMMM 58 17 3.4118 -3.1759
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TABLE X

Comparison of the statistical data for single variable regressions based
on the Wiener number W, Hosoya topological index Z and indices
derived from them by simple division and by orthogonalization

Descriptor wZz w/z
Property R S R S
Vi 0.931 0.958 0.636  2.032
R, 0.963 0.0512 0.588  0.1527
P 0.949 0.0039 0.670  0.0091
Descriptor w zZ
Property R S R S
Vb 0.592 2.12 0.112 2.032
R, 0.669 0.140 0.036  0.189
p 0.641 0.0094 0.206  0.0120

components of Z in W. The standard error was reduced two to three times, and arrived
at acceptable regressions termed »good« and »very good«. We refer to the above pro-
cedure as »compacting« of descriptors. Generally, in this way, by »discarding« parts
of a descriptor that parallel (highly correlate with) descriptors that are not suitable
for the property considered, one can arrive at better descriptors. The procedure il-
lustrates how use is made of descriptors that have not been found suitable in a par-
ticular regression. For more details, the reader is directed to a detailed illustration of
the construction of compacted descriptors for clonidine-like compounds.*¢

It is beyond the scope of the present paper to pursue both of the two mentioned
strategies and to try to anticipate the outcomes of such constructions, but it seems
desirable to examine these and other routes of improving the performance of single
descriptors in an effort to arrive at optimal single descriptors for regression analysis.

Search for novel graph matrices as a source of new descriptors

Besides the widely known »old« graph matrices, the adjacency and the distance
matrix, several novel matrices have been recently introduced in the chemical graph
theory. Kier and Hall’s electrotopological state matrix has already been mentioned.*
If all elements except those adjacent in such a matrix are assumed zero, we obtain a
weighted adjacency matrix, the higher powers of which can generate an infinite se-
quence of graph invariants.’’” We have also mentioned the Wiener matrix.’”*® For
cyclic graphs matrix using (uniform electrical) resistances appears of considerable in-
terest.”” Another recently introduced matrix for trees (but equally applies to cyclic
graphs) is based on restricted random walks over graphs.® From such matrices, novel
invariants can be constructed using the already familiar procedures. Thus, in analogy
to Balabans’s J index, the Weiner matrix yields the K index by using row sums and
the reciprocal square root procedure. The K index appears even more discriminatory
than the J index.’! Alternatively, one may combine matrix elements corresponding to
paths of equal length and, in this way, arrive at sequences that may be viewed as
generalized path numbers, and a single number that is obtained by adding all entries
in a matrix, or all elements above the main diagonal (analogous to W which can thus
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be derived from the distance matrix). Some properties of such sequences for the Wiener
matrix have been reported.*’

CONCLUDING REMARKS

An important step in arriving at multiple regressions with a high correlation coef-
ficient and small relative error is a search for the best one-descriptor regressions. We
have examined several hundreds of regressions, all for the same set of 18 isomers of
octanes, using some 40 molecular descriptors. It appears that less than half a dozen
descriptors again and again dominate simple regressions for the molecular properties.
This finding has been confirmed in other studies too and, in particular, Katritzky and
Gordeeva®® have recently shown that »for the estimation of physico-chemical proper-
ties, the best small regression models with 1-4 parameters are mainly comprised of
»classical« topological indices, such as the Randié index, Wiener index and Molecular
Connectivity indices. For the correlation of biological activity, combinations of topological
indices with geometrical descriptors have produced regression models of the best
quality«. This recent work thus supports our expectation that for structure-activity, 3-
dimensional aspects of the molecular structure will also play an important role.

For the first time, it has been shown that upper bounds to the standard error can be
derived for physico-chemical properties using statistical information on many regres-
sions (including also regressions which, if considered isolated, are of no practical im-
portance). We have seen that some properties are »difficult« and offer a challenge to
structure-property regression analysis, while some other properties appear »promis-
cuous, L.e., almost any reasonable descriptor may be used with considerable success
to obtain a reasonable regression. This is important to know in order to curb prolifera-
tion of unwarranted descriptors, and eliminate descriptors which only apply to »easy«
properties. A novel descriptor should be tested on »difficult« properties, properties
that evade successful regressions. Only such selective descriptors are likely to tell us
something specific about a particular property. It is an »open« question if, for any
physico-chemical molecular property, single dominant descriptor could be found, a
descriptor with a simple and direct structural interpretation. It is also questionable if
such a descriptor is unique, i.e.,, well separated (by the evaluated standard error S)
from other descriptors. There may be such single-variables for all properties but we
have not been clever enough to find them. On the other hand, there is no guarantee
that a single simple (as defined above) descriptor ought to exist for every bulk molecular
property.

We suggested three directions to improve the present pool of descriptors. One is
based on the search for an optimal mathematical form for a descriptor, using the min-
imal standard error as the criterion in analogy with the similar procedure recently out-
lined in the search for optimal descriptors for heteroatom.® The second route is that
using the orthogonalization process to eliminate parts of a descriptor that are less im-
portant in a particular correlation by making the descriptor orthogonal to the descrip-
tors expected or known to be of no interest in such a case. This has been illustrated
on the W and Z indices and volume-dependent molecular properties. The third route
in a way requires imagination, and as such may be very productive. This is well il-
lustrated by the restricted random walks matrices from which a bond additive index
P, was derived (by adding all entries in the matrix corresponding to adjacent vertices,
that is bonds). This novel index was tested on molecular entropy S° and a very good
single variable regression was obtained®® with R = 0.964 (and S = 1.265), which is
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better than any of the entropy correlations shown in Tables III — VI ! Indeed, by this
single demonstration of a superior regression, matrices and descriptors based on
restricted random walks deserve serious attention.

Last but not least, an important advantage of comparative studies of regressions
is the possibility to classify properties (and descriptors), as it has been illustrated in
Table VIII of this paper.

APPENDIX

In the following tables, we list the numerical values for a dozen descriptors
(topological indices) which have not been previously reported in the literature. Here,

APPENDIX
Isomer 1D IDWD) 1(W) x(W) X(W) ID(y)
3+ 19 + 3+ 17 +
octane .94464 .44445 .88567 2.21975 57.1698 9.49262
2M .94940 .49068 .81037 1.83728 52.6122 9.56895
3M .94511 .50645 .81100 1.78681 48.4059 9.60493
1M .94199 .50944 .81660 1.79520 46.6606 9.61645
3E .94022 .63958 .83376 1.79155 42.2041 9.68228
22MM 94797 .54054 72688 1.38827 44.4713 9.74313
23MM .94716 .b6752 74978 1.45920 42.0581 9.69478
24MM .95197 .52466 74701 1.46078 43.4185 9.68228
25MM .95634 .6b429 74196 1.48887 47.7238 9.64563
33MM .943563 .58086 74591 1.38667 38.5332 9.80516
34MM 94728 .b9479 75434 1.43762 39.2901 9.72050
23ME 94767 .61769 77287 1.48284 37.4277 9.76237
33ME .94444 .63249 76877 1.40393 34.1415 9.86396
223MMM .95699 .66226 .68266 1.09841 34.9935 9.85984
224MMM .95737 62957 .67109 1.10112 39.1411 9.82049
233MMM .95144 66756 .69353 1.11824 33.4679 9.88327
234MMM .95505 64875 69288 1.16965 37.0246 9.77343
2233MMM  .96052 73834 62117 0.80549 30.3305 10.0000
P'/P W /W w ww X/ X

octane 4.0000 3.00000 2562 210 6.67876 26.1420
2M 4.1786 3.40506 269 184 6.77107 25,6276
3M 4.2857 3.52632 268 170 6.62467 2b.2274
1M 4.3214 3.60000 270 165 6.62467 25.2274
3E 4.4286 3.83333 276 150 6.61116 2b.4272
22MM 4.4643 3.80282 270 149 6.59764 23.4922
23MM 4.5000 3.91429 274 143 6.58092 24,2224
24MM 4.4643 3.95775 281 147 6.58121 24.1129
25MM 4.3671 3.540564 262 161 6.59511 23.9132
33MM 4.6071 4.08955 274 131 6.57590 23.8133
34MM 4.4514 4.05882 276 134 6.58784 24.4982
23ME 4.6071 4.14925 278 129 6.56740 24.4222
33ME 4.7143 4.40625 282 118 6.55467 24.1343
223MMM 4.7500 4.34921 274 115 6.92158 24.2532
224MMM 4.6429 4.15152 274 127 7.02224 23.9915
233MMM 4.6429 4.48287 278 111 6.52808 22.8744
234MMM 4.6786 4.246156 276 122 6.563383 23.2173

2233MMM  4.9286 4.65517 270 97 6.49988 21.1246
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D represents the distance matrix and W the Wiener matrix of a graph, from which
invariants y and ID were derived using the WEIGHTED PATH program. The hyper-
Wiener number is derived by adding up all the entries in the Wiener matrix, the index
being analogous to the Wiener number, which represents the sum of all entries of the
distance matrix. Kier and Hall’s®® total topological index 7 is similarly constructed from
the so called topological state matrix. The topological state value S; for vertex i is
analogous to the atomic sums of W.
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SAZETAK

Komparativna regresijska analiza.
Regresije temeljene na jednom deskriptoru

Milan Randié

Prikazani su rezultati dobiveni za 750 linearnih regresija koje se temelje na jednom deskrip-
toru koristeci dvadeset molekularnih svojstava za alkane i éetrdeset razligitih molekularnih de-
skriptora. Buduéi da je traZenje grafickih invarijanata dalo dobre rezultate, dobiveno je dosta no-
vih karakteristika za izvedene deskriptore koji su pokazali razlicita ponasanja u korelacijama s
fizicko-kemijskim svojstvima. Istovremeno, pronadeno je da se neka svojstva dobro slaZu s jednim
deskriptorom u regresijskoj analizi, ali jo3 uvijek postoje svojstva koja je tesko karakterizirati
deskriptorom. Na kraju ¢lanka dan je popis problema koje bi trebalo razmotriti pri proudavanju
odnosa strukture, svojstava i aktivnosti.
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